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Abstract: Current automatic shadow compensation methods often suffer because their contrast
improvement processes are not self-adaptive and, consequently, the results they produce do not
adequately represent the real objects. The study presented in this paper designed a new automatic
shadow compensation framework based on improvements to the Wallis principle, which included an
intensity coefficient and a stretching coefficient to enhance contrast and brightness more efficiently.
An automatic parameter calculation strategy also is a part of this framework, which is based on
searching for and matching similar feature points around shadow boundaries. Finally, a final
compensation combination strategy combines the regional compensation with the local window
compensation of the pixels in each shadow to improve the shaded information in a balanced way.
All these strategies in our method work together to provide a better measurement for customizing
suitable compensation depending on the condition of each region and pixel. The intensity component
I also is automatically strengthened through the customized compensation model. Color correction
is executed in a way that avoids the color bias caused by over-compensated component values,
thereby better reflecting shaded information. Images with clouds shadows and ground objects
shadows were utilized to test our method and six other state-of-the-art methods. The comparison
results indicate that our method compensated for shaded information more effectively, accurately,
and evenly than the other methods for customizing suitable models for each shadow and pixel with
reasonable time-cost. Its brightness, contrast, and object color in shaded areas were approximately
equalized with non-shaded regions to present a shadow-free image.

Keywords: automatic shadow compensation; high-resolution remote sensing image; Wallis filter;
compensation combination; shadows of the cloud and ground object

1. Introduction

Shadows are a common phenomenon in nature when light is occluded by objects such as buildings,
clouds, and trees. In the remote sensing image acquisition process, shadows also exist in images because
of low sun elevation, off-nadir viewing angles, high-rise buildings, and uneven terrain. Shadows can be
categorized as cast shadows and self-shadows. A cast shadow is the part of an object that is cast on the
ground, while a self-shadow is the part that is not illuminated [1]. Cast shadows were the focus of the
study presented in this paper. Although objects in cast shadow areas receive some scattered sunlight from
the surrounding environment, their brightness is much darker than that of the surrounding non-shaded
areas. As a result, information about other objects inside cast shadows is not adequately presented,
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which is detrimental to extracting and reusing the shaded information. In general, this influence is
positively related to the cast shadow area. The area of an object shadow is related to the object size, height,
and sunlight direction, and greater shadows usually cause greater radiometric information reduction. In an
image, a cloud shadow is often much larger than the shadow of a ground object [2,3]. In city construction,
high-rise buildings always post larger shadows that occlude the adjacent roads and buildings. Moreover,
with the development of spatial resolution of remote sensing images, this information reduction is more
serious in image interpretation and affects image applications in other mapping and surveying processes.
Thus, it is of great interest in the image reconstruction research arena to find a way to compensate for
shaded information in remote sensing images to recover the lost information before beginning image
processing steps. This compensated information can be further used in land cover classification [4],
mapping, object recognition [5], etc. to improve the precision of the results.

There are two types of shadow automatic compensation methods for remote sensing image:
image enhancement, compensation models. In the early 2000 s, image enhancement principles,
which include Linear Correlation Correction (LCC) [6], Retinex [7,8], and histogram matching [9],
were applied to shadow removal for the purpose of improving the brightness and contrast of the
shadow areas in images [10–14]. Tsai [15] utilized the invariant color property in the shadow area
to detect shadow pixels and compensated for the shaded information loss based on histogram
matching. Jian Yang et al. [16] proposed an approach for global shadow compensation that utilized
fully constrained linear spectral unmixing. Nair et al. [17] presented a machine-learning algorithm
and an Enhanced Streaming Random Tree (ESRT) model for image segmentation and classification to
extract shadow areas, after which color chromaticity and morphological processing were performed to
remove shadows. Vicente et al. [18] designed a novel shadow detection and removal method based
on leave-one-out optimization. First, they extracted the shadows and identified their neighboring lit
regions. Next, they conducted histogram matching of the I component between the shadow regions,
and the lit area was utilized to restore the shaded information. In summary, the compensation effect
of their approach is related to the capability of the image enhancement algorithm and often relies on
manual expertise to determine suitable parameter values. Nevertheless, it is challenging to achieve
adaptive processing with this method, depending on the degree of shadow occlusion.

Thereafter, a series of compensation models based on the Gamma correction method,
color constancy principle, and other methods were proposed [19–21]. These methods combined
information from shaded areas and non-shaded areas to establish suitable compensation models.
Wan et al. [22] took advantage of the Gamma correction principle to treat shadows as a multiplicative
noise source. Their noise influence coefficient was related to the grayscale of the original image,
and after this process, the radiation was corrected by the exponential function. Mo et al. [23] proposed
an object-oriented automatic shadow detection method and a shadow compensation method by region
matching based on Bag-of-Words. The I component of the shadow pixels is primarily corrected by
the matched region pairs. Then, the final compensation result is heightened by the overall mean and
variance of the shadow and non-shadow regions. These models generally involve many parameters;
and the accuracy of the parameter values is relevant to the quality of the compensation results. However,
most of the values are determined by manual expertise; and a need, therefore, exists for a way to
automatically calculate suitable parameter values in shadow compensation.

All in all, the above methods cannot compensate for the information to the degree that it is the
same as the non-shadow area. In addition, they are not self-adaptive enough to change the model
parameters to gain the most suitable restoration, and the object’s color often deviates from the original
color. Therefore, an appropriate compensation model that can improve the brightness and contrast
effects similar to the non-shadow regions would be helpful. The original Wallis filter is usually used
for image dodging to recover an uneven color. It typically can complement the lost color with an image
contrast extension coefficient and a brightness coefficient for targeted adjusting. Yet, it cannot be used
in shadow compensation directly. Since the LCC model is useful in shadow compensation, the study
presented in this paper designed a compensation model based on the Wallis filter and the LCC model.
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Additionally, an automatic parameter calculation strategy and a final compensation combination with
local information based on the designed model are discussed in detail.

2. Related Works

Most of the primary shadow compensation principles for cloud shadows and ground object shadows
are similar. The image mosaic principle is often used for cloud shadow removal. However, when cloud
shadows occur in high-resolution images, the typical shadow compensation methods can restore the
shaded information. The shadows in high-resolution images are the primary concern of this study.

The effects of automatic shadow compensation methods depend on the capability of the compensation
principles and the accuracy of the relevant parameters. Among the image enhancement principles, LCC has
been shown to be more productive with fewer parameters, utilizing the target mean and variance as
well as an intensity coefficient. LCC is widely used in automatic shadow compensation studies [24,25].
Chen et al. [26] used LCC to compensate for the shadow area by combining the mean and variance in the
shadow and non-shadow areas with a certain compensation coefficient. The target mean and variance
were obtained from the non-shadow areas; however, they applied a certain coefficient value for all the
shadow regions, and their method cannot adjust based on the shadow difference. Mostafa et al. [27]
detected shadows and segmented images into regions; and the shadow restoration was carried out for
each region based on the degree of correspondence between the shadow and neighboring non-shadow
regions and the LCC principle. Liang et al. [28] applied the LCC method to compensate for those cloud
shadows which cannot be removed by image mosaic; and referring to compensation model methods,
the model parameters have a vital effect on the compensation results. Zhang et al. [29] designed a cubic
polynomial nonlinear compensation model and adopted the Inner-Outer Outline Profile Line (IOOPL)
matching method to adaptively compensate for the shaded information. The IOOPLs were obtained for
the boundary lines of shadows; and shadow removal was then performed according to the homogeneous
sections through IOOPL similarity matching to provide model parameters. Friman et al. [30] implemented
adaptive compensation for shadows and utilized the least-squares method to determine the parameters of
the brightness correction model based on the simulated shadow cast model.

In summary, the critical principle for automatic shadow compensation is the automatic calculation
of the compensation parameter value. An efficient compensation model and a reasonable parameter
calculation strategy are both essential in performing accurate shadow removal. To fill this need, our
method strengthened our model’s capability and designed an efficient parameter calculation strategy
to improve its shadow compensation. The main highlights of our work can be summed up as follows:

(1) By taking full advantage of Wallis filter with adjustable coefficients for contrast and brightness
enhancement as well as the useful LCC model in shadow compensation, we propose
a compensation model by introducing two useful intensity and stretching coefficients based
on Wallis filtering and LCC model. The capability of enhancing the contrast and brightness is
strengthened significantly. Then it can be applied to shadow compensation more effectively.

(2) Customize the shadow compensation model for the pixels in each shadow region by automatic
parameter calculation and a compensation combination strategy. First, the compensation
parameters are calculated using automatic feature points selection and matching for each shadow
area. Then, the local window information of every pixel is considered by the combination strategy.
Then, the adaptive compensation model is implemented so that they are suitable to recover the
shaded information more flexibly and evenly.

3. Materials and Methods

Our model compensates for the shaded information automatically in monocular true color images
in Red, Green, and Blue (RGB) color space. The flow chart of our automatic shadow compensation
process proceeds as follows and is also is illustrated in Figure 1. Initially, the image in RGB space
is transformed into a normalized Hue, Saturation, and Intensity (HSI) color space to gather the
Hue (H), Saturation (S), and Intensity (I) components. I is the only component compensated for.
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Then, typical shadow spectral features, such as low brightness and high normalized blue component,
are employed to detect the shadows; and each shadow and non-shadow area is optimized and
confirmed by their morphology. The means of the Red (R), Green (G), Blue (B) components in shadow
areas and non-shadow areas are also calculated, respectively, to acquire their difference, including
∆R, ∆G, and ∆B, which are used to correct the results later in the process. The mean and standard
deviation of component I of each shadow and non-shadow area are calculated. Then, the feature points
around the shadow boundaries are extracted and matched to calculate the values of the unknown
compensation parameters. The mean and variance of component I of each shadow and non-shadow
area and the compensation parameters then are the input to build a regional improved Wallis model.
Meanwhile, the mean and variance of the local window centered on each shadow pixel are calculated
to establish the window compensation model. Then, the original I is heightened by combining the
regional compensation with the local window compensation. In the final step, the new I, the initial H,
and S are converted into RGB color space; and ∆R, ∆G, and ∆B, which represnest the difference in
R, G, and B between the shadow area and non-shadow area, are subtracted from the converted R, G,
B components later on so that the colors in the shadow areas are better matched with their original
colors. Each step of our methodology is discussed in detail in the subsequent sections.
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3.1. Shadow Detection

Before shadow compensation takes place, the shadow areas must be detected. Shadows generally
have some typical spectral features such as low brightness, high hue, and high normalized blue
component B′ defined in Equation (1), and low normalized green component G′ in Equation (2).
These simple features cannot be combined well to detect all the shadows. Therefore, some complex
signatures, such as Q defined in Equation (3), A [31] described in Equation (4) and the Morphological
Shadow Index (MSI) [32,33] define in Equation (5) are applied to identify the detect condition formula
for cloud shadows and ground shadows, respectively. Q and A are designed by extending the signature
difference between shadow and non-shadow based on B′, I, and G′. MSI is developed based on the
Differential Morphological Profiles (DMP) of black top-hat transformed data.

B′ = B/(R + G + B) (1)

G′ = G/(R + G + B) (2)

Q = B′ − I (3)

A =

{
2B′ − I −G′, G′ ≤ TG′

2B′ − I − 2G′, G′ > TG′
(4)

MSI =
∑

DMPB−TH(d, s)
D·S

(5)
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where R, G, and B are red, green, and blue components in RGB space, respectively. B′ and G′ are
the normalized blue component and the normalized green component, respectively. I is the intensity
component in HSI space. TG′ is the Otsu threshold of G′. s and d indicate the length and direction of
the linear structure element (SE). DMPB−TH(d, s) is the value in DMP when using the SE(d, s). D and S
denote the numbers of directionality and scale of the profiles, respectively.

Generally, the ground object shadow and cloud shadow have some similarity and difference in
spectral features. For instance, the ground object shadows have larger MSI values, while the cloud
shadows have smaller amounts. Then, combined with the automatic Otsu threshold strategy [34],
the ground object shadow and the cloud shadow are detected using Equations (6) and (7), respectively.

CGOSD =
{
(i, j)

∣∣∣∣(B′(i, j) > TB′&&I(i, j) < TI)‖
(
Q(i, j) > TQ&&G′(i, j) < TG′

)
‖A(i, j) > TA‖MSI(i, j) > TMSI

}
(6)

CCSD =
{
(i, j)

∣∣∣I(i, j) < TI‖G(i, j) < TG‖MSI(i, j) < TMSI
}

(7)

where CGOSD and CCSD are the pixels set of ground object shadow and cloud shadow. G(i, j) represents
the value of the green component in pixel (i, j). I(i, j) represents the value of intensity component I in
HSI space in pixel (i, j). B′ (i, j) and G′ (i, j) represent the value of the nominalized blue and nominalized
green component in pixel (i, j), respectively. Q(i, j), A(i, j), and MSI(i, j) are the corresponding value
of the complex features Q, A, and MSI in pixel (i, j), respectively. TB′ , TI, TQ, TG′ , TA, TMSI, and TG,
indicate the Otsu thresholds of B′, I, Q, G′, A, MSI, and G components, respectively.

Lastly, some scattered and small shadow areas are removed, and some shadow holes are filled
using mathematic morphological operators such as erasing, dilating, opening, and closing. Then the
final shadow regions are more complete for use in further compensation.

3.2. Shadow Compensation Model Based on Wallis Filter and LCC Model

The original Wallis filter is commonly used for image dodging to recover an uneven color.
It typically can complement the lost color, but it is not sufficient enough to recover the shaded
information caused by shadows. Hence, this study improved the original Wallis model by introducing
the intensity coefficient and stretching coefficient to promote brightness and contrast that is more
effective for shadow compensation.

The general form of the Wallis filter is defined as follows:

gc(i, j) = g(i, j)·r1 + r0 (8)

Or another form is expressed as follows:

gc(i, j) =
[
g(i, j) −mg

] (
c·σ f

)
(
c·σg +

σ f
c

) + b·m f + (1− b)·mg (9)

where, gc(i, j) and g(i, j) represent the target image and the original image, respectively. The parameters
r1 and r0 are the multiplicative coefficient and the additive coefficient, respectively, where r0 = b·m f +

(1− b− r1)·mg and r1 =
(
c·σ f

)
/
(
c·σg + σ f /c

)
. mg and σg represent the mean and standard deviation of

the component in the local area around the pixel (i, j). m f and σ f are the target mean and standard
deviation for this area, respectively. c (c∈[0,1]) is the image contrast extension coefficient, which is
proportional to the local window size. b (b∈[0,1]) is the image brightness coefficient.

The original Wallis filter, essentially a type of image enhancement principle, is typically used in
image dodging to solve the disproportionate color problems [35,36], but it is not functional for shadow
compensation directly. For example, in Figure 2 two different types of shadows cast by a building
and cloud were compensated for the component I with the original Wallis filter. Compared to the
original shadow areas, the brightness after shadow compensation is strengthened slightly. However,
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the overall contrast and brightness in shadow areas are still not good enough to be the same as the
non-shadow areas. Consequently, shaded information is not recovered completely. Its main weakness
is that r1 and r0 are fixed when the target means and standard deviations of the features acquired from
the non-shadow areas are combined with a certain b and c. Consequently, the filter is equivalent to
a linear transformation. However, because the contrast and brightness in the shadow region are so low
and the influence of c is not sufficient to extend the contrast, this linear transformation is not efficient
enough to enlarge the difference to recover the information. When it is used for shadow compensation
directly, it cannot be valid for more serious information loss by shadows. For this reason, a valid
parameter to increase the contrast should be introduced to be used in shadow compensation.
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Since the Linear Correlation Correction (LCC) model in Equation (10) is a very classic method and
useful in shadow compensation. By using mNSD and mSD, σNSD and σSD, which represent the mean
values and standard deviation of the Non-Shadow area (NSD) and the Shadow area (SD), this model
can more accurately enhance the shadow information to the NSD value. However, it is also not able to
adjust the contrast and brightness flexibly.

gc(i, j) = mNSD + (g(i, j) −mSD)·
σNSD

σSD
(10)

Thus, in this study, a new shadow compensation model based on Wallis filter and LCC model
was designed by acquiring the target value from the non-shadow area adjacent to the shadow area and
adding an intensity coefficient α and a stretching coefficient β, as shown in Equation (11):

gc(i, j) = α·

(
mNSD +

g(i, j) −mSD

β·r1
− r0·r1

)
(11)

where α represents the compensation intensity coefficient, β represents the stretching coefficient,
mNSD and mSD represent the mean values of the Non-Shadow area (NSD) and the Shadow area (SD),
r1 and r0 are the multiplicative coefficient and the additive coefficient in the Wallis model.

It is worth noting that this model can capture the target information from NSD areas more precisely
as well as increase the average value and gradients of the shadow component more precisely. α is more
useful for reinforcing the average brightness, while β is effective for enhancing the average gradient
(contrast). With the help of the specific parameters, the compensation model can be more effective in
heightening the information in brightness and contrast.

3.3. Automatic Parameter Calculation Method

In order to perform reasonable compensation for each shadow area, it is necessary to customize
the compensation model according to their condition. Therefore, a novel method of extracting relevant
regions and matching the feature points is implemented for automatically calculating the values of the
compensation parameters.

First, each shadow area and its adjacent non-shadow area as shown in Figure 3a are gained by
a morphological operation to calculate mSD, mNSD, r0 and r1. The Shadow area (SD) is obtained by
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shadow detection initially. By applying a certain morphological dilation K1 times to each shadow
area, a ring region with width K1 around each shadow area is acquired as its Non-Shadow area (NSD).
The mean and standard deviation of the SD and NSD, mSD and σSD, mNSD and σNSD, are calculated.
Additionally, combined with the empirical values of b and c, r0 and r1 are determined for each region.
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Then, the feature points on the shadow and non-shadow lines are extracted and matched to
automatically calculate the unknown parameters α and β. Since there are some ground objects divided
by the shadow boundary into two parts, some feature points belonging to the same object can be
found on both sides of the shadow boundary. As shown in Figure 3b, the non-shadow feature lines
(green) and shadow feature lines (red) can be acquired by dilating and erasing the shadow region.
Pairs of similar feature points are chosen by randomly selecting a series of points along the shadow
boundary. Then, their closest feature points on the two types of feature lines are selected as the
shadow feature point PSD and the non-shadow feature point PNSD. If they are both exposed to the
same amount of sunlight, they should have similar feature values. Therefore, the feature value gc

of a non-shadow feature point can be the approximate target value of its shadow similar feature
value. α and β can be calculated using Equations (12) and (13) Via using similar feature point pairs,
corresponding equations based on them can be constructed to estimate the unknown parameters α
and β using the least-squares rule.

α =
gc

mNSD + (g−mSD)·
σNSD
σSD

(12)

β =
g−mSD( gc

α −mNSD + r0 · r1
)
·r1

(13)

where g and gc are the feature values of PSD and PNSD, respectively. mNSD and mSD, σNSD and σSD,
represent the mean values and standard deviations of the Non-Shadow area (NSD) and the Shadow
area (SD), respectively. r1 and r0 are the multiplicative coefficient and the additive coefficient in the
Wallis model, respectively.

Finally, after all of the parameters are calculated, the regional compensation models can be
customized for each shadow. The information in the different shadow areas can be strengthened by
their customized compensation models to enable access to a self-adaptive adjustment.

3.4. Final Combination with the Local Window Information

The automatic parameter calculation strategy can establish a suitable compensation model using
Equation (14) for each shadow region from the regional level. However, even in a single shadow
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region, the shaded extent differs from the different locations in the region; especially, some objects
along the shadow region boundary that could get some scattered radiometric sunlight appear lighter
than the objects in the center. Therefore, the statistics information of the local window centered of the
pixel is used to establish a local window compensation model using Equation (15). In order to balance
the interior difference in a single shadow region, the final compensation model defined in Equation (16)
was developed by combining the compensation models from the regional level and local window level.

gc
R(i, j) = α·

mNSD +
g(i, j) −mR

SD

β·rR
1

− rR
0 ·r

R
1

 (14)

gc
W(i, j) = α·

mNSD +
g(i, j) −mW

SD

β·rW
1

− rW
0 ·r

W
1

 (15)

gc(i, j) = u·gc
R(i, j) + (1− u)·gc

W(i, j) (16)

whereα and β represent the compensation intensity coefficient and the stretching coefficient, respectively,
which are calculated automatically for each shadow region. mR

SD, rR
0 , rR

1 and mW
SD, rW

0 , rW
1 are the mean,

the additive coefficient, and the multiplicative coefficient acquired by the statistic value of a single
shadow region and local window region, respectively. gc

R(i, j) and gc
W(i, j) are the compensated I value

for the shadow regional level and the local window level around pixel (i, j), respectively. The local
window region is a N ×N (N ∈ [5, 20]) matrix centered on the shadow pixel(i, j), as shown in Figure 3a.
u (u ∈ (0, 1)) is the weight.

Finally, after enhancing component I of the shadow pixels and transforming HSI to RGB, the final
converted R, G, and B are added by the difference between the shadow and non-shadow regions
∆R = RNSD −RSD, ∆G = GNSD −GSD and ∆B = BNSD − BSD, respectively, for color correction that can
prevent a color deviation from the original color.

4. Experimental Results

We compared the results of our method to other reference methods on several high-resolution
remote sensing images with ground object shadows and cloud shadows. These results are analyzed in
the following sections.

4.1. Dataset Description and Parameters Setting

Seven typical remote sensing images with different types of shadows were utilized to test the
compensation method’s efficiency, including the three images with cloud shadows in Figures 4–6 and
the three aerial images with ground object shadows in Figures 7–9. Images 1–3 in Figures 4–6 were
satellite images in the United States taken from Google Earth. The cloud shadows obscured large areas
of information such as trees, roads, and buildings. Consequently, they could not be used in other
applications. Image 4, which was taken in the downtown area of Toronto, Canada and had a resolution
of 0.12 m, contained many high-rise buildings over 20 m in height with shadows that covered many
ground objects and obscured their information. Image 5 was taken over the downtown area of Toyota,
Japan and had a resolution of 0.08 m. Image 6 was an International Society for Photogrammetry and
Remote Sensing (ISPRS) public aerial image captured over Vaihingen in Germany; and the areas of
the ground object shadows in this image were darker than the cloud shadow areas as they received
less sunlight while the objects in the cloud shadow areas received some scattered sunlight. Therefore,
many of the objects in the cloud shadow areas were visible while the ground object shadows were
more of a challenge to remove.

Based on the detected shadows shown in Figures 4, 5, 6, 7, 8 and 9b, six state-of-the-arts methods were
compared to our method, as shown in Figures 4–10. The Original Wallis Compensation (OWC) algorithm is
compared to show the capability promotion in shadow compensation. Then, three classical compensation
models, including the Linear Correlation Correction method (LCC) of Chen [26], the Gamma Correction
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method (GMC) of Wan [22], the Histogram Matching method (HMT) of Tsai [15] were accomplished in
comparison. Furtherly, because our method is to improve the self-adaptive ability of the compensation
methods according to different shade condition, two recent methodologies which had similar research goal
were compared in this paper. They were respectively the Corresponding Region compensation Method
(CRM) of Mostafa [27] and the Oriented Object Polynomial Removal method (OOPR) of Zhang [29].
The difference between these methods and our method was discussed in detail.

In our method, b = 0.6, c = 0.45 were used to calculate r0 and r1; n = 10, u = 0.6 were used
to accomplish multilevel combinations; and α and β were calculated automatically. LCC used the
average α of our method, and OWC was set by the same r0 and r1 as our method. In GMC, γ = 1.1.
In HMT, the non-shadow regions were the same as that of our method. By adopting similar parameter
values, the comparison was more effective in reflecting the difference between them. To further
analyze the compensation results in quantitative ways, Table 1 shows the original shadow brightness,
the target value in the non-shadow area, the compensated value, and the compensation quality index
of Figures 4–10.

Table 1. The evaluation comparison of compensation results in Figures 4–10.

Image
Name

Quality
Index SD NSD OWC GMC HMT LCC CRM OOPR Ours

1
B 36.2754 63.1889 58.7920 62.0299 63.2713 62.7771 73.4417 77.7327 63.7444
T 5.1839 14.4409 5.7489 9.3673 11.3595 9.2900 8.2844 13.2295 14.2704

QB+T — — 0.1866 0.0455 0.0143 0.0471 0.0790 0.0126 0.0001

2
B 57.9359 85.1085 83.2481 82.4600 91.8727 86.9860 97.1427 94.9559 87.5762
T 7.8907 16.2861 9.6110 13.0989 13.8274 11.0122 10.2769 11.7217 15.0647

QB+T — — 0.0666 0.0120 0.0081 0.0374 0.0555 0.0295 0.0017

3
B 37.0008 74.3142 61.5478 73.1817 72.7659 66.7924 86.1723 76.8533 71.7967
T 4.9003 23.7773 4.8980 11.3497 19.7813 17.5462 21.9928 10.3542 21.7824

QB+T — — 0.4423 0.1252 0.0085 0.0256 0.0070 0.1549 0.0022

4
B 56.9910 150.1633 124.6353 116.4057 133.0205 124.2297 155.2552 160.0377 149.8764
T 10.8680 20.6191 13.3118 17.8083 21.3499 13.3118 35.5466 21.3857 21.0447

QB+T — — 0.0550 0.0214 0.0040 0.0553 0.0709 0.0013 0.0001

5
B 24.6591 91.9680 65.7744 71.3056 73.0492 68.0745 81.7099 89.3095 82.5732
T 5.5742 22.1672 10.4184 16.5486 22.1398 19.0862 15.6511 17.7781 23.2122

QB+T — — 0.1576 0.0371 0.0131 0.0279 0.0332 0.0123 0.0034

6
B 23.4614 107.7722 72.7422 63.7967 80.8888 74.7187 129.5133 66.2398 96.0105
T 10.5629 21.5307 11.1936 20.7145 25.6043 21.1387 44.5303 20.5617 23.9488

QB+T — — 0.1374 0.0661 0.0278 0.0329 0.1296 0.0575 0.0062

A
B 52.7057 148.7910 107.6152 109.4551 121.2661 113.6874 105.1475 127.9258 131.1461
T 6.7169 16.9851 9.5116 13.4378 18.8517 15.5673 12.6911 11.0926 17.1362

QB+T — — 0.1053 0.0368 0.0131 0.0198 0.0505 0.0497 0.0040

B
B 52.0459 149.1248 113.8646 117.4061 136.1765 127.4515 107.5620 140.2063 139.5191
T 4.0803 13.4322 5.3878 8.4708 13.9667 12.0483 10.5662 8.7642 13.8181

QB+T — — 0.2007 0.0655 0.0024 0.0091 0.0405 0.0452 0.0013

C
B 50.3020 136.3924 116.0753 105.9343 121.3617 112.6049 142.1750 135.7543 135.5174
T 7.0388 21.5283 8.5362 11.9807 19.4671 15.5198 25.8519 13.6585 21.2531

QB+T — — 0.1932 0.0970 0.0059 0.0354 0.0088 0.0500 0.0001

D
B 54.6436 142.2926 105.7497 120.4303 121.9426 114.5220 115.9803 142.4835 129.9071
T 4.9285 15.2054 5.9959 10.2507 15.7802 14.1726 10.9094 10.5155 15.3493

QB+T — — 0.2104 0.0448 0.0063 0.0129 0.0374 0.0332 0.0021

E
B 22.1513 90.6838 72.6012 71.6895 81.1097 76.1222 73.8717 91.9199 88.5145
T 2.8182 20.4905 8.7832 14.8224 20.3036 18.6539 16.3324 11.4661 20.5716

QB+T — — 0.1722 0.0394 0.0031 0.0098 0.0232 0.0798 0.0002

F
B 22.1948 116.9342 84.3402 71.4961 95.5993 87.6406 112.3088 86.5574 102.5739
T 6.4213 18.4400 7.3065 14.6794 21.0539 17.7352 30.7426 16.6335 17.2710

QB+T — — 0.2132 0.0710 0.0145 0.0209 0.0630 0.0249 0.0054
Average QB+T — — 0.1915 0.0581 0.0099 0.0268 0.0557 0.0500 0.0021

4.2. Precision Evaluation Criteria

The compensation quality, referred to as the brightness and average gradients, which have been
used in some studies, can quantitatively assess the resulting difference between compensated shadows
and non-shadows.
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B is the mean value of component I, as defined in Equation (17) and it reflects the brightness level
of the measured area. Assume S(x,y) is the local area in the image to be analyzed and NS is the pixel
number in this area. Average brightness B reflects the degree of lightness and darkness of the area [1].
T, as defined in Equation (18) represents the average gradient (contrast) and reflects the amount of
image detail and clearness of an image.

B =
1

NS

∑
(i, j)∈S

I(i, j) (17)

T =
1

NS

∑
(i, j)∈S

√
1
2

{
[I(i + 1, j + 1) − I(i, j)]2 + [I(i + 1, j) − I(i, j + 1)]2

}
(18)

where I(i, j), I(i + 1, j), I(i, j + 1), and I(i + 1, j + 1) represent the I values in the pixels (i, j), (i + 1, j),
(i, j + 1), and (i + 1, j + 1), respectively. NS is the number of pixels in the shadow area.

Because the feature value in the non-shadow area can be seen as the approximate target value,
(∆B)2 and (∆T)2, as defined in Equations (19) and (20) which are normalized by the non-shadow value,
can represent the difference between the compensation results and the target values to evaluate the
quality of the compensation results and facilitate the analysis of the effects of the model parameters.
Then, in order to evaluate the total bias from the non-shadow regions, QB+T defined in Equation (21)
can be calculated and seen as the total compensation quality. In general, lower values of QB+T indicate
compensation results that were closer to the non-shadow area.

(∆B)2 =

(
B− BNSD

B + BNSD

)2

(19)

(∆T)2 =

(
T − TNSD

T + TNSD

)2

(20)

QB+T = (∆B)2 + (∆T)2 (21)

where B and T are the compensated brightness average and the average gradient value of the shadow
area. BNSD and TNSD are the brightness average and the average gradient of the non-shadow area.
(∆B)2 and (∆T)2 are the square of the normalized difference between the compensated value and the
non-shadow area in B and T, respectively. QB+T is the total compensation quality.

4.3. Qualitative Comparison

The cloud shadow compensation comparison results effectively show the difference in a single
shadow area. Figures 4–6 show that our method obtained better results in brightness, contrast, and original
colors than the other methods. OWC’s results indicate that the brightness was rising while the contrast
was almost unchanging. LCC, GMC, HMT, CRM, and OOPR improved both the brightness and contrast
to some extent and the original color of the objects in the shadow areas was recovered (e.g., the trees
in Figure 4 are depicted in their true green color). HMT produced the best and most stable capability
for improving the contrast while the other methods’ contrast indicated another problem of uneven
compensation in a single shadow area. The part of the cloud shadow area that was obscured by the thicker
cloud is still slightly darker than the thinner part after compensation in almost all the reference methods.
In comparison, this uneven compensation problem was solved by the multilevel combination strategy.
For the bare land in Figure 5, there is a small non-shadow region that is recognized as shadows. This part
was easily overcompensated by other methods, but our method addressed this phenomenon because its
local window information was useful in adaptively enhancing each partially shaded information to the
same level as the non-shadow area. Thus, our model recovered the information as accurately as possible
and showed almost no difference in comparison to the non-shadow areas.
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Regarding ground object shadow compensation, our method produced better results, which 
indicated its ability to compensate for each shadow region. Different shadow regions were improved 
and were identical to their adjacent non-shadow areas, which was beneficial for avoiding over-
compensation or insufficient compensation. Even though the object information shaded by the 
buildings was too dark to see, our method recovered the information. To depict the compensation 
results of our method in detail, six portions of Images 4–6 in Figures 7–9 were selected, which are 
named A-F in Figure 10. From the figures and Table 1, it can be seen that our method produced better 
visual and quantitative compensation results than the other methods. 

Figure 5. Cloud shadow compensation results in satellite Image 2. (a) Original image; (b) Shadow
detection result (red); (c) The OWC result; (d) The GMC result; (e) The HMT result;(f) The LCC result;
(g) The CRM result; (h) The OOPR result; (i) Our method’s result.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 23 

   
(g) (h) (i) 

Figure 5. Cloud shadow compensation results in satellite Image 2. (a) Original image; (b) Shadow 
detection result (red); (c) The OWC result; (d) The GMC result; (e) The HMT result;(f) The LCC result; 
(g) The CRM result; (h) The OOPR result; (i) Our method’s result. 

 
(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 6. Cloud shadow compensation results in satellite Image 3. (a) Original image; (b) Shadow 
detection result (red); (c) The OWC result; (d) The GMC result; (e) The HMT result; (f) The LCC result; 
(g) The CRM result; (h) The OOPR result; (i) Our method’s result. 

Regarding ground object shadow compensation, our method produced better results, which 
indicated its ability to compensate for each shadow region. Different shadow regions were improved 
and were identical to their adjacent non-shadow areas, which was beneficial for avoiding over-
compensation or insufficient compensation. Even though the object information shaded by the 
buildings was too dark to see, our method recovered the information. To depict the compensation 
results of our method in detail, six portions of Images 4–6 in Figures 7–9 were selected, which are 
named A-F in Figure 10. From the figures and Table 1, it can be seen that our method produced better 
visual and quantitative compensation results than the other methods. 

Figure 6. Cloud shadow compensation results in satellite Image 3. (a) Original image; (b) Shadow
detection result (red); (c) The OWC result; (d) The GMC result; (e) The HMT result; (f) The LCC result;
(g) The CRM result; (h) The OOPR result; (i) Our method’s result.

Regarding ground object shadow compensation, our method produced better results,
which indicated its ability to compensate for each shadow region. Different shadow regions were
improved and were identical to their adjacent non-shadow areas, which was beneficial for avoiding
over-compensation or insufficient compensation. Even though the object information shaded by the
buildings was too dark to see, our method recovered the information. To depict the compensation
results of our method in detail, six portions of Images 4–6 in Figures 7–9 were selected, which are
named A-F in Figure 10. From the figures and Table 1, it can be seen that our method produced better
visual and quantitative compensation results than the other methods.
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Figure 9. Shadow compensation results in aerial Image 6. (a) Original image; (b) Shadow detection
result (red); (c) The OWC result; (d) The GMC result; (e) The HMT result;(f) The LCC result; (g) The
CRM result; (h) The OOPR result; (i) Our method’s result.

When compared to the non-adaptive methods (OWC, GMC, HMT, and LCC), our approach
was able to compensate for shadows more adaptively. Although OWC significantly enhanced the
brightness, the shadow areas were still unclear for less heightened contrast. GMC also improved
the brightness and contrast efficiently; and while its contrast enhancement was better than OWC,
it was not as good as the other methods, as shown in boxes B2, E2, and F2. Because parameter γ
could not be adaptive to every image and shadow area, it was hard to decide which value was best
for them. Therefore, GMC’s compensation capability was not stable and self-adaptive. The effect
of GMC was different among the images; and therefore, sometimes it was good, as seen in Images
2 and 5, but mostly it was not good enough. HMT produced stable compensation results and was
especially good at contrast enhancement; however, sometimes it was over-enhanced and lost the
original information. As can be seen in box A3, the shadow area was over-compensated in contrast.
Comparatively, LCC, as one of the most typical compensation methods, undeniably recovered the
primary information in the shadow area; and while it enhanced brightness and contrast efficiently,
it was unable to achieve the same levels as in the non-shadow areas. LCC also produced color deviation
and uneven improvements in different shadow areas; and its results show a blue color instead of the
original color. This color difference was mainly caused by its over-enhanced illumination, resulting in
a higher blue component than the non-shadow area. However, the color bios in cloud shadow were
less serious than the ground object shadows since the difference between the compensated shadow
area and the non-shadow area was low. In comparison, the results for our method represented the
original roof color better due to our color correction strategy. Additionally, the problem of uneven
compensation was present in most of the compared methods (e.g., the boxes in Images C and D).
Box C4 shows that LCC experienced inefficient and uneven compensation.
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Recent methods, such as OOPR and CRM, were designed to obtain self-adaptive parameters
adjusted according to each shadow as well. Although they adopted their respective adaptive parameter
strategies, they did not achieve stable results in the various images. OOPR utilizes a polynomial
fitting compensation principle, which cannot solve the best function for each shadow region from the
IPOOL strategy. As a result, OOPR improved the brightness similarity to the non-shadow area, but its
contrast enhancement was inadequate due to its limited polynomial function. As shown in Image 3,
the brightness was satisfied while the contrast did not meet the non-shadow level. In addition, although
CRM also utilizes LCC as the compensation model, it gained the non-shadow information from the
adjacent non-shadow segment areas of each shadow area. CRM produced overcompensation as shown
in Image 4, Image C, and Image F. For example, the shadow in box F5 is obviously over-compensated;
and the contrast enhancement in Image F is worse than in Images C and D. When the segmentation areas
were not suitable, the shadow area was over-compensated or insufficiently compensated, as shown in
Image F. It is difficult to both improve the brightness and contrast at the same time in a way that is
similar to non-shadow areas, which was a common problem for CRM and OOPR.

In contrast, these problems were solved by our method, since it was able to adaptively recover
the shaded information as clearly and initially as it would appear in sunlight. Since our approach
uses different parameters for different shadow areas, the shadow information is strengthened more
reasonably according to every shadow situation. The most significant benefit of this strategy is
that it prohibits over-compensation or inefficient compensation. Moreover, using the local window
compensation, the details in each shadow area are more evenly promoted.
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4.4. Quantitative Comparison

In the quantitative comparison, our method achieved the best compensation quality image measured
by QB+T. The reinforcement of T was closer to the non-shadow area while the average brightness was
slightly lower than that of the non-shadow area; and the total compensation quality was much better than
the other methods as well. Figure 11 shows the 25 images that were tested and compares the average of
(∆B)2, (∆T)2, and QB+T they achieved. The results were analyzed by combining visual and quantitative
outcomes. The average QB+T of our method in Figure 11 and Table 1 were 0.0038 and 0.0021, respectively.
Both values indicate the same conclusion, namely, that our method produced the best compensation
results, followed by the HMT method with 0.0099, and then the LCC with 0.0268. The OWC method
attained the worst results due to its low capability in enhancing contrast. The other methods were not very
stable. Since the QB+T cannot reflect the color deviation and the even contrast detail in a single shadow
area, the methods’ results differed visually, as shown in Figures 4–10.
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In summary, the comparative results indicate that our method enlarged the shaded information
from low quality to a quality that was close to the non-shaded area in brightness and contrast in
a more balanced way. Additionally, our method recovered the color information and self-adaptively
constructed the compensation model, resulting in more even enhancement and better recovery of the
original information of the shadow objects.

4.5. Time Computation

The proposed method was implemented in a VS2019 environment using a hybrid program code
based on C++ and OpenCV. All the experiments were conducted on a laptop with an Intel Core i7
CPU, 2.60 GHz, and 32 GB RAM. The computation times for all the compared methods are shown
in Table 2. The time of GMC and HMT was similar, and they were the shortest because they adopt
the same parameter value to the whole shadow areas in an image. OWC and LCC use the mean and
variance of each shadow area, which resulted in longer computation times. CRM requires segmentation
results in order to obtain the non-shadow region information; therefore, it required the longest time to
accomplish shadow compensation. Both our method and OOPR solved the parameter values for each
shadow; but because OOPR adopts an IPOOL strategy, it is more complicated than our approach and
therefore required a little more time. Although our method’s computation time was moderate but not
the fastest, it accomplished a better compensation result for each shadow area.
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Table 2. Shadow compensation time comparison of different images in Figures 4–10.

Image Name Shadow Rate
(%)

Length ×Width
(pixel)

OWC
(s)

GMC
(s)

HMT
(s)

LCC
(s)

CRM
(s)

OOPR
(s)

Ours
(s)

1 50.563 823×576 0.075 0.033 0.034 0.179 4.627 1.102 0.893
2 38.979 686×601 0.076 0.038 0.033 0.082 1.650 0.889 0.677
3 45.893 894×634 0.143 0.065 0.064 0.159 2.336 1.604 1.338
4 26.783 1437×937 0.297 0.172 0.186 0.375 33.469 5.034 4.688
5 22.352 937×1437 0.186 0.105 0.108 0.234 20.276 1.903 1.641
6 27.077 1004×1188 0.263 0.129 0.129 0.269 32.886 1.525 1.264

5. Discussions

To evaluate the capability of the proposed method more specifically, we analyzed the impact of
the introduced coefficient α and β on the compensation quality indexes and the effectiveness of the
automatic calculation strategy.

5.1. The Positive Impact of α and β on the Proposed Model

Taking I as an example, the compensation experiment continued on the shadow image TIGS in
Figure 2a and TICS in Figure 2c to verify the influence of αand β. A comparison of the compensation
results by assigning different values to α and β was implemented, as visually shown in Tables 3 and 4.
The figures in the table show how the brightness and contrast changes with the change of the parameter.
When fixing βand changing αin compensation model of Equation (5), B and T are both improved with the
increase of α; when fixing αand changing β, Tdecreases, and B remains unchanged with the rise of β.

Table 3. Comparison of results compensation for TIGS and TICS by fixing β = 10 and applying different
α in Equation (5).

α = 0.5 α = 0.75 α = 1 α = 1.25

β = 10
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Figure 12 describes the influence of α and β on the compensation results. Figure 12a,b show
that α affects both B and T linearly and positively. However, for the values for α that were too high,
the brightness and contrast compensation was excessive, while the values that were too low for α
made the brightness and contrast compensation insufficient. As shown Figure 12c, with the increasing
value of α, (∆B)2 and (∆T)2 decreased until they reached the lowest points; and the increasing α led
to an increase in (∆B)2 and (∆T)2. Hence, selecting an optimal value for α was important to achieve
a target compensation value. The best solution was to acquire the α value, where QB+T achieved the
minimum. β had little influence on B, and it only affected the T of the shadow area nonlinearly and
negatively, as shown in Figure 12d,e, respectively. Meanwhile, the impacts of β on (∆B)2 and (∆T)2

were similar to the impacts on B and T. With the increase of β, (∆T)2 decreased greatly and flattened.
Therefore, βwas effective for strengthening T (the contrast) more efficiently. If a suitable value of βwas
selected based on the lowest QB+T, the information about the shadow area was restored. Thus, both α
and β had a positive impact on compensation quality. The lowest QB+T pinned down the best value of
α and β, which helped to achieve brightness and contrast similar to the non-shadow target.
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Figure 12. The influence of intensity coefficient α and stretching coefficient β on the compensation
quality. BSD and TSD, BNSD, and TNSD are the brightness average and the average gradient of the
shadow area and the non-shadow area. B and T are the compensated values in the shadow area.
(∆B)2 and (∆T)2 are the square of the normalized difference between the compensated value and the
non-shadow area in B and T, respectively. QB+T is the total compensation quality. (a) Relationship
between α and average brightness B; (b) Relationship between α and average gradient T; (c) The effect
of α on (∆B)2, (∆T)2, and QB+T; (d) Relationship between β and B; (e) Relationship between β and T;
(f) The effect of β on (∆B)2, (∆T)2, and QB+T.
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5.2. The Effectiveness of the Automatic Strategy for α and β Calculation

The automatic strategy for α and β calculation is important for accomplishing automatic
compensation without manual direction. It also helps customize suitable compensation models
for each shadow area but not for the whole image. In order to verify the effectiveness of the automatic
parameter strategy, four different shadow areas were tested to compare the optimal values acquired
by the minimum QB+T with the automatic values of α and β. The relationship between QB+T and
α as well as QB+T and β, as shown in Figure 13, were used to estimate the ideal values of α and β
at the minimum QB+T. Furthermore, the automatic values of α and β calculated by the strategy are
shown in Table 5. The comparison results show that the automatic calculation value was close to
the estimated ideal value for both α and β, which indicates that the parameter calculation strategy
effectively calculated the suitable values for the compensation parameters. As a result, those values
were effective in customizing a suitable model for each shadow.
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Figure 13. Relationships between compensation parameters and quality in different regions.
(a) Relationship between α and QB+T; (b) Relationship between β and QB+T.

Table 5. Comparison of α and β values calculated automatically with its ideal value of different regions.

Area Name α Automatic Value β Automatic Value α Ideal Value β Ideal Value

1 1.295 1.036 1.35 1
2 1.264 0.926 1.3 1
3 1.091 9.831 1.1 10
4 1.0863 6.321 1.05 6.5

5.3. Validation for Color Correction

Since our method can be used to heighten any component to recover the shadow information,
choosing efficient components to raise the shadow information closer to its original content is significant.
In general, H, S, and I were all used together to compensate in several studies, but this approach is not
effective for maintaining the original color of the shadow objects. Because it almost raises all of the
components to similar values, the results show a gray color that does not reflect the original colors,
as shown in Figure 14a,d. In fact, during the experiments and in our previous research [31], component
I was rather efficient for cloud shadows compensation to recover the original information, leading to
some color loss in ground object shadows compensation. As shown in Figure 14b,e, the results were
greater with the proposed model for compensating component I; and within the building shadows,
there is a color deviation from the original color that does not occur in the cloud shadow compensation
results. As shown in Figure 14c,f, the results optimized by the color correction strategy show the
original colors were well maintained.
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in Figure 2a,c. (a) Building shadow compensation result for components H, I, and S of Figure 2a;
(b) Building shadow compensation result for component I; (c) Building shadow compensation result after
color correction; (d) Cloud shadow compensation result for component H, I, and S of Figure 2c; (e) Cloud
shadow compensation for component I; (f) Cloud shadow compensation result after color correction.

6. Conclusions

This paper introduced and demonstrated the implementation of a new shadow compensation
model that combines the Wallis filtering principle and LCC model by adding intensity coefficient α and
stretching coefficient β to adjust brightness and contrast effectively. When combined with a parameter
automatic extraction scheme based on feature point pairs, our method was found to target loss
information more accurately; and the compensation parameters in our model were able to be obtained
automatically. By combining the local window and a regional compensation model, using a multilevel
combination strategy, the shaded information was evenly enhanced as well. As shown in this paper,
when compared to other state-of-the-art methods, our contrast and brightness enhancements produced
better and more consistent results for the non-shadow areas. They were able to restore the real
information of the features shaded by shadows. Our model’s shadow-free, higher-quality images
demonstrate its image reconstruction capabilities and its potential for use in complete land-cover or
land-use map applications.
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