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Abstract: Traffic monitoring from closed-circuit television (CCTV) cameras on embedded systems is
the subject of the performed experiments. Solving this problem encounters difficulties related to the
hardware limitations, and possible camera placement in various positions which affects the system
performance. To satisfy the hardware requirements, vehicle detection is performed using a lightweight
Convolutional Neural Network (CNN), named SqueezeDet, while, for tracking, the Simple Online
and Realtime Tracking (SORT) algorithm is applied, allowing for real-time processing on an NVIDIA
Jetson Tx2. To allow for adaptation of the system to the deployment environment, a procedure was
implemented leading to generating labels in an unsupervised manner with the help of background
modelling and the tracking algorithm. The acquired labels are further used for fine-tuning the model,
resulting in a meaningful increase in the traffic estimation accuracy, and moreover, adding only
minimal human effort to the process allows for further accuracy improvement. The proposed
methods, and the results of experiments organised under real-world test conditions are presented in
the paper.

Keywords: vehicle tracking; vehicle detection; self-training; unsupervised domain adaptation

1. Introduction

Intelligent traffic monitoring is an important technology component of modern smart cities and
traffic monitoring systems. One of its components is traffic analysis from closed-circuit television
(CCTV) cameras that are placed at the roadside. Applications, such as vehicle counting/classification
and speed measurement, provide important statistics that can be used to improve traffic flow.
A recent smart city challenge organised by NVIDIA [1] confirms the significance of these problems.
Such solutions can bring many benefits to transportation systems. However, several requirements
need to be satisfied:

• the system needs to work in a fully automatic mode. Hence no extra manual supervision or
annotations should be necessary so that the workload required when deploying the system
is minimised; and,

• real-time performance with power-efficient computing is required, as it might be desirable to
deploy the system on an embedded platform.

A crucial component of such a system is vehicle detection (optionally also including their
categorisation), which provides a means for accurate vehicle tracking. Recently, most of the object
detection benchmarks have been dominated by methods that are based on Convolutional Neural
Networks (CNNs). One of the reasons behind this success is the availability of large-scale annotated
datasets, i.e., UA-Detrac [2] and Kitti [3]. However, the problem is still far from being considered
as solved. The above methods may bring impressive results when they are tested under conditions
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similar to those in which the training set was captured; however, CNN-based approaches are known to
be extremely vulnerable to small changes in the distribution of the images: adding a small amount of
Gaussian noise [4,5] or small translations/rotations of the input image [6] or changes in the lighting [7]
may drastically change the output of the model. This problem could be solved by collecting extra
annotations from the deployment environment and by including that data in the neural network
training, but such a scenario is not always possible. When considering a traffic monitoring system
that is to be deployed to many places around the city with different camera views, it is evident that it
would be very difficult to collect a large and representative annotated dataset.

Most of the approaches to vehicle monitoring systems assume that, once the system is deployed,
it is not updated anymore [8,9]. While that approach simplifies the deployment, maintainability,
and reduces the cost of the system, there is room for improvement. As a camera observes moving
vehicles in a static scene, several cues can be obtained. Firstly, a reliable model of the background should
be created in order to identify some of the false positive detections. Secondly, the tracking system may
further improve open detections by taking into account temporal cues. All of this information can
be used to generate reliable labels from the video stream withot human supervision and to further
fine-tune the model based on those labels. Such an approach is known as semi-supervised learning
(SSL) where an initial annotated training dataset is available, as well as a stream of unlabelled data.
Meanwhile, a major challenge in any SSL technique is semantic drift, i.e., if some of the new samples
are wrong, they may cause the model to drift away from the original concept.

Semi-supervised learning applied to video analysis from a stationary camera is an approach
that can potentially enable a reduction of the number of noisy labels to a minimum. In recent work,
it was shown that, by careful design and by taking many cues into account, such as appearance,
motion, and temporal coherency, it is possible to significantly improve the accuracy of the initial
detector [10]. In this work, a similar approach is followed, and, by means of tracking and background
modelling reliable pseudo-labels, are obtained, which are further used for fine-tuning of the model.
To achieve real-time processing on an embedded platform, an energy-efficient CNN, called SqueezeDet,
is employed [11]. Our idea is illustrated in Figure 1, where models trained on a dataset perform well
in the case that the test data are similar to the training set. However, when deployed to a new
environment, those models may fail in seemingly simpler cases (see the left column). Therefore,
automatically collected labels are applied for fine-tuning the baseline model (as in the center column).
After fine-tuning of the model, the vehicles are more successfully tracked for a bigger number of frames
and some vehicles located at the far end are more efficiently recognised (Figure 1—right column).

Figure 1. Given the initial imperfect detection model (left column), pseudo-labels are automatically
collected (centre column) for model fine-tuning. As a result (right column), vehicles detection accuracy
increases and vehicles are tracked for more frames. Red dots mark detections in consecutive frames.

To summarise, in this work, the focus is on developing a system for traffic monitoring. Firstly,
the proposed system is deployed to the embedded Jetson Tx2 platform. Further, adaptation methods
are employed in order to improve the efficiency of the deployed system in a real-world scenario.
With the ubiquitous presence of such cameras in cities around the world, there is great potential for
practical implementations of solutions of this kind. Finally it is assumed that no labelled data from
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the target environment is available, which is a realistic scenario. The contribution of this paper is,
as follows:

• the SqueezeDet algorithm is adjusted for vehicle detection on an embedded platform, and the
accuracy on UA-Detrac dataset and its performance on a Jetson TX2 under different input image
resolutions is reported,

• automatic labelling is applied for one of our cameras. Data are collected for several days,
and fine-tuning happens at the end of each day. This procedure results in a substantial increase in
vehicle detection accuracy, as explained in the section devoted to the discussion of the results, and

• experiments on the human-in-the-loop scenario are performed, which further increases the
efficiency of the detection.

2. Related Work

Vehicle detection. Historically, background subtraction algorithms were often used for vehicle
tracking [12,13]. These methods work well in good weather conditions, and with a moderate
traffic density. However, they fail in various illumination conditions (shadows, car lights in use
at night), and in the case of high-density traffic. However, despite these disadvantages, these kinds
of methods are commonly used, because they can often be deployed directly with no training nor
calibration required.

Vehicle detection falls into the category of object detection methods, which have recently been
dominated by CNN-based methods. Recent comparative works on vehicle detection confirm this
advantage [9,14,15]. One of the first algorithms that yielded impressive results was R-CNN [16].
For each image, around 2000 object-agnostic region proposals were computed while using Selective
Search [17], and for each image, obtained CNN features were classified by support-vector-machine
(SVM). Such a model for each region proposal (bounding box) returns a vector of class probabilities to
which the given box belongs. Unfortunately, the performance was very low, with region definitions
being the main bottleneck. Later region proposals were integrated into CNNs in an end-to-end
manner in Faster-RCNN [18]. The demand for faster inference resulted in so-called one-stage detector
networks, such as YOLO [19], SSD [20], and SqueezeDet [11]. Those models directly predict bounding
box locations and class probabilities with a single network in a single attempt. The image is divided
into W * H cells, and each cell is directly responsible for detecting objects. As a result, a much faster
inference is achieved with a small loss in accuracy.

It is only recently that deep learning has started to be used by intelligent transportation systems.
Out of all of these algorithms, currently, only one-stage detectors are capable of obtaining real-time
performance with limited computing power. However, most of the recent work in vehicle detection has
focused on obtaining the best accuracy by using models utilising specialised GPUs [21,22]. Therefore,
one of the objectives of this work is to estimate what accuracy can be achieved on embedded systems,
i.e., NVIDIA Jetson Tx2. That is why the efficient SqueezeDet architecture was used for vehicle
detection. Details of that algorithm are recalled in the next section.

Vehicle tracking. Object tracking methods can be divided, in general, into online and offline
methods. In the online case, only the current frame is available for the processing, while in offline
methods, a sequence of frames is considered at once [23]. Having precomputed detections along the
whole video sequence, different optimisation algorithms can be used for finding object trajectories,
e.g., by energy minimisation [24]. However, in this work, we are interested, in on-line object tracking,
as it is intended to be applied directly to practical traffic monitoring systems. Held et al. [25] used
a CNN that was trained to regress directly from two images the location in the second image
of the tracked object shown in the first image. Another recent work uses Siamese Networks for
object tracking [26]. One of the advantages of such methods is that they can track an arbitrary
object as long as the initial bounding box is given for that object. However, those works focus
on single-object-tracking, and they require an initial bounding box that is not available in the real-world
scenario of traffic monitoring.
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When compared to single-target-based, multi-object-tracking (MOT) is much more complicated
due to the varying number of objects, and the interactions between these objects. Tracking-by-detection
is a dominating paradigm in MOT. The algorithm is composed of three steps: detection, prediction,
and association. First, the object detector is run on a target image. The prediction model is used for
estimating all objects’ new positions given their current states. Finally, the association model is applied
for associating the currently tracked objects with new detections. In recent work, vehicle motion
is modelled with group behaviour [27]. In the approach, named SORT [28], Kalman filtering is
used for the prediction step, and the Hungarian algorithm is implemented for the association
between the existing tracked vehicles and new detections. It is a very efficient and accurate method
with the only drawback being the lack of handling long-term occlusions. This was later fixed by
utilising recent advances in Deep Learning to learn the association metric [29]. Unfortunately,
this approach requires training and also more computation power engagement. Another approach uses
computing Wasserstein distance as association metric allowing for obtaining very good vehicle tracking
performance, however is also computationally expensive [30]. In more recent work, Bochinski et al.
used a very straightforward method working without any prediction model [31]. It works on the
assumption that dense frames are available for tracking. In the real world, this assumption does not
always hold, especially when performing tracking on embedded systems, where only a few frames
per second are available. This is why, in this work, the SORT tracker was used.

Domain Adaptation. Appearance changes based on lighting, weather conditions, and also
because different class distributions of objects provide a significant challenge for systems relying
on machine learning models for perception. Trained models are biased towards the datasets they
were trained on, and the model performance drops in the test domain when the conditions are
different. In particular, it is impossible in many situations to collect and annotate a representative
dataset. To overcome this issue, many methods that fall into the category of domain adaptation have
been proposed. Sometimes it is assumed that a limited amount of annotated data is available in
the target domain [32], however such a scenario is not always feasible, which is why we focus on
unsupervised adaptation. One of the approaches assumes learning a transformation that maps feature
representations from the target domain to the source domain [33].

A popular technique is a self-training method, which involves creating an initial baseline model
on fully labelled data, and then exploiting this model to estimate labels on a novel unlabelled dataset.
The obtained pseudo-labels are further used for model fine-tuning. Such a method was successful,
for example, in the semantic segmentation domain [34,35]. One of the challenges in this technique is the
fact that pseudo-labels can be inaccurate. However, because a video stream is analysed, the temporal
coherency, and motion modelling can provide additional cues that can improve adaptation. One of
the first approaches was revealed in the work of Koller et al. [36], where labels were automatically
found in the target domain using object tracking, and they were later used for model fine-tuning.
Recent work models the data in multiple feature spaces to further reduce the number of false positives
using the decorrelated error technique [10]. We are inspired by these works, and employ tracking and
background modelling to assure efficiency in automatically obtained labels.

The fine-tuning of the model on automatically labelled data only might result in catastrophic
forgetting of previously learned information [37]. The rehearsal technique, in which, during the
fine-tuning, automatically labelled data are mixed with the data that the model was initially trained
with, has proven to be effective in minimising such an effect [38]; hence, this technique is used
in our work. Moreover, adding a minimal amount of human effort might be beneficial for the
machine learning system [39]. Consequently, experiments with such a human-in-the-loop scenario
were performed, and inaccurate automatically obtained labels were manually filtered out.

3. Methods

In this section, our method for automatic adaptation of the deployed detector is presented
(Figure 2). The deployed system consists of a camera and an embedded platform that is responsible for
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real-time traffic analysis, and for sending all relevant information to the main server. The core server
collects the data from all endpoints, and fine-tunes the models, which are sent back to the deployed
systems, meaning that all of the systems share the same detection model. Finally, if possible, a human
might filter the automatically obtained samples by simply removing samples with wrong annotations.
That allows us to further improve the efficiency of the model with minimal human effort required.
The SqueezeDet architecture that was used for detection is described in Section 3.1, the SORT tracking
method in Section 3.2, and the introduced labelling module with fine-tuning details in Section 3.3.

Figure 2. Schematic overview of the presented model. The deployed system is responsible for traffic
monitoring as well as for collecting new samples for model fine-tuning. The server collects the data
and fine-tunes the model, which is then sent to the deployed systems.

3.1. Vehicle Detection

In this work, SqueezeDet was applied for vehicle detection. In this section, the main components
of the architecture and loss function are briefly described. SqueezeDet is a lightweight, single-shot,
fully convolutional object detection architecture developed recently for applications in autonomous
vehicles. The design objectives (efficiency and accuracy) make it perfect for the traffic monitoring
system on an embedded platform.

As SqueezeDet processes an image, the first step is the extraction of a high dimensional,
low-resolution feature map (as in other CNN architectures). Having obtained feature map
representation, the goal is to predict the bounding boxes of the vehicles in the input image. SqueezeDet
falls into the category of one-stage detectors. A W * H grid is defined over an image, where W and
H are the number of grid cells along the horizontal and vertical axes. At each element of the grid,
there are K bounding boxes with predefined size, which are called anchor boxes. Each anchor is
defined by four scalars: x̂i, ŷj, ŵk, ĥk, where i ε [1,W], j ε [1,H] and k ε [1,K]. x̂i, ŷj, stand for spatial
coordinates of (i, j) grid center, and ŵk, ĥk are the width and height of k-th bounding box. The anchors
define the a priori distribution of the size of bounding-boxes. In total, there are W * H * K anchors that
are responsible for detecting objects.

One-stage detectors further learn how to refine the initial window to match the true location of
the object. Hence, for each i,j,k-anchor four relative coordinates δxijk, δyijk, δwijk, δhijk are computed
that transform the anchor into final bounding box prediction [11]:

xp
i = x̂i + ŵkδxijk

yp
j = ŷj + ĥkδyijk

wp
k = ŵk + exp(δwijk)

hp
k = ĥk + exp(δhijk)

(1)
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where xp
i , yp

j , wk
p, and hk

p are the final coordinates predictions of the detected object. Each anchor also
returns C + 1 values where the first value is a confidence score which determines how likely it is that
the given bounding box contains an object. The other C scalars represent the conditional probability
distribution for each of C predefined classes.

Consequently, SqueezeDet returns W * H * K predictions in total. Then, as a post-processing
step, the top N predictions with the highest confidence score are used for further processing with
the Non-Maximum Suppression (NMS) algorithm, which removes the redundant boxes. This is a
procedure that looks for pairs of boxes for which the intersection-over-union (IOU) is bigger than a
selected threshold, and it removes boxes with a lower confidence score.

During training, the SqueezeDet is supervised with training samples where, for each image, a list
of ground truth bounding boxes (x, y, w, h), and its corresponding class c, is given. The objective of the
training phase is to update the weights of the neural network, so that the output from the detector
matches the ground truth as closely as possible. This is achieved by defining a loss function that is
optimised through backpropagation.

The loss function is defined, as follows [11]:

λbbox
Nobj

W

∑
i=1

H

∑
j=1

K

∑
k=1

Iijk[(δxijk − δxG
ijk)

2] + (δyijk − δyG
ijk)

2

+ (δwijk − δwG
ijk)

2 + (δhijk − δhG
ijk)

2]+

W

∑
i=1

H

∑
j=1

K

∑
k=1

Iijk
λ+

con f

Nobj
Iijk(γijk − γG

ijk)
2 +

λ−con f

WHK− Nobj
Iijkγ2

ijk

+
1

Nobj

W

∑
i=1

H

∑
j=1

K

∑
k=1

C

∑
k=1

IijklG
c log(pc)

(2)

where (δxG
ijk, δyG

ijk, δwG
ijk, δhG

ijk) are the ground truth bounding boxes. The first part of the loss function
is the bounding box regression that assures that ijk-anchor, which is the closest to the ground truth
box returns δxijk, δyijk, δwijk, δhijk parameters that will fit ground truth bounding box parameters.
During the training the ground truth boxes are compared with all anchors and assigned to the anchor
box with the highest overlap (IOU) with ground truth. This means that only the closest anchor is
accountable for detecting a given object. This operation is achieved by Iijk which evaluates to 1 if
ijk-anchor has the highest IOU with the ground truth box, 0 otherwise. Finally, because there might be
multiple objects in the image, the value is divided by the number of objects Nobj.

The second part in the loss function is the confidence score regression. The goal here is twofold:
assure that the closest anchor confidently detects an object, and to penalise the other anchors for false
positive detections. γijk is the confidence score from ijk-anchor of how likely it contains an object.
γG

ijk is the IOU between accountable ijk-anchor and the ground truth. At the same time, the confidence

scores of all other boxes are penalised with Īijkγ2
ijk where Īijk = 1− Iijk and normalised by the number

of anchors (WHK) minus the number of objects in the image.
The last part of the loss function is a cross-entropy loss for the classification of the object.

The loss function defines three hyperparameters: λbbox, λ+
con f , and λ−con f , which adjust the weights

of the loss components. In our training, the same values were used as in the original paper [11],
λbbox = 5, λ+

con f = 75, λ−con f = 100. The loss function is optimized directly through back-propagation,
which updates the weights of the neural network.

3.2. Vehicle Tracking

In this work, the SORT approach is applied for vehicle tracking [28]. This method follows the
tracking-by-detection framework. Firstly, the object detector returns bounding box proposals for a
given frame. In the next step, new detections are associated with existing ones (called tracks) by using
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the Hungarian algorithm [40]. The vehicle motion is estimated using the Kalman filter to improve the
tracker accuracy further [41]. This framework provides great efficiency with very good accuracy in an
online setting.

The goal of the vehicle association step is to match the new bounding box detections returned
by the vehicle detector with the existing tracks. Firstly the IOU between all new detections and all
existing tracks is computed. This forms a cost matrix, and the problem is to find an association where
the cost is minimal. Cost is defined as a sum of all unassigned values in the cost matrix. There are
many methods for solving this problem, e.g., sub-optimal, but a fast greedy algorithm that first assigns
the biggest values to the cost matrix. However, the optimal solution can be found using the Hungarian
algorithm. Additionally, a minimum IOUmin constraint is added to remove possible false assignments
with a small overlap. All of the detections that were not matched form new tracks.

Next, the vehicle’s motion needs to be modelled. Given the history of the vehicle’s positions,
its location in a subsequent frame can be approximated. Additionally, because the observation model
(vehicle detector) is not perfect (detections may be inaccurate or missing), a tracking method is
needed that accounts for this uncertainty in the model. For this purpose, the Kalman filter is applied.
Each vehicle is modelled as a vector [28]:

x = [u, v, s, r, u̇, v̇, ṡ]T (3)

where u and v are horizontal and vertical pixel positions of vehicle bounding box centroid, s stands for
scale (area) and r for the ratio of the bounding box. u, v, s, r are the measurements, while u̇, v̇, and ṡ are
estimated from observations. To track a moving vehicle, two basic procedures are applied:

1. Prediction. Predict the vehicle’s position in the next frame.
2. Update. Given a new observation (bounding box detection) update the current state.

A new detection that was not matched to any of the existing tracks creates a new identity with a
unique identifier initialised with zero velocity and geometry of the bounding box. Because this is a
first detection of the vehicle, and its velocity is not known, large values of the velocity component in
covariance matrix P are assigned, reflecting uncertainty regarding the speed. Tracks are removed if
they are not detected for Tlost frames. This solution allows for handling short-term occlusions, and it
resolves situations where the detector fails to detect an existing vehicle for a few frames. However,
the valuue of Tlost should be kept relatively small to prevent uncontrolled growth in the number
of tracks.

Finally, it is possible to add a probationary period, during which the vehicle is regarding as not
being active, i.e., a track is considered to be active when it has successfully been tracked for Tmin
consecutive frames. This helps to prevent the tracking of some false positively detected objects. In our
experiments, the values of the covariance matrices were initialised with the same values as in the
original SORT paper, and the following values were used—IOUmin = 0.5, Tmin = 2, and Tlost = 2.

3.3. Automatic Labelling and Fine-Tuning

The goal of this stage is to collect a set of training images with corresponding labels that will
be used later for automatic fine-tuning of the network with the expected effect of improvement of
the detection accuracy of the model in the deployed environment. However, there is no point in
collecting superfluous samples, namely those for which the neural network is already confident
enough. Intuitively, the use of similar samples for fine-tuning would not bring many benefits to the
accuracy of the classifier. Additionally, a considerable number of the detection results returned by the
neural network are inaccurate. Consequently, the main challenge here is keeping the number of noisy
labels as low as possible.

Our algorithm for obtaining labels automatically is based on two observations (Figure 3):

• some of the vehicles are tracked for dozens of frames, but still, the confidence of the object
detector is very low. Long, high confidence tracks can be collected, and from those, it is possible
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to find vehicle detections predicted with low confidence. Those samples can be used then for the
fine-tuning of the neural network, which should increase the accuracy of the classifier; and,

• some background static objects are detected as vehicles. Those objects can be filtered out using a
background model.

Figure 3. Even though some vehicles are being tracked for many frames, they are detected by an object
detector with low confidence (car on the left image with confidence = 0.55, truck on the right image
with confidence = 0.44). Note that false positive detection (car detected in the upper part of the right
image) can be removed using the background model.

Because the traffic monitoring system works with a static camera, a reliable model of the
background can be created to improve the detector accuracy. For this purpose, a popular background
subtraction method created by Bowden et al. [42] is used. It is a Gaussian Mixture-based method,
where each pixel is modelled by a mixture of K Gaussian distributions (K = 5 is used in our experiments).
Figure 4 shows an example of the foreground/background separation.

Figure 4. Background/foreground separation using background subtraction algorithm [42].

Pseudo-code of our algorithm for automatic labelling is presented in the Algorithm 1. First,
tracks with high confidence are saved, i.e., those that were tracked for at least Lmin consecutive frames
or at least one of the detections had high confidence (lines 4–5). Such a definition can still entail some
noisy labels; hence, the background subtraction algorithm to differentiate between the background
and moving objects in the scene is used. From the detected objects, those that contain no more than
Tm * 100% moving pixels are filtered-out (line 20). Because a one-stage detector is used in our work,
it means that the whole scene is used for the training of our detector, which may still fail to detect
some of the objects in the scene. To minimise the number of such examples, the background model is
used again. Specifically, a candidate frame is accepted if at least Tc * 100 % of the foreground pixels are
exploited with regard to detections (line 30). In our experiments, the following constants were used
Tm = 0.05, Tc = 0.8, Cmin = 0.4, Cmax = 0.65, Lmin = 10, and Ct = 0.9.
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Algorithm 1 Extract Labels
Input: image, tracks, fg_mask . fg_mask = foreground mask
Output: detections . return filtered detections

1: is_candidate← f alse
2: tracks← FilterTracks(tracks, f g_mask)
3: for all trk in tracks do . For all trackers
4: if trk.conf in range (Cmin, Cmax) then . If low- confidence detection
5: if trk.length >= Lmin or trk.maxConf > Ct then . confident tracker
6: is_candidate← true
7: break
8: if is_candidate and IsMotionCovered(track, f g_mask) then
9: return tracks.bboxes . return filtered bounding boxes

10: else return None
11:

12: procedure FILTERTRACKS(tracks, fg_mask) . Filter out tracks that belong to the background
13: ret_tracks← []
14: for all trk in tracks do
15: x1, y1, x2, y2← trk.bbox
16: f g_probe← f g_mask[y1 : y2, x1 : x2]
17: f g_pixels← count_nonzero( f g_probe)
18: mov← f g_pixels/((y2− y1) ∗ (x2− x1))
19: if mov > Tm then . If at least Tm ∗ 100 % pixels are foreground
20: ret_tracks.append(trk)
21: return ret_tracks
22:

23: procedure ISMOTIONCOVERED(tracks, fg_mask) . Return true if foreground objects are detected
24: f g_pixels← count_nonzero( f g_mask) . number of fg pixels
25: for all trk in trackers do . For all trackers
26: f g_mask[trk.bbox]← 0 3
27: rem_pixels← count_nonzero( f g_mask) . not covered pixels
28: f rac_covered← 1− rem_pixels/ f g_pixels
29: return f rac_covered > Tc

The model gets fine-tuned after the automatically labelled samples are collected. To prevent
catastrophic forgetting, a popular rehearsal technique is used, where the initial data (on which the
model was trained) is mixed with new data during the fine-tuning stage [38]. One of the drawbacks of
this method is that it requires access to a lot of data storage. However, because in our architecture,
the model is fine-tuned on the core server, there are no strict storage constraints in this case.

Our labelling procedure works on the assumption that it is possible to train an initial model that
will perform sufficiently in the deployment environment so that it can obtain confident tracks of at
least some objects. This assumption is met for objects for which a large database is available, i.e., for
vehicles. However, the main drawback of the presented method is the use of the one-stage detector in
which a whole frame is being employed for neural network training. This means that all of the objects
in the scene should be correctly annotated in this case. This stands in contrast to the exemplar-based
method [24], where sparse labels (a bounding box only around the single object of interest) are used.
Yet, because the goal is real-time performance on embedded systems, and utilising advances in CNNs,
the one-stage detector is our choice. To reduce the number of noisy labels, the background subtraction
method is employed, which can fail in some dense traffic scenes or during the nighttime. However,
automatic labelling can be turned off in such situations. Nonetheless, using a detector that can be
trained on sparse labels is an important future research direction.
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4. Dataset

UA-Detrac. Deep learning object detectors require large datasets for efficient training. An example
of such a dataset gathered for traffic monitoring is the UA-Detrac dataset [2]. The data were collected
from 24 different locations in China, and they were made accessible for research purposes. The videos
are recorded at 25 frames per seconds (fps) with a resolution of 960 × 540 pixels. Altogether, there are
8250 vehicles manually annotated with bounding boxes present over more than 140,000 frames
summing up to a total of 1.21 million annotations. The dataset is split by the authors into 60 recordings
in the training set, and 40 recordings in the test set. It consists of videos recorded from various
viewpoints, different weather conditions, and moderate to dense traffic with many occlusions. Some of
the videos can be considered to be very challenging, because of the dense traffic flow on many
road-lanes, or the low level of illumination. Each vehicle is classified into one of the follwoing
categories: car, bus, van, and others, where the last class includes mainly trucks. Each recording is also
given one of the weather labels: cloudy, night, sunny, and rainy, and also contains “ignore” regions
where vehicles are not annotated, usually because of their low resolution.

Our dataset. Even though the test data in the UA-Detrac dataset were recorded in different places
than the training data, it cannot be stated that those sets come from totally different distributions.
Firstly, the recordings were done using the same camera. Additionally, the viewpoints and intersections
are similar between some of the recordings in the test and the training sets. That is why it is very
important to test the trained model on another dataset, which can reflect its performance in a real-world
scenario. For this purpose, data gathered from our camera located at the proximity of a road curve,
which recorded vehicles from an unusual perspective, was used. The data were recorded by an
AXIS Q1615 Mk II network camera with resolution of 1280 × 720 pix and at 25 fps. For this camera,
video streams are collected in 30-min intervals. For automatic fine-tuning of the model, an unlabelled
stream of data from five days recorded during daylight is used. For the testing, data from another
four days is used, and in each video, the frames are manually annotated every 30 s. This interval
represents the average time needed to drive through the visible road section, thus it allows for an
adequate variety of captured vehicles. In total, there are 892 images annotated for testing.

5. Results and Discussion

First, the initial vehicle detector was trained on the UA-Detrac dataset using SqueezeDet.
Regarding the anchors, the value of K = 12 was empirically chosen. To choose the sizes of the
anchors, the procedure that was proposed by the authors of SqueezeDet [11] was followed. First,
the bounding box shapes were extracted from the UA-Detrac dataset, then the K-means procedure
was run to find the K anchor boxes, such that the IOUs with the UA-Detrac boxes were maximised.

The dataset was split into 54 videos (76,380 images) used for training, and six videos (5704 images)
used for validation. During the training, typical data augmentation techniques were employed:
images were translated in the horizontal or vertical direction in order to increase the translation
invariance capabilities of the detector. Further images are flipped vertically with 50% probability.
The training was performed on a Tesla V100 graphic card on a DGX station. The model weights were
initialised with values that were obtained from a model pre-trained on the ImageNet dataset. The same
training parameters as in the original SqueezeDet paper [11] were used, namely the stochastic gradient
descent method with the learning rate value set to 0.01 and momentum set to 0.9. Each epoch lasted
for around 10 min.

The final model for testing was chosen based on the best recall value in the validation set.
The model prediction was counted as accurate when an IOU with the ground-truth box was greater
than 0.5 as in the PASCAL VOC challenge [43]. For the input size, experiments with the image size
set to 480 × 270 pixels, and 360 × 203 pixels were conducted. The first resolution achieved a higher
recall (86.9% vs. 81.7%). A further increase of accuracy would not allow for real-time processing;
which is why the 480 × 270 resolution was used for further experimentation. When the detection
module was deployed to a Jetson Tx2, it worked at a speed of 13.7 frames per second (fps). When the
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SORT tracker, and background subtraction method were added to allow automatic labelling, the whole
system worked at a speed of 9.1 fps, which allowed for system deployment. Such a speed allows for
the model working in real-time during the automatic labeling stage by processing approximately every
third frame. Consequently, for our experiments, every third frame is used only when collecting new
samples for the model’s fine-tuning. Figure 5 shows the training history for the selected model.

Figure 5. Training metrics for the SqueezeDet model trained on UA-Detrac dataset.

Domain adaptation. Even though the trained model performed well on the challenging
UA-Detrac dataset, it failed in many seemingly easier cases when tested on the data from our camera
(Figure 6), because CNN-based visual recognition approaches work well only when the test-time
conditions are similar to those in the training. Because it is the case domain adaptation methods
are needed to improve the performance and, here, we focus on modelling the background, since the
camera is static and automatically finds samples for fine-tuning.

Figure 6. The trained model performs well when the test conditions are similar to the training dataset
(top row), otherwise it may fail even in much simpler scenarios—in the worst case, not detecting clearly
visible vehicles (bottom row).

To improve the model accuracy, the data were automatically collected for five days, and the model
was fine-tuned at the end of each day. Five iterations were chosen, because the self-training procedure
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is known to provide the best improvements in the initial iterations [34]. Figure 7 shows some of the
automatically labelled samples. 320 images were sampled on average each day. Experiments with a
human-in-the-loop scenario were also performed where the task of the human was to filter out images
with noisy labels, so, for each image, the human had to only click "accept” or “reject”. It proved to be a
very fast procedure, taking 1–2 secs, on average, for each image.

Figure 7. Examples of automatically mined images.

After the labels were collected, they were split into training and validation parts at a ratio of 4:1.
During the fine-tuning stage in each epoch, the model was trained on automatically labelled data as
well as the same number of randomly selected examples from the UA-Detrac dataset while using the
rehearsal technique. The model was validated on the UA-Detrac validation set, and on newly mined
data. The model for further testing was chosen by computing a weighted average of the recall on
both datasets. In our case, a 9:1 weight ratio was used, because the UA-Detrac dataset is much bigger
and those labels contain less noise. One crucial aspect that helped the model to actually work was
removing cross-entropy classification from the loss function (Equation (2)). This was done because the
trained model was a relatively poor classifier of the detected vehicles in the deployment environment.
Figure 8a presents validation results after each day.

(a) Recall validation results. (b) Test set mAP results.
Figure 8. Recall validation results (a) and mAP test set results (b) for trained models on consecutive
iterations for UA-Detrac dataset and fine-tune data. Accuracy at timestep 0 corresponds to the baseline
model. Each iteration corresponds to the model fine-tuned at the data from subsequent days. HIL stands
for the human-in-the-loop scenario. Note that the fine-tune validation results correspond to validation
on automatically annotated data.

After the model was fine-tuned for five days, final tests were performed on the data from
different days that were manually annotated (Table 1). There was an increase for each category of
vehicles; however, the Others category (which includes mainly trucks) was still not well recognised.
Automatic fine-tuning resulted in a relative increase of the mAP (mean average precision) metric by
33% (from 0.39 to 0.519). The mAP is a popular metric in object detection community, and is computed
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as an area under precision-recall curve. For the human-in-the-loop scenario the mAP score was 0.546
(a 40% relative increase as compared to the baseline scenario). Meanwhile, there was only a slight
decrease in the performance for the UA-Detrac dataset (from 87.0% to 86.5%). Figure 8b shows that the
biggest increase was noted in the first timestep. For our fine-tuning technique, the accuracy saturated
on the third day, whereas human-in-the-loop scenario still provided a small increase in accuracy on
further timesteps.

Table 1. Map results of presented models on the same categories as in UA-Detrac dataset (buses were
not present in the scene).

Algorithm Car Van Others All

Baseline 0.684 0.375 0.101 0.39

fine-tune 0.795 0.5 0.193 0.519

fine-tune_HIL 0.81 0.53 0.21 0.546

Qualitative results of the improvement are presented in Figure 9—vehicles were tracked for
a longer number of steps because they were much better detected at the the far-end. Such an
improvement could be beneficial for increasing the accuracy of speed measurement. Additionally,
many of the false-positive detections were removed. It should be noted that trucks are still poorly
detected by the fine-tuned detector. That is because the initial detector did not detect trucks well in
that environment, which means that automatically discovered examples of trucks were rare, and their
labels have been noisy (Figure 10). As a result, when fine-tuning the model, there was an insufficient
amount of labels for trucks to help significantly improve their detection.

Figure 9. Qualitative results: original model (column on the left) and the fine-tuned model (column on
the right). Fine-tuned model allows for the detection of the vehicles in the far end (2nd row), which also
results in a longer tracking period of the vehicles (1st row). Also, note that the false-positive detection
on the factory building (left column), is removed after adaptations stage.

Vehicle detection is usually only an intermediate step towards the task of interest,
e.g., vehicle counting. To fully evaluate the proposed system, metrics used in multiple-object-tracking
(MOT) would also be computed. These include, for example, multiple-object tracking accuracy
(MOTA), identification precision (IDP), identity switching (IDSW), and many more [44]. However,
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computing those metrics would require annotations of a much higher number of frames. Because of
that, in this work, detection accuracy was evaluated. It was shown that the proposed adaptation
methods improved the vehicle detection performance and, since the tracking-by-detection paradigm
is utilized, a better detection algorithm should lead to better tracking performance. Nevertheless,
computing MOT-related metrics remains an important step for future work.

Figure 10. Examples of inaccurate annotations.

6. Conclusions

In this work, a solution for traffic monitoring was proposed with an unsupervised adaptation,
which runs with a speed of 9.1 frames per second on the Jetson Tx2 platform. It was demonstrated
that a supervised training application may lead to satisfying vehicle detection performance, even in
the case of limited computing power being available. However, a significant drop in accuracy was
observed when testing the model on data from our camera, that is, when the test data were from
different distribution that the training. This shows that it is very important to test the algorithms in
out-of-distribution setting, because, in the real-world, gathering annotated data from deployment
environment is not always possible. Nevertheless, we have shown that it is possible to obtain training
examples automatically that can be used for further fine-tuning of the model, bringing, in turn,
an increase in vehicle detection efficiency when the system is already deployed. The fine-tuned model
may improve relative accuracy by 33%. However, it is difficult to design a system that works in a
fully autonomous mode, since adding even a small amount of human work in the whole process can
significantly improve its performance.

The proposed system consists of many interacting components (for detection, background subtraction,
tracking, and labelling), and it requires careful design and testing. The main limitation of the presented
method results from the application of a single-stage detector, and a background subtraction algorithm for
background modelling. Consequently, the method may not work efficiently in some dense traffic scenes
or during the night. This is why detectors that can be trained from sparse labels and a more advanced
background modelling technique could bring a further enhancement of the proposed system. In future
work, we also plan to test our algorithms on more cameras where the model is fine-tuned on data acquired
from several locations at the same time.
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