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Abstract: Various tasks in natural language processing (NLP) suffer from lack of labelled training
data, which deep neural networks are hungry for. In this paper, we relied upon features learned
to generate relation triples from the open information extraction (OIE) task. First, we studied how
transferable these features are from one OIE domain to another, such as from a news domain to a
bio-medical domain. Second, we analyzed their transferability to a semantically related NLP task,
namely, relation extraction (RE). We thereby contribute to answering the question: can OIE help
us achieve adequate NLP performance without labelled data? Our results showed comparable
performance when using inductive transfer learning in both experiments by relying on a very small
amount of the target data, wherein promising results were achieved. When transferring to the OIE
bio-medical domain, we achieved an F-measure of 78.0%, only 1% lower when compared to traditional
learning. Additionally, transferring to RE using an inductive approach scored an F-measure of 67.2%,
which was 3.8% lower than training and testing on the same task. Hereby, our analysis shows that
OIE can act as a reliable source task.

Keywords: transfer learning; open information extraction; relation extraction; recurrent neural
networks; word embeddings

1. Introduction

In deep learning for natural language processing (NLP), the collection of labelled data necessary
for training and building models is expensive. This has further highlighted the urgency towards
transfer learning research. The aim of transfer learning is to benefit from information gathered from
previous training data in directly making predictions in the target task by utilizing the extracted
information. Deep learning approaches in NLP did not start until the early 2000s [1]. Recently, there has
been an exponential increase in the number of scientific publications in neural networks in various
NLP tasks [1].

Open information extraction (OIE) is a challenging task of extracting relation tuples from an
unstructured corpus. Its main objective is to generate structured information from unstructured data in
the form of a relation triple, <Argument 1> <Relation> <Argument 2>, without the need of predefining
the relation between the two arguments. The extracted tuples can be binary, ternary, or n-ary, where the
relationship is expressed between more than two entities such as the Person-Location-BornIn-BornOn
relation (Jack Adams, Michigan, California, 1975).

Relation extraction (RE)—also classified as a category of information extraction—is the processes
of identifying semantic relationships between entities. Contrary to OIE, RE requires predefining
the relation prior to extraction. Similar to OIE, the extracted relation can either be a binary relation,

Appl. Sci. 2020, 10, 5758; d0i:10.3390/app10175758 www.mdpi.com/journal/applsci


http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-4507-5893
https://orcid.org/0000-0002-9237-221X
http://www.mdpi.com/2076-3417/10/17/5758?type=check_update&version=1
http://dx.doi.org/10.3390/app10175758
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 5758 20f16

for instance, Located-In (Berlin, Germany), or a higher order relation (n-ary), for instance, a 3-ary
relation between Employee—Position-Company (Adam Smith, Marketing Manager, XYZ Company).
Examples of both OIE and RE triples can be found in Table 1.

Table 1. Open information extraction and relation extraction example.

John Lennon Was Born on 9 October 1940, in Liverpool and Gained
Worldwide Fame as the Founder of the Beatles.

< John Lennon, Born, 9 October 1940>
OIE Tuples < John Lennon, Born, Liverpool>
< John Lennon, founder, Beatles>

Sentence

Person-Born-On: < John Lennon, Born, 9 October 1940>
RE Tuples Person-Born-In: < John Lennon, Born, Liverpool >
Person-Organization: < John Lennon, founder, Beatles>

OIE is a crucial NLP task, and thus it was chosen as a source task to transfer to other NLP tasks due
to its various potential applications in information retrieval, information extraction, text summarization,
and question answering [2]. While various OIE algorithms have been developed in the past decade,
only a small number employ deep learning techniques.

In recent years, researchers have increasingly been showing interest towards model generalization
in deep learning due to the lack of labelled data. In this paper, we investigated the ability to transfer
OIE to other NLP tasks, ranging from domain-adaptation (news domain to bio-medical) to RE as a
semantically related task. RE task was chosen because of the nature of both OIE and RE, and our
choice was backed up by the semantic overlap between both tasks. Throughout our research, we also
compared and experimented with the use of different word embeddings.

This work aimed to measure how OIE can assist in other NLP tasks. Our primary objective was
to conduct a fair comparison of different methods and settings with respect to OIE transfer learning
effects to other NLP tasks. Therefore, we did not focus on outperforming state-of-the-art results in the
target tasks.

The remainder of the paper is structured as follows. Section 2 presents a brief overview of transfer
learning, while Section 3 surveys previous work in both OIE and RE. The neural network architecture
is explained in Section 4, and experimental setup is explained in Section 5. Results and evaluation are
discussed in Section 6. Finally, Section 7 concludes the paper and discusses future work.

2. Transfer Learning in NLP

Formerly, there was a misconception that a machine learning framework will achieve the desirable
results only if the testing data and training data have similar distribution and feature space. Thus,
a new framework was required for data with different distribution properties and features, making the
collection of labelled training data expensive and difficult. Transfer learning lessens the demand of
gathering an immense amount of labelled training data by reemploying the knowledge gained from a
different task to tackle new tasks faster and constructively.

Pan and Yang introduced a transfer learning taxonomy [3]. Additionally, they categorized transfer
learning into three classes:

Inductive transfer learning: labelled data are accessible in source and target domain.

Transductive transfer learning: labelled data are only available in the source domain.

Unsupervised transfer learning: No labelled data are both source and target domain.

Transfer learning has been implemented in various different machine learning tasks, achieving
notable results, for instance, textual summarization [4], named entity recognition [5], question
answering [6,7], and text classification [8].

BERT (Bidirectional Encoder Representations from Transformers) [9] was a breakthrough in
transfer learning on a range of language-based tasks, not only due to the fact that BERT was pretrained
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on an immense dataset, but also because it has a substantial number of transformer blocks (encoder
layers) and feed-forward networks. Later on, many transfer learning models built on BERT were
introduced, for example ULMFiT [10] and OpenAl transformer [11]. This novel development also
affected the way words are encoded, with more elaboration being found in Section 4.2.

As shown in Figure 1, in our work, two transductive transfer learning experiments were carried
out. The first one transfers knowledge learned from the OIE news domain to the OIE bio-medical
domain—this is referred to as domain adaptation. In contrast to transfer learning, domain adaption
entails adapting a model trained on one domain to other different domains on the same task. The default
process of supervised domain adaptation for neural models involves pre-training the network on data
from the source domain followed by fine-tuning hyperparameters on data from the target domain.
The second experiment transfers information from the OIE news domain to the RE news domain.
Moreover, a small percentage of OIE bio-medical data were added to OIE news data to experiment with
inductive transfer learning. Similarly, a small amount of RE training data were inputted to the neural
model along with OIE news corpus, with both experiments being referred to as multi-task learning.

Transductive Transfer Learning

Inductive Transfer Learning

l Multi-task Learning ‘

Target Task 1 Output
labels: Bio-Medical
Open Information
Extraction

Target Task 2 Output
Labels: Relation
Extraction

A\ BMi(61)

A REN62)

Source Task Output
Labels: Open
Information Extraction

Target Task 1 Output
labels: Bio-Medical
Open Information
Extraction
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Figure 1. Open information extraction (OIE) transfer learning assessment. A total of four transfer
learning experiments were carried out in our work. Left: the two transductive transfer learning
experiments (BM1 and RE1). Right: illustration of the two experiments using inductive approaches
(BM2 and RE2). Middle: the red dotted line represents the original model (ROIE), in which we tested
our proposed neural model by testing and training on OIE news data, which is discussed in Section 4.
The experiments’ ID and the section they are discussed in are encapsulated in the yellow rectangles.

3. Related Work

In this section, we focus on previous works performed on OIE and RE relation extraction in
the literature.

3.1. State-of-the-Art Open Information Extraction

OIE can be portrayed in three broad categories [12]: (a) machine learning classifier approaches,
(b) hand-crafted rules approaches, and (c) neural network approaches. The first two categories can be
further divided into two sub-categories: shallow syntactic analysis and dependency parsing. Below we
discuss state-of-the-art work in each of these categories.

3.1.1. Machine Learning Classifiers Approaches

OIE systems that are built on machine learning classifier techniques require automatically
generated data to train the classifier. In 2007, Banko et al. introduced the first OIE system based on
shallow syntactic analysis, TextRunner [13]. It implements extraction in three main phases. It starts
with a self-supervised learner that depends mainly on a conditional random field (CRF) classifier
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that utilizes unlexicalized features required for relation extraction, followed by a single pass extractor
that extracts any potential relation triple and classifies each as either trustworthy or not. Finally,
a redundancy-based assessor that re-ranks the extracted relations and assigns a confidence score to each
extracted tuple is implemented. Not only did the authors of TextRunner facilitate domain-independent
detection of relations from a corpus but their work triggered researchers towards developing OIE
systems. For instance, the WOE (Wikipedia-based Open Extractor) [14] system is built on TextRunner,
having two modes of operation: WOEF* and WOEF#™¢, The main hypothesis behind WOE is the
automated assembly of training samples by heuristically pairing Wikipedia info box values with
corresponding texts, hence improving TextRunner’s performance. WOEF?s exploits the CRF classifier
trained with shallow syntactic proprieties to extract specific words between two noun phrases that
represents a relation.

An example of an OIE approach that utilizes dependency parsing is WOEFa¢; it exploits a
rich dictionary of dependency path patterns acquired from Wikipedia extractions. While the OLLIE
(Open Language Learning for Information Extraction) approach [15] relies on the bootstrapping
concept, it learns semi-lexicalized pattern templates using dependency parses by bootstrapping a
plentiful amount of training data that results in surpassing WOE’s performance.

3.1.2. Hand-Crafted Rules Approaches

REVERSB, introduced by Fader et al. [16], extracts tuples by singling out relation phrases that
satisfy syntactic and lexical constraints; for each relation phrase, a pair of noun phrase arguments are
identified. REVERB then uses logistic regression trained on 1000 sentences from the web with shallow
syntactic features to assign a confidence score to each extracted relation triple. The R2A2 approach [17]
upgrades REVERB by adding ARGLEARNER, an argument identifier that makes use of patterns as
features to identify the left and right boundaries of each argument.

KRAKEN [18] is one of the few OIE system that is able to capture N-ary relations. It utilizes
hand-crafted patterns to identify relation phrases and their correlated arguments over typed dependency
parsers. As a further matter, KRAKEN is able to detect completeness and correctness of the extracted
facts, thus increasing the quality of the extracted information. Del Corro and Gemulla proposed
ClauslE (Clause-based Open Information Extraction) [19], which locates clauses in input sentences by
making use of linguistic information of the English language’s grammar by computing a dependency
parse tree of the input phrase to determine its syntactical structure. Each clause is later classified to be
compatible with the grammatical function of its constituents. Unlike the aforementioned OIE systems,
ClauslE does not exploit any training data.

3.1.3. Neural Network Approaches

Recently, as a result of their successfulness in a diverse NLP tasks [1], deep neural networks
paved the way to the OIE task. A recurrent neural network (RNN) encoder—decoder OIE framework
was proposed by Cui et al. [20]. A fluctuating length sequence is sent to the network’s encoder as a
sole input. The encoder then generates a compressed representation vector to transfer to the decoder
in order to produce the output sequence. A three-layer long short-term memory (LSTM) [21] is the
internal structure of both the encoder and the decoder. Stanovsky et al. [22] presented a neural OIE
paradigm that trains a bidirectional LSTM (bi-LSTM) transducer to label each word, verifying that
supervised learning can have a positive effect on OIE performance.

3.2. State-of-the-Art Relation Extraction

RE research falls mainly under one of the following approaches: supervised, semi-supervised,
distant supervision, and unsupervised. As always, the main issue of supervised techniques
is the necessity of having a large amount of labelled data, which is difficult to gather [23].
Semi-supervised approaches mainly depend on bootstrapping techniques. Distant supervision
techniques merge both semi-supervised and unsupervised approaches. However, popularity of
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unsupervised techniques declined due to the fact that the learner is provided unannotated data, and for
that reason, evaluation becomes demanding at a large scale. We limited our discussion to supervised,
semi-supervised, and distant supervision approaches. Neural approaches appear as a subclass in all
the aforementioned classes.

3.2.1. Supervised Approaches

RE is treated as a multi-class classification task in supervised approaches. Supervised categories
can be classified into kernel-based approaches and feature-based approaches. An example of the latter
is the work of [24], who merged diverse features of lexical, syntactic, and semantic knowledge by
employing a support vector machine (SVM) to extract relations, proving the effectiveness of base phrase
chunking information. Authors of [25] introduced a kernel-based RE paradigm that incorporates term
generalization techniques—word clustering and latent semantic analysis—with structured kernels to
enhance RE results in different domains. Moreover, a neural approach based on adversarial training
was proposed by Peng Su and K. Vijay-Shanker [26], aiming to boost RE task performance through
various adversarial examples and adding perturbation on all input features of the model. Adversarial
learning is built on the basis that similar data instances are assigned the same label.

3.2.2. Semi-Supervised Approaches

The first bootstrapping algorithm was DIPRE (Dual Iterative Pattern Relation Expansion) [27],
which employs a pattern-matching model as classifier by using a set of seeds to extract patterns from the
dataset in order to extract new candidate relations. The DualRE model [28] was proposed to overcome
the problem of semantic drift associated with bootstrapping approaches. The key idea behind DualRE
is training a retrieval module along a relation prediction module, hereby mutually improving the
quality of one another through labelling data to use as auxiliary training data. In [29], a convolutional
neural network (CNN) RE architecture was proposed that employs graph-structured data where label
knowledge is smoothed over the graph by means of explicit graph-based regularization.

3.2.3. Distant Supervision Approaches

The traditional distant supervision RE approaches claim that if a sentence consists of two related
entities then the same relation lies between those two entities. Nevertheless, Sebastian et al. proposed
an RE model that supports a different claim, “if two entities participate in a relation, then at least
one sentence that mentions those two entities might express that relation” [30], by utilizing a factor
graph to aid in determining if two entities are related or not. Additionally, a learning algorithm
is employed to train this graphical framework by structuring distant supervision as an instance of
constraint-driven semi-supervision.

A piecewise CNN RE technique was proposed by [31], not only to overcome the noise generated
from the feature extraction phase, but also to address the issue of handling distant relation extraction as
a multi-instance task, which leads to lack of certainty of instance labels. By designing a convolutional
framework with piecewise max pooling as an alternative to feature engineering to automatically learn
related features, the authors of [31] were able to overcome the aforementioned problems.

4. ROIE: A Recurrent Neural Network Model for Open Information Extraction

Our recurrent neural network (RNN) model is based on our work in [32] by tackling the OIE
task as a sequencing labeling problem resulting in the extraction of multiple, overlapping tuples for
each sentence.

4.1. Neural Model Architecture

Throughout the back-propagation process, RNNs are prone to vanishing and exploding gradient
descent complications, making RNN training challenging. Thus, LSTMs and gated recurrent units
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(GRUs) were established to address the issues related to the unstable gradient. When the gradient
becomes too big or simply disappears, killing the learning process, LSTMs and GRUs aid by using the
relevant gates to allow the gradient to flow backward through time, freely and effectively keeping
long-term dependencies [33].

Both LSTMs and GRUs are able to train on long word contexts and connect information using cell
states. LSTM has three gates (input, output, and forget), contrary to GRU, which couples input and forget
gates in one gate—update gate, in addition to reset gate, which determines how to incorporate previous
memory with the current input. As a result, our model employs GRUs instead of LSTMs, since GRUs
are less complex with only two gates, and hereby they require less training parameters and utilize less
memory, effectively making GRU faster than LSTM.

The default operation in RNN captures context in a single direction, which may lead to
comprehending issues; for instance, consider the following two sentences:

“Second place is not as prestigious as first place.”

“Second is the standard international unit of time.”

In these sentences, the word “second” carries different meanings, which traditional RNNs will
not be able to comprehend, since it is the first word in the sentence; nevertheless, bidirectional RNNs
support learning from both ends. A bidirectional GRU (Bi-GRU) was employed in our model to
learn forward and backward lexical semantics of each word in a given sentence. There are two
different methods to implement a bidirectional network; either by having two RNNs operating in
opposite directions or within the internal architecture of the RNN itself. In our ROIE framework,
we implemented the latter approach.

4.2. Word Embeddings

Recently, several types of word embeddings have been introduced; nevertheless, they all serve
the same purpose of mapping words to low-dimensional vector representations. The aforementioned
OIE and RE deep learning-based approaches in Sections 3.1.3 and 3.2, respectively, utilized one of the
traditional word embeddings, either GloVe [34] or Word2Vec [35].

In our work, we incorporated the novel contextualized word embeddings. Due to their ability to
capture complex syntactic and semantic features of a word, deep contextualized word embeddings
have proven to be successful in various NLP tasks when compared to the traditional word embeddings.
The main concept behind contextualized word embeddings is that a word’s representation varies
according to its neighboring words, and thus the same word can have different representations
depending on its adjacent words.

Table 2 shows the word embeddings we employed in our experiment, along with the dimensionality
of each embedding and the data they are trained on. We picked one traditional non-contextualized
embedding, GloVe, and three contextualized embeddings with different dimensionalities: BERT [9],
XLNet [36], and XLM-RoBERTa [37]. XLNet is trained on data much larger than Google’s BERT training
data, and thus it outperforms BERT on 20 different NLP tasks [36]. Facebook’s XLM-RoBERTa depends
on the masked language model objective and is effective in text processing from 100 different languages.

Table 2. Word embeddings employed in our work.

Embedding Dimensionality Trained On

Aggregated global word-word co-occurrence

GloVe [34] 100 ..
statistics from a corpus.
BERT [9] 3072 Wikipedia and +10,000 books of different genres.
XLNet [36] 2048 Over 130 GB of textual data.
XLM-RoBERTa [37] 1024 2.5 TB of filtered CommonCrawl data.

Flair [38] is a simple framework that offers a unified interface for conceptually varying types of
word and document embeddings, which we utilized in our experiments.
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4.3. Work Flow

The embedded sentence—composed of a fixed-length vector—is sent as an input to our ROIE
neural network framework. Specifically, predicates—the part of a sentence or clause containing a
verb and stating something about the subject—are regarded as the building blocks of most languages,
as they denote significant actions that are deemed extremely efficient in extracting relations of interest.
Therefore, in line with the work of [22,32], the predicate in each sentence is presumed to be the relation
that links the tuple; consequently, the predicate is inputted to the neural network framework as a
feature vector alongside the part of speech (POS) tag of the input sentence obtained using the NLTK
toolkit [39], as shown in Figure 2.

Words’ Embeddings 2-Layer Bi-GRU 3 TDD RelLU Layers Softmax Layer
John -—~NNP-—-~— -0 EO-B
Lennon -— ‘NNP -— . EO-I
gained | (- veo - - - )
worldwide | (- - ; o
fame | W :
oy | -~ - 0
founding | ([ Ve - P-B
e |- o -
Beatles. -— 'NNP-— o E1-l
S(;Yen_ccle \—P(r)s_} Predicate

Figure 2. Our ROIE transferable neural model architecture.

After embedding the three aforementioned inputs, we concatenated them all to form our feature
vector of shape (3, length of sentence, embedding size); the feature vector is defined as follows:

Feature Vector = Embedded Word & Embedded POS & Embedded Predicate 1)

The generated feature vector is then passed to the two-layer Bi-GRU, which in turn outputs a
tensor that is progressed to three-layer time distributed dense (TDD) layers, which is finally passed to
the SoftMax layer for label prediction.

4.4. Sequence Labelling

In NLP, sequence labelling is the task of identifying and assigning a label to each word, for instance
the POS task, where each word is tagged to a particular POS. Sequencing labelling achieved more
promising results when compared to traditional statistical techniques among a diverse array of NLP
tasks [22]. In our work, we used BIO tags (Begin-Intermediate-Outside) [40] to indicate the word’s
location in the sentence and label it accordingly. The SoftMax output layer assigns the probability score
to each word to determine its corresponding label, as shown in Figure 2. Our proposed ROIE paradigm
is only able to capture binary relations. If a sentence contains more than one predicate, another instance
of that sentence is created to capture any possible relation. However, if a sentence has no relations,
only the predicate is labelled “P-B” (Predicate-Begin), “P-1” (Predicate-Intermediate), while label “O”
(Outside) is assigned to the remaining words in the sentence, without assigning any “E” (Entity) labels.
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4.5. Dataset

To train and test our OIE neural framework, we used the Wikipedia News Corpus (WikiNews) [41].
Our dataset was split into a training set to train the network, a development set for validation purposes
and a test set to assess the performance of our ROIE framework on a 60/20/20 ratio. An overview of the
dataset is shown in Table 3.

Table 3. WikiNews dataset overview.

Dataset No. of Sentences No. of Tuples

Train set 1174 2906
Development set 392 946

Test set 393 993

4.6. Hyperparameter Settings

Our ROIE neural framework was implemented using the Keras framework [42] with a TensorFlow
backend [43]. Table 4 shows our model’s hyperparameter configurations that achieved the best results
when training and testing on OIE. As shown, our framework was trained on 20 epochs and the
training dataset was split into 100 batches. For regularization purposes, in order to avoid over-fitting,
the dropout rate was set to 0.1. Furthermore, early stopping was utilized to terminate training when
the training performance stopped improving. Both bidirectional GRU layers and the three TDD layers
had an identical number of units, 128 units. Additionally, rectified linear unit (ReLU) [44] was the
chosen activation function in the three TDD layers, while the Adam optimizer [45] was utilized to train
our framework.

Table 4. Hyperparameter settings used in ROIE.

Hyperparameter Value
Epochs 20
Batches 100
Bidirectional GRU 128 units
TDD activation function ReLU
TDD units 128 units
Dropout rate 0.1
Optimizer Adam

4.7. Results of our ROIE Model

It should be emphasized that our ROIE neural model outperformed other state-of-the-art neural
OIE approaches, as documented in [32], while using ELMo word embeddings [46], also a deep
contextualized word embedding that models both complex syntactic and semantic features of a word.

Better results were attained after XLNet was substituted for ELMo [46] when compared to our
results in [32]; the results are reported in Table 5. An exhaustive grid search was performed to single
out the best batch—epoch pair for each word embedding. Our batches and epochs ranged from 20
to 120 and 1 to 50, respectively, both with increments of 5. GloVe achieved an F-measure of 56.1%,
while BERT and XLM-RoBERTa achieved a F-measure of 61.1% and 61.5%, respectively. Nevertheless,
XLNet surpassed all the other embeddings—including ELMo’s 59% F-measure—and achieved 65%.
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Table 5. Results of the ROIE model using different word embeddings. Both training and testing were done
on the OIE WikiNews dataset. Recall (R), precision (P), and F-measure (F) were used as evaluation metrics.

Source Task Target Word Hyper Parameters
(Train) Task (Test)  Embeddings (Batches—Epochs) Results (R-P-F)
GloVe 100 5 58.2% 54.1% 56.1%
BERT 100 5 64.3% 58.2% 61.1%
OIE (news)  OIE (news) XLNet 100 20 68.1%  622%  65.0%
XLM-RoBERTa 100 5 65.4% 58.1% 61.5%

5. Materials and Methods

In this section, we explain the experiments carried out and dataset utilized in our two main
tasks, transferring to OIE bio-medical domain and transferring to RE task. In the source task,
the aforementioned WikiNews training set [41] was utilized.

5.1. Transfering to OIE: Bio-Medical Domain

A classifier trained on a news corpus would observe an altered distribution if employed to classify
bio-medical data. Therefore, domain adaptation methods are deployed in transfer learning in such
scenarios. In the transductive learning task, specifically domain adaptation, we handle our pretrained
model as a feature extractor; in our case, the pretrained model was trained on the news domain,
where there is a characteristic shift in distribution of the data between source and target domains that
necessitates adjustments to effectively transfer knowledge.

DDIExtraction 2013 [47] is a bio-medical dataset mainly specialized in the subject of drug—drug
interactions. The dataset was structured from the DrugBank database [48] and MEDline abstracts [49]
related to drug—drug interactions. We utilized the DDIExtraction as a test set in the following
experiments. In our work, the performance of the following three experiments were compared against
each other:

Transductive transfer learning: transferring knowledge learnt from the OIE news domain to the
OIE bio-medical domain.

Inductive transfer learning: a small amount of bio-medical data also from DDIExtraction is fed to
the neural network alongside news data to train the neural network.

Traditional learning: both training and testing on bio-medical data.

5.2. Transfering to Relation Extraction

The OIE and RE tasks are both subclasses of information extraction, making the two tasks similar
in semantics. The dataset used in the RE task for training, testing, and validation is Semeval-2010 Task
8 [50]. The nine predefined relations in the dataset are shown in Table 6. The training set consists of
8000 sentences, however, for a fair comparison we trained our neural network on the same number of
relation tuples available in the OIE training set; thus, 2906 tuples were randomly selected from the
training set. Similarly, the same experiments were compared against each other when transferring
from the OIE news domain to RE:

Transductive transfer learning: transferring knowledge learnt from the OIE news domain to the
RE news domain.

Inductive transfer learning: a small percentage of the RE corpus is fed into the neural framework
along OIE news data to train the neural network.

Traditional learning: both training and testing on the RE news domain.

In all the above-mentioned experiments in both tasks, we used bio-medical OIE and RE, a development
set containing 946 tuples composed of the same structure as the source task, for validation purposes.
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Table 6. List of predefined relations in the Semeval-2010 corpus and their number of occurrences.

. Number of Instances
Relations.

Train Set Test Set

1. Cause-Effect 485 228
2. Instrument-Agency 245 156
3. Product-Producer 320 231
4. Entity-Origin 398 258
5. Entity—Destination 392 252
6. Component-Whole 209 110
7. Content—Container 118 102
8. Member—Collection 345 233
9. Message-Topic 394 261

Total 2906 1831

6. Results and Evaluation

The following measures were used to measure the effect of transferring knowledge learnt from
our ROIE framework: Recall (R), Precision (P), and F-measure (F). All the aforementioned evaluation
metrics were expressed as percentages throughout the experiments, with the F-measure being the
determining performance measure. All hyperparameters—shown previously in Table 4—except for
epochs and batches were fixed throughout our experiments. Contextual embeddings were highly
sensitive to changes in hyperparameters, specifically with respect to number of epochs and batches.
Steep falls and rises were noticed when the number of epochs and batches were changed.

It is worth noting that the dimensionality of the word embeddings refers to the length of the vector;
in theory the size of the vector is directly proportional to the information it can store, which allows
NLP systems to perform better. However, in practice, there was not much benefit with the embeddings
with higher dimensionality when compared with lower dimensionality embeddings.

6.1. Results of Transferring to OIE: Bio-Medical Domain

In order to properly evaluate transfer learning results, we compared it with training and testing
on the target task. Detailed results of the experiments can be found in Table 7, indicating the source
task (training set) and the target task (testing set). The hyperparameters that achieved the highest
scores are the ones reported in Table 7.

OIE: Bio-Medical Domain Results Discussion

Our system achieved the highest results using XLM-RoBERTa in all three experiments: transductive
transfer learning, inductive transfer learning, and traditional learning, outperforming all other
word embeddings.

When our training set was composed entirely of news data, XLM-RoBERTa scored the highest
F-measure of 64.4%, with 100 batches and 5 epochs. XLNet and GloVe achieved the same F-measure
of 62.9% using the same number of batches and epochs, 100 and 5, respectively. Nevertheless,
BERT achieved the lowest F-measure of 60%.

In inductive transfer learning, a small amount of bio-medical data were inputted to the neural
framework by sampling a random batch from the DDIExtraction 2013 training data using a 4:1 ratio,
with bio-medical data having the lower ratio. A significant increase in the F-measure of 13.6% was
attained in inductive transfer learning when comparing to transductive transfer learning. Using both
XLM-RoBERTa and XLNet, our inductive transfer approach realized an F-measure of approximately
78%, with XLM-RoBERTa’s precision surpassing XLNet’s by 0.9%. BERT came in third and achieved
75.2%, while GloVe scored an F-measure of 73.7%.
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Table 7. Domain adaptation results by transferring from the OIE news domain to the OIE bio-medical
domain using four different word embeddings. Bold values indicate the highest achieved F-measure in each
of the three experiments (transductive transfer learning, inductive transfer learning, traditional learning).

Source Task (Train) Target Task (Test) Emlre] ::lrddings g’;f:;g;j;?::ﬁg Results (R-P-F)

Transductive GloVe 100 5 68.2%  584%  62.9%
. . BERT 50 10 72.4% 51.3% 60.0%
Transfer OIE (news) OIE (bio-medical) XLNet 100 5 84%  583%  62.9%

L ing (BM1 ) ' ’
earning ( ) XLM-RoBERTa 100 5 71.0% 59.0%  64.4%
Inductive GloVe 100 15 69.8%  782%  73.7%
Transfer OIE (news) + OIE OIE (bio-medical) BERT 100 5 71.9%  789%  75.2%
Learning (BM2) (bio-medical) XLNet 100 10 73.6%  829%  77.9%
J XLM-RoBERTa 100 5 73.0% 83.8%  78.0%
GloVe 100 5 70.8% 71.7% 71.2%
Traditional . . . . BERT 100 15 731%  859%  78.9%
Learning OIE (bio-medical)  OIE (bio-medical) XLNet 100 15 729%  842%  78.1%
XLM-RoBERTa 100 15 72.5% 86.9%  79.0%

The results scored using traditional learning by training entirely on bio-medical data were only
1% higher than the results achieved using the inductive transfer learning technique. Once again,
XLM-RoBERTa outperformed the other embeddings by scoring an F-measure of 79% using 100 batches
and 15 epochs. Additionally, BERT achieved roughly the same F-measure as XLM-RoBERTa of 78.9%,
using the same number of epochs and batches; however, it achieved a lower precision of 85.9%. It is
notable that GloVe achieved a higher F-measure in inductive transfer learning than traditional learning.
Our interpretation is that adding news training data to the biomedical tasks resulted in a higher
performance with GloVe embeddings. This could correlate with the original training data of the
GloVe model used in our experiments. Thus, our results show that using a small percentage from
the target task while training our neural network results in a proximate outcome when compared to
traditional learning.

6.2. Results of Transfering to Relation Extraction

Equally, in order to establish a fair comparison in the following three experiments, we fixed the
training set size to 2906 relation instances. Results of both transductive and inductive transfer learning
were compared against the results achieved by traditional learning. Results are reported in Table 8.

Relation Extraction Results Discussion

Firstly, in transductive transfer learning, with 50 batches and 10 epochs, BERT was able to achieve
an F-measure of 54.4%. Both XLNet and XLM-RoBERTa scored the same F-measure of 49.1%, which was
nearly 4.6% higher than the F-measure achieved using GloVe.

With inductive transfer learning, we found an improvement of 12.8% when compared to
transductive learning also using a 4:1 ratio, with the OIE news dataset overtaking the higher ratio.
Using XLM-RoBERTa, a 67.2% F-measure was attained when the network was trained on 15 epochs
and the training dataset was divided into 100 batches. BERT and XLNet did not fall far behind
XLM-RoBERTa, as they achieved F-measures of 66.3% and 65.4%, respectively. GloVe achieved the
lowest F-measure of 59.9%.
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Table 8. Results of transferring from OIE to RE using four different word embeddings. Bold values

indicate the highest achieved F-measure in each of the three experiments (transductive transfer learning,

inductive transfer learning, traditional learning).

. Word Hyperparameters b
Source Task (Train) Target Task (Test) Embeddings (Batches-Epochs) Results (R-P-F)

Transductive GloVe 100 5 55.9%  37.0%  44.5%

Transfor OIE (news) RE (news) BERT 50 10 62.2%  48.4%  54.4%

L . XLNet 50 5 58.8%  421%  49.1%
earning (RE1)

XLM-RoBERTa 100 15 53.2%  45.6%  49.1%

Inductive GloVe 100 10 52.8%  69.3%  59.9%

Transfer OIE (news) + RE RE (news) BERT 100 5 61.7%  73.0%  66.3%

L . (news) XLNet 100 15 59.7%  722% = 65.4%
earning (RE2)

XLM-RoBERTa 100 15 59.7% 76.9%  67.2%

GloVe 100 15 57.6%  77.1%  65.9%

Traditional RE (news) RE (news) BERT 100 15 62.4% 82.3%  71.0%

Learning XLNet 100 5 61.6%  81.3%  70.5%

XLM-RoBERTa 100 15 59.8%  79.9%  68.4%

When employing default learning settings, where we train on our target task, there was a 3.8%
enhancement in the F-measure. Once again, BERT outperformed by scoring an F-measure of 71%,
only 0.5% higher than XLNet, and 2.6% higher than XLM-RoBERTa. Consistently, GloVe scored the
lowest F-measure of 65.9%, hereby proving the notable effect in the model’s performance when using
contextualized word embeddings in contrast with traditional word embeddings.

Table 9 summarizes the best results of the three main experiments acquired in our work:
ROIE model, transferring to bio-medical domain, and transferring to RE. As seen in Table 9, we could
not single out a particular contextualized word embedding to utilize, as the use of word embedding
may vary according to the various reasons: type of task (OIE, RE, or sentiment analysis), dataset
domain (news, bio-medical data, or financial data), and the computational power available to the user.
This is also in agreement with other papers that extensively compared embeddings in various tasks
and found that the most suitable one is highly dependent on the task and data nature [51,52].

Table 9. Summary of the best result obtained in each experiment by different systems described in the
paper: original ROIE model, transferring from OIE to bio-medical OIE (transductive transfer learning,
inductive transfer learning, traditional learning), and transferring from OIE to (transductive transfer
learning, inductive transfer learning, traditional learning).

Source Task (Train) Target Task (Test) Em:Z grddings g’;f:;s:f;g‘::;s Results (R-P-F)

OIE (news) OIE (news) XLNet 100 20 68.1% 62.2%  65.0%

OIE (news) OIE (bio-medical) XLM-RoBERTa 100 5 71.0% 59.0% 64.4%

OIE (news) + OTE OIE (bio-medical) ~ XLM-RoBERTa 100 5 73.0%  83.8%  78.0%

(bio-medical)

OIE (bio-medical) OIE (bio-medical) =~ XLM-RoBERTa 100 15 72.5% 86.9% 79.0%
OIE (news) RE (news) BERT 50 10 62.2% 484%  54.4%

OIE (news) + RE (news) RE (news) XLM-RoBERTa 100 15 59.7% 76.9% 67.2%
RE (news) RE (news) BERT 100 15 62.4% 82.3% 71.0%

To further elaborate that the choice of the word embedding is dependent upon the task and nature
of data, XLNet outperformed all the other word embeddings when training and testing on the news
dataset. However, on bio-Medical data, XLM-RoBERTa performed better in all three experiments:
transductive transfer learning, inductive transfer learning, and traditional learning. It is worth noting
that XLM-RoBERTa outperformed in four out of a total seven experiments in our work. Thus, we were
motivated to compare and experiment with the use of different word embeddings.
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7. Conclusions and Future Work

Can we survive without labelled data in NLP? On the basis of our findings: yes! Nevertheless,
employing labelled data in NLP tasks still results in better performance. However, the process of
collection of labelled data is demanding and, in some cases, inaccessible. In this paper, we utilized
training on OIE to diminish the complication of insufficient training data of neural network models in
various NLP tasks and encourage model generalization. Since OIE plays a fundamental role in turning
massive, unstructured data into factual information that can be used as a foundation to many NLP
tasks, we favored OIE as our source task, thereby ensuring our work is useful and beneficial to the
NLP community.

In the domain adaptation experiment, we transferred information learnt from one domain to the
other on the same task. The neural model was trained on the OIE news domain and tested on the
bio-medical domain. Results obtained from the inductive approach indicated that our ROIE neural
model can play a fundamental role in domain adaptation.

Moreover, our research also covered the transferability to a semantically related task. Results
achieved from transferring from the OIE to RE followed the same pattern as transferring from the
OIE news domain to the bio-medical domain. Inductive transfer learning achieved promising and
comparable results with traditional learning. Thus, our work demonstrates that OIE can act as a
reliable source task, not only in domain adaptation but also when transferring to related tasks.

In the future, we intend to expand our work beyond sequence labelling tasks and experiment with
multi-transfer learning thoroughly on several NLP tasks, specifically tasks that are not semantically
related to OIE such as sentiment analysis. Additionally, we intend to investigate different transferring
mechanisms to study how to leverage knowledge acquired from pre-trained models in varied ways.
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