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Abstract: A facile and direct method for synthesizing magnetic periodic mesoporous organosilica
nanoparticles from pure organosilane precursors is described. Magnetic ethylene- and
phenylene-bridged periodic mesoporous organosilica nanoparticles (PMO NPs) were prepared by
nanoemulsification techniques. For fabricating magnetic ethylene- or phenylene-bridged PMO NPs,
hydrophobic magnetic nanoparticles in an oil-in-water (o/w) emulsion were prepared, followed by a
sol–gel condensation of the incorporated bridged organosilane precursor (1,2 bis(triethoxysilyl)ethane
or 1,4 bis(triethoxysilyl)benzene), respectively. The resulting materials were characterized using
high-resolution scanning electron microscopy (HR-SEM), high-resolution transmission electron
microscopy (HR-TEM), energy-dispersive X-ray (EDX) spectroscopy, powder X-ray diffraction (XRD),
solid-state NMR analysis, and nitrogen sorption analysis (N2-BET). The magnetic ethylene-bridged
PMO NPs were successfully loaded using a ruthenium oxide catalyst by means of sonication and
evaporation under mild conditions. The obtained catalytic system, termed Ru@M-Ethylene-PMO NPS,
was applied in a reduction reaction of aromatic compounds. It exhibited very high catalytic behavior
with easy separation from the reaction medium by applying an external magnetic field.

Keywords: periodic mesoporous organosilica nanoparticles; magnetic nanoparticles; ruthenium
nanoparticles; catalysis; hydrogenation of aromatic compounds

1. Introduction

Since the discovery of periodic mesoporous organosilica (PMO) bulk materials in 1999 by
three independent groups [1–3], they have been studied intensively because of their great potential
in designing and fabricating new organic–inorganic hybrid materials with unique properties
including high surface areas, high thermal stability, as well as facile separation and recovery as
solid materials [4–21]. Recently, much attention has been devoted to developing nanometric-sized
PMOs by utilizing organosilane monomers or mixtures of monomers [22–24]. Research on periodic
mesoporous organosilica nanoparticles has covered numerous interests including biological [25–27],
chemical [28–34], but mostly biomedical applications [35–48]. PMO nanomaterials with special
structures and compositions have also been utilized as superior nanosupports for variable metal
catalysts [49]. The homogeneous distribution of organic molecules in their frameworks and their
uniform mesopores provides them with advantageous properties for hosting metal catalysts or metal
nanoparticles within their voids and channels. Because of these features, catalytic transformations
mediated by these PMO nanomaterials have been highly studied, developed and utilized [50–53].
However, the ability to recycle these nanoreactors from the reaction medium remains one of
the most challenging issues, but which has gained much less attention. The use of magnetic
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nanoparticles (MNPs) has offered an attractive and plausible solution for such recovery problems in
many fields [54–65]. MNPs have received a great deal of attention because of their low costs, high
surface areas, negligible toxicity, and their superparamagnetic properties [66–69]. Owing to their
unique properties, magnetic nanoparticles have become highly welcome in many biological [70–75],
chemical [76–84], and biomedical domains [85–91]. Lately, very few research groups have reported
the preparation of magnetically recoverable PMO nanomaterials for different applications [92–97].
Magnetic periodic mesoporous organosilicas were prepared by utilizing different synthetic routes
including the well-known Stöber process [98,99], the microemulsion method [100,101] and a hard
template strategy for preparing yolk-shell nanospheres [94,97]. All these systems were mostly
prepared from a mixture of an organosilane monomer and tetraorthosilicate and were applied in
different catalytic transformations. Herein, we describe the synthesis of magnetic ethylene- and
phenylene-bridged PMO NPs that were prepared by a sol–gel process under mild conditions from pure
organosilane precursors in the presence of a cetyltrimethylammonium bromide (CTAB) surfactant with
the addition of hydrophobic magnetite nanoparticles. Both magnetic ethylene- and phenylene-bridged
PMO NPs were successfully obtained; however, they displayed different morphological and textural
properties. The magnetic ethylene-bridged PMO NPs (M-Ethylene-PMO NPs) exhibited highly ordered
mesostructures, whereas magnetic phenylene-bridged PMO NPs (M-Phenylene-PMO NPs) exhibited
smooth surface nanoparticles with no specific mesostructure ordering. M-Ethylene-PMO NPs were
loaded with ruthenium oxide nanoparticles by means of sonication and evaporation under mild
conditions and the resulting catalytic magnetic PMO nanoreactors, termed Ru@M-Ethylene PMO NPs,
were utilized in the reduction reaction of aromatic compounds because they exhibited excellent
catalytic behavior.

2. Materials and Methods

2.1. General Information

X-ray powder diffraction (XRD) patterns were measured using a D8 advanced diffractometer
(Bruker AXS, Karlsruhe, Germany) with Cukα radiation. A PerkinElmer (FTIR 65) spectrometer was
utilized to record the infrared spectra. Scanning electron microscopy (SEM) was carried out using
a Sirion SEM microscope (FEI Company, Hillsboro, OR, USA), a Shottky-type emission source,
and a secondary electron (SE) detector, operated at a voltage of 5 kV. Transmission electron
microscopy (TEM), scanning transmission electron microscopy (STEM), and electron diffraction
spectroscopy (EDS) analyses were accomplished through (S)TEM Tecnai F20 G2 (FEI Company,
Hillsboro, OR, USA) operated at 200 kV. Size distribution and zeta potential were determined by
a Nano Series instrument, model Nano-Zetasizer ZEN3600 (Malvern Instruments, Worcestershire,
United Kingdom). Thermogravimetric analysis (TGA) was done on a Mettler Toledo TG 50 analyzer
(Greifensee, Switzerland). Measurements were conducted at a temperature range from 25 to 900 ◦C at a
heating rate of 10 ◦C/min under an inert atmosphere (N2). The specific surface areas were calculated by
means of the Brunauer–Emmett–Teller (BET) equation by utilizing a high-speed gas sorption analyzer,
and a Quantachrome Nova 1200e instrument (Quantachrome Instruments, Boynton Beach, USA).
The reaction mixtures were analyzed by gas chromatography (GC) (Aglient Technologies, 7890A,
Santa Clara, USA) with a universal capillary column (HP-5, 30 m) to determine the yields and the
conversions of the reactions. 1H NMR and 13C NMR spectra were recorded using a Bruker DRX-400
and DRX-500 instrument (Rheinstetten, Germany). Inductively coupled plasma mass spectrometry
measurements (ICP) were done on a 7500cx instrument (Agilent company, Tokyo, Japan) using an
external standard calibration to determine the ruthenium loadings.

2.2. Materials

1,2 Bis(triethoxysilyl)ethane, 1,4 Bis(triethoxysilyl)benzene, cetyltrimethylammonium bromide
(CTAB), ammonium hydroxide (25% aqueous solution), oleic acid, iron dichloride tertrahydrate,
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and iron trichloride hexahydrate were obtained from Sigma–Aldrich. All chemicals were used without
further purification.

2.3. Synthesis of Hydrophobic Magnetite Nanoparticles Functionalized with Oleic Acid (MNP-OA)

The magnetite nanoparticles were prepared following the Massart procedure: [102] Briefly,
FeCl3·6H2O (11.7 g) and 4.23 g of FeCl2·4H2O were dissolved in 400 mL of distilled water under N2

with vigorous mechanical stirring at 90 ◦C. Then, 18 mL of NH4OH (25%) were quickly added to
the solution and the resulting mixture was stirred at the same temperature for additional 20 min.
After that, 18 mL of oleic acid was added dropwise to the reaction mixture and stirring continued at
90 ◦C for a further 1 h. After cooling to room temperature, a black precipitate was collected by magnetic
decantation and washed several times with water and acetone. The resulting magnetite nanoparticles
were dispersed in 100 mL of chloroform. This dispersion was sonicated for 60 min before its use.

2.4. Synthesis of the Magnetic PMO Nanoparticles (Magnetic PMO NPs)

The preparation of magnetic ethylene- and phenylene-bridged PMO nanoparticles was based on
the following steps: CTAB (0.48 g), distilled water (88 mL), ethanol (33 mL), and 25% aqueous ammonia
(0.1 mL) were mixed. Then, the bridged organosilane monomer (3.5 mmol) and 1 mL of hydrophobic
magnetite (MNP-OA) were dropped into the mixture under stirring. The mixture was mechanically
stirred for 24 h at room temperature. The solid product was then collected using an external magnet
and the CTAB surfactant was extracted ethanol for 24 h using soxhlet extractor. The final magnetic
PMO NPs were dried at 54 ◦C for 16 h to afford a fine black-brownish powder for both systems.

2.5. Supporting Ruthenium Oxide Nanoparticles on the Magnetic Ethylene-PMO NPs

One hundred mg of solid magnetic ethylene-PMO NPs and 7 mg of RuO2*xH2O catalyst
(0.05 mmol) were dispersed in 30 mL of methanol, and after sonication for 1 h the resulting mixture
was stirred for 24 h at room temperature. Then, the solvent was evaporated under reduced pressure
and the solid catalytic Ru@M-Ethylene PMO NP material was washed three times with methanol and
dried at 54 ◦C for 16 h. The ruthenium loading of Ru@M-Ethylene PMO NPs was 0.43 mmol g−1,
as was determined by inductively coupled plasma mass spectrometry (ICP) analysis.

2.6. General Procedure for the Hydrogenation of Aromatic Compounds Mediated by Ru@M-Ethylene
PMO NPs

A mixture of 1 mmol substrate and 2.5 mg of Ru@M-Ethylene PMO NP catalyst (0.001 mmol Ru)
in 2 mL heptane was added to a 25 mL glass-lined autoclave vessel. The autoclave was sealed,
purged three times with hydrogen, and pressurized to 100–400 psi with hydrogen. The autoclave was
heated at 80–120 ◦C for up to 12 h. After cooling to room temperature, the hydrogen gas was carefully
released and the catalyst was isolated from the mixture using external magnet. The products were
analyzed by GC and 1H NMR.

3. Results and Discussion

3.1. Preparation of Catalytic Periodic Mesoporous Organosilica Nanoparticles with Ruthenium Metal
Nanoparticles

Magnetic periodic mesoporous organosilica nanoparticles were synthesized in a sol–gel process
under mild conditions. At first, the hydrophobic magnetite nanoparticles, together with the silane
monomer, were added to the aqueous phase, which included water, ethanol, ammonia catalyst, and a
CTAB surfactant to form an oil-in-water microemulsion system. The organosilane begins to hydrolyze
and condense under these basic conditions to form magnetic PMO NP systems composed of 100%
organo-alkoxysilane precursors in a typical sol–gel process, as illustrated in Scheme 1.
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Scheme 1. Illustration of the preparation of magnetic periodic mesoporous organosilica (PMO) nanoparticles.

3.2. Characterization of Magnetic PMO Nanoparticle Systems

The magnetic ethylene- and phenylene-bridged PMO NPs were prepared under similar reaction
conditions by utilizing different organosilane monomers. Figure 1a shows a representative scanning
electron microscopy (SEM) image in which spherical and monodispersed nanoparticles can be
clearly seen. Figure 1b–d, showing TEM images, confirms the presence of magnetic nanoparticles in
the cores inside highly ordered mesostructures. It presents scanning transmission electron microscopy
(STEM) and transmission electron microscopy (TEM) images of the resulting magnetic ethylene-bridged
PMO NPs. Figure 2 shows magnetic phenylene-bridged PMO NPs. Under the same synthetic
conditions, the resulting M-Phenylene PMO NPs exhibited different structural and textural properties.
The obtained smoothed-surface spherical system exhibited some polydispersity where mesostructure
ordering was not clearly observed. However, the magnetite nanoparticles were also settled in the cores
of these nanoparticles.
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Figure 1. (a) SEM, (b) STEM, and (c–d) TEM micrographs of M-Ethylene PMO NPs.
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Figure 2. (a) SEM and (b) TEM micrographs of M-Phenylene PMO nanoparticles (NPs).

The average diameter and the outer surface charge of the magnetic PMO nanoparticles were
determined by dynamic light scattering analysis (DLS). The obtained average size of M-Ethylene
PMO NPs ranged between 85 and 150 nm and their zeta potential value was −28.6 mV (Figure 3).
With M-Phenylene PMO NPs, this system exhibited an average diameter of 221.2 nm with a −9.06 mV
zeta potential value (Figure 4).
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Figure 3. Size distribution (a) and zeta potential analysis (b) of Magnetic Ethylene-PMO NPs.
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Figure 4. Size distribution (a) and zeta potential (b) analysis of Magnetic Phenylene-PMO NPs.

The obtained magnetic PMO NP systems were further examined using EDX spectroscopy and
EDX mapping analysis in order to confirm all the elemental compositions in both systems. From the
EDX spectroscopy results shown in Figures 5 and 6, the existence of magnetite nanoparticles inside the
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cores was confirmed. As supportive results, the EDX mapping analysis clearly shows the deposition of
all other elements including silica and oxygen that compose the particles’ silica network, whereas the
magnetic nanoparticles were mostly localized in the cores.
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In addition to the TEM results shown previously, the XRD pattern of M-Ethylene PMO NPs
(Figure 7a) indicated a well-resolved peak in the range of 2θ = 1.5◦–2.5◦, whereas the Phenylene-PNO
NPs exhibited a broad XRD peak (Figure 7b), which confirmed the previous TEM results of distorted
mesostructures in these nanoparticles. In addition, both XRD patterns exhibited the characteristic
peaks of magnetite nanoparticles at 2θ = 30◦, 35◦, 43◦, 53◦, 57◦, and 63◦.

The compositional information of M-Ethylene PMO NPs and M-Phenylene PMO NPs was
characterized by FT-IR spectroscopy (Figure 8). The FTIR spectra of both systems were very similar,
displaying distinct absorbance peaks at 796, 1028, 1093, and 1271 cm−1, which can be assigned to
Si-C vibrations. In addition, the absorption bands at 1154 cm−1 and at the interval of 2950–3730 cm−1

in both curves are assigned to the asymmetrical stretching of siloxane groups (Si-O-Si) and Si-OH
stretching vibrations, respectively. The absorbance peaks at 2850–2927 cm−1 are assigned to C-H
stretching from both nanoparticle systems. In addition, the presence of the oleate group coating on the
magnetite nanoparticles is indicated by the bands at the interval 2853−2930 and 1634 cm−1, which are
attributed to the stretching of C-H and the C=C groups, respectively.
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The organic contents of the magnetic PMO nanoparticles were tested by thermogravimetric
analysis (TGA). In both systems, slight decomposition occurred in the temperature range of 50–100 ◦C,
which could have resulted from ethanol and water residues in the detected system, whereas a major
decomposition process occurred between 200 and 650 ◦C. This confirms the good thermal stability of
the synthesized magnetic PMO nanoparticles compared with the oleic acid-coated MNPs. Figure 9
shows curve a, in which a total weight loss of 13.47% was detected for MNP-OA, whereas M-Ethylene
PMO NPs afforded a total organic loss of 23.7% (Figure 9, curve b) compared to 37.4% for M-Phenylene
PMO NPs (Figure 9, curve c).

The PMO NPs’ chemical properties were further characterized by solid-state 29Si and 13C CP-MAS
NMR spectroscopy. The solid-state NMR results of these magnetic systems were recorded after
treatment with concentrated HCl to remove the magnetic cores. The 29Si NMR spectrum of M-Ethylene
PMO NPs (Figure 10a) exhibits a major T3 signal at −65 ppm, which can be assigned to organosilica
species. Similar results were observed in the 29Si NMR spectrum of M-Phenylene PMO NPs (Figure 10c),
which exhibited three T signals at −58, −71, and −80 ppm. The observed signals are assigned to
the T2 and T3 groups in the resulting organosilica network. These observations clearly demonstrate
the formation of Si-C covalent bonds in both magnetic PMO NP systems. In addition, the 13C
NMR spectrum of the M-Ethylene PMO NPs in Figure 10b shows the chemical composition of the
ethylene-bridged nanoparticles with a major peak around 8–10 ppm, which belongs to the SiCH2
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groups. Two minor peaks of unhydrolyzed ethoxy groups at 13 ppm and 56 were also observed in the
13C NMR spectrum. In Figure 10d, the 13C NMR spectrum of M-Phenylene PMO NPs also confirms
the presence of the aromatic c groups that clearly appear at a range of 128–147 ppm. In addition, in this
spectrum, unhydrolyzed ethoxy groups were detected. These results clearly indicate the formation
of silsesquioxane frameworks and further demonstrate the incorporation of organic units into the
silica networks.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18 

 

Figure 9. Thermogravimetric analysis (TGA) curves of (a) MNP-OA, (b) Magnetic Ethylene-PMO 

NPs, and (c) Magnetic Phenylene-PMO NPs. 

The PMO NPs’ chemical properties were further characterized by solid-state 29Si and 13C 

CP-MAS NMR spectroscopy. The solid-state NMR results of these magnetic systems were recorded 

after treatment with concentrated HCl to remove the magnetic cores. The 29Si NMR spectrum of 

M-Ethylene PMO NPs (Figure 10a) exhibits a major T3 signal at −65 ppm, which can be assigned to 

organosilica species. Similar results were observed in the 29Si NMR spectrum of M-Phenylene PMO 

NPs (Figure 10c), which exhibited three T signals at −58, −71, and −80 ppm. The observed signals are 

assigned to the T2 and T3 groups in the resulting organosilica network. These observations clearly 

demonstrate the formation of Si-C covalent bonds in both magnetic PMO NP systems. In addition, 

the 13C NMR spectrum of the M-Ethylene PMO NPs in Figure 10b shows the chemical composition 

of the ethylene-bridged nanoparticles with a major peak around 8–10 ppm, which belongs to the 

SiCH2 groups. Two minor peaks of unhydrolyzed ethoxy groups at 13 ppm and 56 were also 

observed in the 13C NMR spectrum. In Figure 10d, the 13C NMR spectrum of M-Phenylene PMO NPs 

also confirms the presence of the aromatic c groups that clearly appear at a range of 128–147 ppm. In 

addition, in this spectrum, unhydrolyzed ethoxy groups were detected. These results clearly indicate 

the formation of silsesquioxane frameworks and further demonstrate the incorporation of organic 

units into the silica networks. 

  

(a) (b) 

Figure 9. Thermogravimetric analysis (TGA) curves of (a) MNP-OA, (b) Magnetic Ethylene-PMO NPs,
and (c) Magnetic Phenylene-PMO NPs.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18 

 

Figure 9. Thermogravimetric analysis (TGA) curves of (a) MNP-OA, (b) Magnetic Ethylene-PMO 

NPs, and (c) Magnetic Phenylene-PMO NPs. 

The PMO NPs’ chemical properties were further characterized by solid-state 29Si and 13C 

CP-MAS NMR spectroscopy. The solid-state NMR results of these magnetic systems were recorded 

after treatment with concentrated HCl to remove the magnetic cores. The 29Si NMR spectrum of 

M-Ethylene PMO NPs (Figure 10a) exhibits a major T3 signal at −65 ppm, which can be assigned to 

organosilica species. Similar results were observed in the 29Si NMR spectrum of M-Phenylene PMO 

NPs (Figure 10c), which exhibited three T signals at −58, −71, and −80 ppm. The observed signals are 

assigned to the T2 and T3 groups in the resulting organosilica network. These observations clearly 

demonstrate the formation of Si-C covalent bonds in both magnetic PMO NP systems. In addition, 

the 13C NMR spectrum of the M-Ethylene PMO NPs in Figure 10b shows the chemical composition 

of the ethylene-bridged nanoparticles with a major peak around 8–10 ppm, which belongs to the 

SiCH2 groups. Two minor peaks of unhydrolyzed ethoxy groups at 13 ppm and 56 were also 

observed in the 13C NMR spectrum. In Figure 10d, the 13C NMR spectrum of M-Phenylene PMO NPs 

also confirms the presence of the aromatic c groups that clearly appear at a range of 128–147 ppm. In 

addition, in this spectrum, unhydrolyzed ethoxy groups were detected. These results clearly indicate 

the formation of silsesquioxane frameworks and further demonstrate the incorporation of organic 

units into the silica networks. 

  

(a) (b) 

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 18 

  

(c) (d) 

Figure 10. 29Si and 13C CP-MAS of M-Ethylene PMO-NPs (a,b) and M-Phenylene PMO NPs (c,d). 

The N2 adsorption-desorption of M-Ethylene PMO NPs and M-Phenylene PMO NPs provides 

further evidence of the special porosity character of the obtained magnetic nanosystems. As 

observed in Figure 11, characteristic IV-type isotherms with a narrow pore size distribution for both 

magnetic PMO nanoparticles were obtained. The BET surface area of Magnetic Ethylene-PMO NPs 

was calculated to be 743 m2/g with a pore radius of 2.47 nm. It was calculated by the Barrett–Joyner–

Halenda (BJH) method, whereas the surface area of Phenylene-PMO NPs was calculated to be 611 

m2/g with a pore radius of 1.54 nm, according to BJH calculations. It is worth mentioning that 

incorporating the magnetic nanoparticles into the cores did not dramatically affect the total surface 

area value of the synthesized systems.  

  

(a) Magnetic Ethylene-PMO NPs (b) Magnetic Phenylene-PMO NPs 

Figure 11. N2 adsorption-desorption isotherms of (a) M-Ethylene PMO NPs and (b) M-Phenylene 

PMO NPs. 

3.3. Preparation and Characterization of Magnetic Ethylene-PMO NP Catalytic Systems  

After their structural and chemical properties were examined, the magnetic ethylene-bridged 

PMO NPs were loaded with ruthenium oxide nanoparticles by means of sonication and evaporation 

under mild conditions to afford catalytic Ru@M-Ethylene PMO NPs, as depicted in Scheme 2. From 

Figure 10. 29Si and 13C CP-MAS of M-Ethylene PMO-NPs (a,b) and M-Phenylene PMO NPs (c,d).



Appl. Sci. 2020, 10, 5769 9 of 17

The N2 adsorption-desorption of M-Ethylene PMO NPs and M-Phenylene PMO NPs provides
further evidence of the special porosity character of the obtained magnetic nanosystems. As observed in
Figure 11, characteristic IV-type isotherms with a narrow pore size distribution for both magnetic PMO
nanoparticles were obtained. The BET surface area of Magnetic Ethylene-PMO NPs was calculated
to be 743 m2/g with a pore radius of 2.47 nm. It was calculated by the Barrett–Joyner–Halenda (BJH)
method, whereas the surface area of Phenylene-PMO NPs was calculated to be 611 m2/g with a
pore radius of 1.54 nm, according to BJH calculations. It is worth mentioning that incorporating the
magnetic nanoparticles into the cores did not dramatically affect the total surface area value of the
synthesized systems.
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3.3. Preparation and Characterization of Magnetic Ethylene-PMO NP Catalytic Systems

After their structural and chemical properties were examined, the magnetic ethylene-bridged
PMO NPs were loaded with ruthenium oxide nanoparticles by means of sonication and evaporation
under mild conditions to afford catalytic Ru@M-Ethylene PMO NPs, as depicted in Scheme 2.
From the STEM-EDX mapping results in Figure 12, it can be concluded that the ruthenium oxide was
successfully immobilized.
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Figure 12. STEM-EDX mapping analysis of Ru@M-Ethylene PMO NPs.

The EDX-mapping analysis confirms the presence of ruthenium nanoparticles because they
were homogeneously distributed at a lower density (orange map) compared with all other elements
including silicon, carbon, and oxygen, which were deposited throughout the organosilica framework
except for the magnetic nanoparticles, which were observed in a high density only in the cores of the
detected Ru@M-Ethylene PMO NP system. In addition, the analysis ruthenium oxide supported on
ethylene-PMO nanoparticles by XRD confirmed the formation of ruthenium oxide nanoparticles with
crystallite size of 3.54 nm as was calculated by the Scherrer equation (Figure S1, Supporting Information).

3.4. Catalysis

Ruthenium nanoparticles have widely been used in hydrogenation processes [103–108].
The catalytic activity of Ru@M-Ethylene PMO NPs was examined in a hydrogenation reaction
of aromatic compounds as a model reaction. The reduction reaction was performed in heptane
solvent at temperatures of 80–120 ◦C under hydrogen pressures of 100–400 psi with 0.1 mol% of the
ruthenium catalyst. From the results presented in Table 1, it can be concluded that the catalyst’s efficacy
and activity were very high in catalyzing this hydrogenation reaction. Thus, benzene and toluene were
fully hydrogenated in one hour and gave cyclohexane and methylcyclohexane, respectively (Table 1,
entries 1 and 2, respectively). The hydrogenation of ethylbenzene and propylbenzene required a longer
time and a higher temperature to provide the fully hydrogenated products in excellent yields (Table 1,
entries 3 and 4, respectively). The substrates m-xylene and 1,3,5-trimethylbenzene could be converted
after 12 h at 120 ◦C into a mixture of isomers of alkylated cyclohexanes (Table 1, entries 5 and 6).
The catalyst exhibited good reactivity in the hydrogenation of aromatic compounds substituted with
electron withdrawing groups. For example, the hydrogenation of ethyl benzoate under 400 psi H2 and
at 120 ◦C gave ethyl cyclohexanecarboxylate after 12 h in complete conversion. When nitrobenzene
was hydrogenated under the same conditions, cyclohexylamine was produced in quantitative yields.

To demonstrate our novel catalytic system activity, further kinetic tests on toluene were performed.
From the high turnover number (TON) and turnover frequency (TOF) values displayed in Table 2,
it can be concluded that the high catalytic activity of the catalyst is preserved at very high substrate
concentrations under the same reaction conditions of 400 psi of hydrogen and a temperature of 80 ◦C.

In addition, the recyclability of the catalyst was tested in the hydrogenation of toluene with
substrate: catalyst ratio of 2000:1 under 400 psi H2 at 80 ◦C. The catalyst was reused four times in
this reaction without any loss of its reactivity. Inductively coupled plasma mass spectrometry
(ICP-MS) analysis indicated that there was no leaching of the ruthenium catalyst during the
hydrogenation reaction.
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Table 1. Reduction of aromatic compounds mediated by the Ru@M-Ethylene PMO NP catalyst. [a].

Entry Substrate H2 Pressure Reaction Time (h) Temperature Products Yield (%) [b]

1

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18 

after 12 h in complete conversion. When nitrobenzene was hydrogenated under the same conditions, 

cyclohexylamine was produced in quantitative yields.  

Table 1. Reduction of aromatic compounds mediated by the Ru@M-Ethylene PMO NP catalyst. [a]. 

Entry Substrate H2 Pressure Reaction 

Time (h) 

Temperature Products Yield (%) [b] 

1 

 

100 psi 1 80 °C 

 

>99 

2 

 

100 psi 1 80 °C 

 

>99 

3 

 

400 psi 2 120 °C 

 

>99 

4 

 

400 psi 4 120 °C 

 

>99 

5c 

 

400 psi 12 120 °C 

 

>99 

6c 

 

400 psi 12 120 °C 

 

>99 

7 

 

400 psi 12 120 °C 

 

>99 

8 

 

400 psi 12 120 °C 

 

>99 

[a] Reaction conditions: 0.1 mol% catalyst, 2 mL heptane, 1–12 h, 100-400 psi of H2; [b] determined by 
1H-NMR and GC using hexadecane as internal standard; [c] the product contains mixture of isomers. 

To demonstrate our novel catalytic system activity, further kinetic tests on toluene were 

performed. From the high turnover number (TON) and turnover frequency (TOF) values displayed 

in Table 2, it can be concluded that the high catalytic activity of the catalyst is preserved at very high 

substrate concentrations under the same reaction conditions of 400 psi of hydrogen and a 

temperature of 80 °C. 

In addition, the recyclability of the catalyst was tested in the hydrogenation of toluene with 

substrate: catalyst ratio of 2000:1 under 400 psi H2 at 80 °C. The catalyst was reused four times in this 

reaction without any loss of its reactivity. Inductively coupled plasma mass spectrometry (ICP-MS) 

analysis indicated that there was no leaching of the ruthenium catalyst during the hydrogenation 

reaction.  

  

100 psi 1 80 ◦C

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18 

after 12 h in complete conversion. When nitrobenzene was hydrogenated under the same conditions, 

cyclohexylamine was produced in quantitative yields.  

Table 1. Reduction of aromatic compounds mediated by the Ru@M-Ethylene PMO NP catalyst. [a]. 

Entry Substrate H2 Pressure Reaction 

Time (h) 

Temperature Products Yield (%) [b] 

1 

 

100 psi 1 80 °C 

 

>99 

2 

 

100 psi 1 80 °C 

 

>99 

3 

 

400 psi 2 120 °C 

 

>99 

4 

 

400 psi 4 120 °C 

 

>99 

5c 

 

400 psi 12 120 °C 

 

>99 

6c 

 

400 psi 12 120 °C 

 

>99 

7 

 

400 psi 12 120 °C 

 

>99 

8 

 

400 psi 12 120 °C 

 

>99 

[a] Reaction conditions: 0.1 mol% catalyst, 2 mL heptane, 1–12 h, 100-400 psi of H2; [b] determined by 
1H-NMR and GC using hexadecane as internal standard; [c] the product contains mixture of isomers. 

To demonstrate our novel catalytic system activity, further kinetic tests on toluene were 

performed. From the high turnover number (TON) and turnover frequency (TOF) values displayed 

in Table 2, it can be concluded that the high catalytic activity of the catalyst is preserved at very high 

substrate concentrations under the same reaction conditions of 400 psi of hydrogen and a 

temperature of 80 °C. 

In addition, the recyclability of the catalyst was tested in the hydrogenation of toluene with 

substrate: catalyst ratio of 2000:1 under 400 psi H2 at 80 °C. The catalyst was reused four times in this 

reaction without any loss of its reactivity. Inductively coupled plasma mass spectrometry (ICP-MS) 

analysis indicated that there was no leaching of the ruthenium catalyst during the hydrogenation 

reaction.  

  

>99

2

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18 

after 12 h in complete conversion. When nitrobenzene was hydrogenated under the same conditions, 

cyclohexylamine was produced in quantitative yields.  

Table 1. Reduction of aromatic compounds mediated by the Ru@M-Ethylene PMO NP catalyst. [a]. 

Entry Substrate H2 Pressure Reaction 

Time (h) 

Temperature Products Yield (%) [b] 

1 

 

100 psi 1 80 °C 

 

>99 

2 

 

100 psi 1 80 °C 

 

>99 

3 

 

400 psi 2 120 °C 

 

>99 

4 

 

400 psi 4 120 °C 

 

>99 

5c 

 

400 psi 12 120 °C 

 

>99 

6c 

 

400 psi 12 120 °C 

 

>99 

7 

 

400 psi 12 120 °C 

 

>99 

8 

 

400 psi 12 120 °C 

 

>99 

[a] Reaction conditions: 0.1 mol% catalyst, 2 mL heptane, 1–12 h, 100-400 psi of H2; [b] determined by 
1H-NMR and GC using hexadecane as internal standard; [c] the product contains mixture of isomers. 

To demonstrate our novel catalytic system activity, further kinetic tests on toluene were 

performed. From the high turnover number (TON) and turnover frequency (TOF) values displayed 

in Table 2, it can be concluded that the high catalytic activity of the catalyst is preserved at very high 

substrate concentrations under the same reaction conditions of 400 psi of hydrogen and a 

temperature of 80 °C. 

In addition, the recyclability of the catalyst was tested in the hydrogenation of toluene with 

substrate: catalyst ratio of 2000:1 under 400 psi H2 at 80 °C. The catalyst was reused four times in this 

reaction without any loss of its reactivity. Inductively coupled plasma mass spectrometry (ICP-MS) 

analysis indicated that there was no leaching of the ruthenium catalyst during the hydrogenation 

reaction.  

  

100 psi 1 80 ◦C

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18 

after 12 h in complete conversion. When nitrobenzene was hydrogenated under the same conditions, 

cyclohexylamine was produced in quantitative yields.  

Table 1. Reduction of aromatic compounds mediated by the Ru@M-Ethylene PMO NP catalyst. [a]. 

Entry Substrate H2 Pressure Reaction 

Time (h) 

Temperature Products Yield (%) [b] 

1 

 

100 psi 1 80 °C 

 

>99 

2 

 

100 psi 1 80 °C 

 

>99 

3 

 

400 psi 2 120 °C 

 

>99 

4 

 

400 psi 4 120 °C 

 

>99 

5c 

 

400 psi 12 120 °C 

 

>99 

6c 

 

400 psi 12 120 °C 

 

>99 

7 

 

400 psi 12 120 °C 

 

>99 

8 

 

400 psi 12 120 °C 

 

>99 

[a] Reaction conditions: 0.1 mol% catalyst, 2 mL heptane, 1–12 h, 100-400 psi of H2; [b] determined by 
1H-NMR and GC using hexadecane as internal standard; [c] the product contains mixture of isomers. 

To demonstrate our novel catalytic system activity, further kinetic tests on toluene were 

performed. From the high turnover number (TON) and turnover frequency (TOF) values displayed 

in Table 2, it can be concluded that the high catalytic activity of the catalyst is preserved at very high 

substrate concentrations under the same reaction conditions of 400 psi of hydrogen and a 

temperature of 80 °C. 

In addition, the recyclability of the catalyst was tested in the hydrogenation of toluene with 

substrate: catalyst ratio of 2000:1 under 400 psi H2 at 80 °C. The catalyst was reused four times in this 

reaction without any loss of its reactivity. Inductively coupled plasma mass spectrometry (ICP-MS) 

analysis indicated that there was no leaching of the ruthenium catalyst during the hydrogenation 

reaction.  

  

>99

3

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18 

after 12 h in complete conversion. When nitrobenzene was hydrogenated under the same conditions, 

cyclohexylamine was produced in quantitative yields.  

Table 1. Reduction of aromatic compounds mediated by the Ru@M-Ethylene PMO NP catalyst. [a]. 

Entry Substrate H2 Pressure Reaction 

Time (h) 

Temperature Products Yield (%) [b] 

1 

 

100 psi 1 80 °C 

 

>99 

2 

 

100 psi 1 80 °C 

 

>99 

3 

 

400 psi 2 120 °C 

 

>99 

4 

 

400 psi 4 120 °C 

 

>99 

5c 

 

400 psi 12 120 °C 

 

>99 

6c 

 

400 psi 12 120 °C 

 

>99 

7 

 

400 psi 12 120 °C 

 

>99 

8 

 

400 psi 12 120 °C 

 

>99 

[a] Reaction conditions: 0.1 mol% catalyst, 2 mL heptane, 1–12 h, 100-400 psi of H2; [b] determined by 
1H-NMR and GC using hexadecane as internal standard; [c] the product contains mixture of isomers. 

To demonstrate our novel catalytic system activity, further kinetic tests on toluene were 

performed. From the high turnover number (TON) and turnover frequency (TOF) values displayed 

in Table 2, it can be concluded that the high catalytic activity of the catalyst is preserved at very high 

substrate concentrations under the same reaction conditions of 400 psi of hydrogen and a 

temperature of 80 °C. 

In addition, the recyclability of the catalyst was tested in the hydrogenation of toluene with 

substrate: catalyst ratio of 2000:1 under 400 psi H2 at 80 °C. The catalyst was reused four times in this 

reaction without any loss of its reactivity. Inductively coupled plasma mass spectrometry (ICP-MS) 

analysis indicated that there was no leaching of the ruthenium catalyst during the hydrogenation 

reaction.  

  

400 psi 2 120 ◦C

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18 

after 12 h in complete conversion. When nitrobenzene was hydrogenated under the same conditions, 

cyclohexylamine was produced in quantitative yields.  

Table 1. Reduction of aromatic compounds mediated by the Ru@M-Ethylene PMO NP catalyst. [a]. 

Entry Substrate H2 Pressure Reaction 

Time (h) 

Temperature Products Yield (%) [b] 

1 

 

100 psi 1 80 °C 

 

>99 

2 

 

100 psi 1 80 °C 

 

>99 

3 

 

400 psi 2 120 °C 

 

>99 

4 

 

400 psi 4 120 °C 

 

>99 

5c 

 

400 psi 12 120 °C 

 

>99 

6c 

 

400 psi 12 120 °C 

 

>99 

7 

 

400 psi 12 120 °C 

 

>99 

8 

 

400 psi 12 120 °C 

 

>99 

[a] Reaction conditions: 0.1 mol% catalyst, 2 mL heptane, 1–12 h, 100-400 psi of H2; [b] determined by 
1H-NMR and GC using hexadecane as internal standard; [c] the product contains mixture of isomers. 

To demonstrate our novel catalytic system activity, further kinetic tests on toluene were 

performed. From the high turnover number (TON) and turnover frequency (TOF) values displayed 

in Table 2, it can be concluded that the high catalytic activity of the catalyst is preserved at very high 

substrate concentrations under the same reaction conditions of 400 psi of hydrogen and a 

temperature of 80 °C. 

In addition, the recyclability of the catalyst was tested in the hydrogenation of toluene with 

substrate: catalyst ratio of 2000:1 under 400 psi H2 at 80 °C. The catalyst was reused four times in this 

reaction without any loss of its reactivity. Inductively coupled plasma mass spectrometry (ICP-MS) 

analysis indicated that there was no leaching of the ruthenium catalyst during the hydrogenation 

reaction.  

  

>99

4

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18 

after 12 h in complete conversion. When nitrobenzene was hydrogenated under the same conditions, 

cyclohexylamine was produced in quantitative yields.  

Table 1. Reduction of aromatic compounds mediated by the Ru@M-Ethylene PMO NP catalyst. [a]. 

Entry Substrate H2 Pressure Reaction 

Time (h) 

Temperature Products Yield (%) [b] 

1 

 

100 psi 1 80 °C 

 

>99 

2 

 

100 psi 1 80 °C 

 

>99 

3 

 

400 psi 2 120 °C 

 

>99 

4 

 

400 psi 4 120 °C 

 

>99 

5c 

 

400 psi 12 120 °C 

 

>99 

6c 

 

400 psi 12 120 °C 

 

>99 

7 

 

400 psi 12 120 °C 

 

>99 

8 

 

400 psi 12 120 °C 

 

>99 

[a] Reaction conditions: 0.1 mol% catalyst, 2 mL heptane, 1–12 h, 100-400 psi of H2; [b] determined by 
1H-NMR and GC using hexadecane as internal standard; [c] the product contains mixture of isomers. 

To demonstrate our novel catalytic system activity, further kinetic tests on toluene were 

performed. From the high turnover number (TON) and turnover frequency (TOF) values displayed 

in Table 2, it can be concluded that the high catalytic activity of the catalyst is preserved at very high 

substrate concentrations under the same reaction conditions of 400 psi of hydrogen and a 

temperature of 80 °C. 

In addition, the recyclability of the catalyst was tested in the hydrogenation of toluene with 

substrate: catalyst ratio of 2000:1 under 400 psi H2 at 80 °C. The catalyst was reused four times in this 

reaction without any loss of its reactivity. Inductively coupled plasma mass spectrometry (ICP-MS) 

analysis indicated that there was no leaching of the ruthenium catalyst during the hydrogenation 

reaction.  

  

400 psi 4 120 ◦C

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18 

after 12 h in complete conversion. When nitrobenzene was hydrogenated under the same conditions, 

cyclohexylamine was produced in quantitative yields.  

Table 1. Reduction of aromatic compounds mediated by the Ru@M-Ethylene PMO NP catalyst. [a]. 

Entry Substrate H2 Pressure Reaction 

Time (h) 

Temperature Products Yield (%) [b] 

1 

 

100 psi 1 80 °C 

 

>99 

2 

 

100 psi 1 80 °C 

 

>99 

3 

 

400 psi 2 120 °C 

 

>99 

4 

 

400 psi 4 120 °C 

 

>99 

5c 

 

400 psi 12 120 °C 

 

>99 

6c 

 

400 psi 12 120 °C 

 

>99 

7 

 

400 psi 12 120 °C 

 

>99 

8 

 

400 psi 12 120 °C 

 

>99 

[a] Reaction conditions: 0.1 mol% catalyst, 2 mL heptane, 1–12 h, 100-400 psi of H2; [b] determined by 
1H-NMR and GC using hexadecane as internal standard; [c] the product contains mixture of isomers. 

To demonstrate our novel catalytic system activity, further kinetic tests on toluene were 

performed. From the high turnover number (TON) and turnover frequency (TOF) values displayed 

in Table 2, it can be concluded that the high catalytic activity of the catalyst is preserved at very high 
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reaction without any loss of its reactivity. Inductively coupled plasma mass spectrometry (ICP-MS) 
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4. Conclusions 

We succeeded in synthesizing and characterizing new magnetic PMO nanoparticles from pure 

organosilica precursors. These novel systems were utilized for designing new catalytic nanoreactors 

by supporting metal nanoparticles in their mesoscopic channels. The resulting magnetic PMO NPs 

were loaded with ruthenium oxide nanoparticles without the need for any stabilizing agent. The 

new magnetic catalytic system was applied in the hydrogenation reaction of aromatic compounds 

and it exhibited a high catalytic performance. Introducing the magnetic nanoparticles in these 

nanosystems greatly improves the catalyst’s separation and recovery from the reaction medium and 

eliminates the cumbersome workup and filtering processes. We believe that this successful strategy 
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by supporting metal nanoparticles in their mesoscopic channels. The resulting magnetic PMO NPs
were loaded with ruthenium oxide nanoparticles without the need for any stabilizing agent. The new
magnetic catalytic system was applied in the hydrogenation reaction of aromatic compounds and it
exhibited a high catalytic performance. Introducing the magnetic nanoparticles in these nanosystems
greatly improves the catalyst’s separation and recovery from the reaction medium and eliminates the
cumbersome workup and filtering processes. We believe that this successful strategy for designing
pure magnetic PMO nanomaterials can provide new opportunities in many catalytic and other
scientific areas.
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