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Abstract: In the field of precision machining, the spindle-rolling bearing (SRB) system is widely used
on the machine tool as one of the most fundamental and important components. The rotational error
motions of the SRB system have significant effects on the machining accuracy (contour accuracy and
surface roughness). Over the past decades, much work has been focused on the measurement of
spindle balancing and rotational error motions, the vibrations response induced by the nonlinear
stiffness and surface waviness of the bearing. However, the formative mechanism of the rotational
error motions for the SRB system is not well understood. In this paper, the dynamic model of the SRB
system considering the bearing nonlinearity is established. Seeking to reveal the effects of surface
waviness of the bearing raceway, unbalance mass and disturbance force on the dynamic rotational
error, the modeling method and formative mechanism of the dynamic rotational error for the SRB
system is explored both theoretically and experimentally. Then, numerical simulation is performed to
analyze the influence of the bearing raceway waviness, unbalance mass and disturbance force on
the dynamic rotational error. An experimental setup is established based on a typical SRB system
and a series of experiments are carried out. The experimental results are in good agreement with the
theoretical and simulation results, which can demonstrate the feasibility and validity of the modeling
method. Furthermore, this method can be effectively applied to the design and development phases
of an SRB system to improve dynamic rotational accuracy.

Keywords: spindle-rolling bearing system; dynamic rotational error; nonlinear bearing model;
surface waviness; dynamic unbalance; disturbance force

1. Introduction

The spindle-rolling bearing (SRB) system is a key component of the machine tool or other rotating
machines, which plays a key role in working. The rotational accuracy is a critical technical indicator
for the SRB system when evaluating the dynamic performance [1,2]. With the increasing demands
on machining accuracy of the machine tool, much effort has been made to research the measuring
methods on the rotational accuracy of the SRB system. Metrologists began to measure rotational
accuracy as early as the 1900s. Scheslinger [3] used a mechanical indicator to measure the total
indicator reading (TIR), which is recognized to be a static measuring method. Tlusty [4] and Bryan [5]
pioneered modern measuring methods by using more accurate data acquisition (DAQ) system and
evaluating methods. Their methods lay the foundation for ANSI(American National Standards
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Institute)/ASME(American Society of Mechanical Engineers) and ISO (International Standardization
Organization)testing standards [6,7], which are commonly used for testing machine tool spindle
rotational accuracy nowadays. In order to obtain more accurate test results, researchers developed
nanometer-resolution capacitive displacement sensors and a corresponding spindle error analyzer.
A long series of ingenious error separation methods and corresponding measuring setups have been
proposed to improve the measuring accuracy [8–14]. Chen [15] presents an identification method for
the spindle rotation error in the workpiece surface by the wavelet transform, Weierstrass function
and power spectral density. A commercial spindle error analyzer is developed by the Lion Precision
company, as well as high-precision displacement sensors [16].

It is well known that some key factors including the Hertz contacts, bearing preload, surface
waviness, unbalance mass and so on, would significantly affect the dynamic rotational error of the
SRB system. These factors can significantly decrease the spindle rotational accuracy. Huang et al. [17],
established a general rotating error model according to the structure characteristic of SRB system.
In the model, the effects of source errors and the action rule were analyzed. However, different kinds of
source errors are just superimposed in accordance with their geometric relation, which can be only used
for static analyses. Huang and Lee et al. investigated the effects of spindle unbalance on the machining
accuracy of the aerostatic bearing spindle (ABS). A dynamic model of the ABS was proposed to analyze
the error motion and corresponding dynamic characteristics. Besides, in order to evaluate the spindle
accuracy, simple frequency analyses were adopted [18]. Kim and Igor Zverv et al. [19], studied the
spindle rotational error motion caused by non-ideal ball bearing by establishing a dynamic model
of SRB system. Multiple error patterns were analyzed in the model. To evaluate the rotational error
motion, root-mean-square summation of harmonics was calculated by using the displacement data
of spindle vibration. Harsha et al. [20,21] presented an analytical model to investigate the nonlinear
dynamic response of the SRB system, with consideration of the surface waviness, cage runout, number
of balls, surface waviness and radial internal clearance. G. Jang and Jeong [22] also presented a
nonlinear model to analyze the ball bearing vibration due to the waviness in a rigid rotor supported by
ball bearings. Bai and Xu [23] present a general dynamic model for studying the dynamic properties of
the rotor system supported by ball bearings under the effects of both internal clearance and bearing
running surface waviness, and conclude that the clearance, axial preload and radial force play a
significant role in affecting the system stability. Q. K. Han and F. L. Chu [24,25] established a nonlinear
dynamic model based on the Hertz contact theory, with the purpose of investigating the effects of
axial preload, spindle eccentricity, inner/outer waviness amplitudes on the dynamic response in both
time domain and frequency domain. Xiaohu Li [26], discussed the mathematical description and
evaluation method on spindle radial error motion, the axial thermal displacement, radial error motion
and modal characteristic of spindle were verified by the designed experiment. Some researchers [27–30]
investigated the vibration response induced by the nonlinear stiffness, surface waviness and distribute
defects of the bearing. It is helpful to the study of running accuracy of the spindle; however, it is
insufficient to investigate the modeling method and formative mechanism of the dynamic rotational
error motion.

From the literature reviews, it is worth noting that most research studies have been focused on
how to measure the rotational accuracy of the SRB system and how to improve the measuring accuracy
and the vibrations response induced by the nonlinear stiffness and surface waviness of the bearing.
However, few papers are published associating these error motion sources with the spindle rotational
accuracy, especially for dynamic rotational accuracy. The modeling and formative mechanism of
the dynamic rotational error motion are not well understood. Motivated by this, this paper mainly
focuses on the modeling method and the formative mechanism of spindle rotational error motion.
The structure of this paper is arranged as follows: Section 2 introduces a dynamic model of the
spindle-rolling bearing (SRB) system considering the bearing nonlinearity to analyze the effecting
mechanism of the error factors. Based on the model of Section 2, the influence of the error factors is
analyzed quantitatively by utilizing the numerical simulation in Section 3. In Section 4, an experimental
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setup is designed to verify the proposed model. A series of measuring experiments for the dynamic
rotational error corresponding to different influenced factors are performed. The conclusions and
prospects of this study are given in Section 5.

2. Modeling of Dynamic Rotational Error for Spindle-Rolling Bearing System

Angular contact ball bearings are widely used in the SRB system. The nonlinear and time-varying
characteristics of the bearing, under the influence of geometric error, bearing structure and dynamic
load, is the root cause of the nonlinearity and has great important effects on the dynamic rotational
error of the SRB system. In this section, the dynamic model of the SRB system considering the nonlinear
and time-varying behaviors of the bearing are established, based on which the dynamic rotational
error is evaluated.

2.1. Nonlinear Bearing Model

The dynamic supporting stiffness and time-varying bearing force are important parameters in
modeling the nonlinear behaviors of rolling bearings. During operation, the dynamic supporting
stiffness of the SRB system is nonlinear according to the Hertz contact theory (the Hertz contact theory
illustrates the distribution rule of local stress and strain generated by the contact of two objects under
compression), while the bearing force is time-variable due to the machining error of the bearing rings
and rolling elements.

2.1.1. Modeling of Dynamic Supporting Stiffness

The geometry of an angular contact ball bearing and the coordinate systems is shown in Figure 1.
The global coordinate system (O-XYZ) is fixed at the rotating axis center of the outer ring. The inner ring
rotates at a constant speedω0 with Z axis while the outer ring is fixed. αo is the initial contact angle of
the bearing. The outer ring is fixed and assume that δx, δy, δz, θx and θy are the three translational and
two angular displacements of the inner ring. The displacement vector of the inner ring is expressed as

δi =
[
δx, δy, δz, θx, θy

]T
, (1)
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There are Nb rolling elements in the bearing and the position angle of the kth rolling element,
φbk, could be obtained from the following formula:

fbk =
2π(k− 1)

Nb
, (2)
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The local coordinate system (o-xyz), whose center is at the mass center of the rolling element,
rotates at an angular speedωbk with the Z axis. ωbk is the orbital angular speed of the rolling element
and can be expressed as

ωbk =
ω0

2

(
1−

D
dm

cosαo
)
, (3)

where dm is the pitch diameter of the bearing, D is the diameter of the rolling element.
The rolling elements also rotate at an angular speedωsk around the axis of itself, which is called

the spinning axis. The self-rotation angular speedωsk can be easily obtained by [31].

ωsk =
dmω0

2D

(( D
dm

cosαo
)2
− 1

)
, (4)

The angle between the spinning axis of the rolling elements and Z axis is βk, which is called as
rolling element attitude angle. βk can be expressed as [31].

βk = tan−1

 sinαok

cosαok +
D

dm

, (5)

When the rotational speed ω0 and the axial preload are zero, both the inner contact angle and the
outer contact angle are the same and equal to the initial contact angle αo. The inner raceway groove
curvature center, outer raceway groove curvature center and the rolling element center are collinear
(red line), as shown in Figure 2. The distance between the inner raceway groove curvature center and
the rolling element center, as well as the distance between the outer raceway groove curvature center
and the rolling element center before deformation are

Lik = ri − 0.5D = (fi − 0.5)D
Lok = ro − 0.5D = (fo − 0.5)D

, (6)

where ri and ro are the inner and outer raceway groove curvature radius, respectively, fi and fo are the
inner and outer raceway groove curvature radius coefficient, respectively.
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curvature centers.

With the rotational speed ω0 and axial preload increase, the inner raceway groove curvature
center, outer raceway groove curvature center and the rolling element center are not collinear (blue line).
The inner contact angle and the outer contact angle are not equal to each other. The inner contact angle
increase while the outer contact angle decreases due to the centrifugal force. Besides, the distance
between the inner/outer raceway groove curvature center and rolling element center changes in the
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Y–Z plane. The distance between the inner raceway groove curvature center and the rolling element
center, as well as the distance between the outer raceway groove curvature center and the rolling
element center, after deformation are

lik = (fi − 0.5)D + δik

lok = (fo − 0.5)D + δok
, (7)

where δik/δok is the contact deformation between the inner/outer bearing ring and the kth rolling element.
In accordance with the displacement coordinate relations, the axial distance between the inner

and outer raceway groove curvature centers is

A1k = (Lok + Lik)Dsinα0 + δz + ηiθxsinfbk − ηiθycosfbk

A2k = (Lok + Lik)Dcosα0 + δxcosfbk + δysinfbk
, (8)

where ηi is the distance between the rotating axis Z and inner raceway groove curvature center and
can be calculated by

ηi =
dm

2
+ (fi − 0.5)Dbcosα0, (9)

It convenient to introduce new variables X1k and X2k, as shown in Figure 2. It can be seen from
Figure 2 that at any rolling element location

sinαik = X1k
lik

cosαik = X2k
lik

sinαik = A1k−X1k
lik

cosαoik = A2k−X2k
lik

(10)

Using the Pythagorean Theorem, it can be seen from Figure 2 that [31].

(A1k −X1k)
2 + (A2k −X2k)

2
− [( fi − 0.5)D + δik]

2 = 0

X2
1k + X2

2k − [( fo − 0.5)D + δok]
2 = 0

(11)

As shown in Figure 3, the load equilibrium equations for the kth rolling element can be
expressed as [31].

Qik cosαik −Qok cosαok +
λikMgk

D sinαik −
λokMgk

D sinαok + Fck = 0

Qik sinαik −Qok sinαok −
λikMgk

D cosαik +
λokMgk

D cosαok = 0
(12)

where Qik/Qok is the contact force between the inner/outer ring and the rolling element. Qik and Qok
can be expressed as

Qik = Kikδik
1.5

Qok = Kokδok
1.5 (13)
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λik/λok represent the friction coefficients between the inner/outer raceway and rolling element.
As for the outer raceway control, λik = 0 and λok = 2 The gyroscopic moment Mgk and centrifugal force
Fck acting on the kth rolling element can be described as follows:

Mgk = Ibωbkωsksinβk

Fck = 0.5mbdmω
2
bk

(14)

where mb, Ib is the mass and mass moment inertia of the kth rolling element, respectively.
Equations (11) and (12) are highly coupled and nonlinear and can be resolved by Newton–Raphson

method. Then the contact forces Qi:, Qo:, contact angles αi:, αo:, and gyroscopic moments Mi: Mo:,
between each rolling element and inner/outer rings can be obtained. The resultant force vector of the
inner ring due to all of the contacting rolling elements is

Fi =
[
Fx, Fy, Fz, Mx, My

]T
(15)

where

Fx =
Nb∑

k=1

(
Qikcosαik +

λikMgk
D sinαik

)
sinfbk

Fy =
Nb∑

k=1

(
Qikcosαik +

λikMgk
D sinαik

)
cosfbk

Fz =
Nb∑

k=1

(
Qiksinαik −

λikMgk
D cosαik

)
Mx =

Nb∑
k=1

(
Qiksinαik −

λikMgk
D cosαik

)
ηicosfbk

My = −
Nb∑

k=1

(
Qiksinαik −

λikMgk
D cosαik

)
ηisinfbk

(16)

According to the relationship between the resultant forces and displacements of the inner ring,
the dynamic supporting stiffness matrix of the bearing can be obtained

[
Kb

]
=



∂Fx
∂δx

∂Fx
∂δy

∂Fx
∂δz

∂Fx
∂θx

∂Fx
∂θy

∂Fy
∂δx

∂Fy
∂δy

∂Fy
∂δz

∂Fy
∂θx

∂Fy
∂θy

∂Fz
∂δx

∂Fz
∂δy

∂Fz
∂δz

∂Fz
∂θx

∂Fz
∂θy

∂Mx
∂δx

∂Mx
∂δy

∂Mx
∂δz

∂Mx
∂θx

∂Mx
∂θy

∂My
∂δx

∂My
∂δy

∂My
∂δz

∂My
∂θx

∂My
∂θy


(17)
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2.1.2. Modeling of Time-Varying Bearing Force

The machining errors of the bearing parts, which has great important effects on the bearing
force and dynamic rotational error, are mainly include shape errors, surface waviness and roughness.
The surface roughness is not considered in modeling the bearing force for the wavelength of the surface
roughness is smaller than the width of the Hertz contact [31].

The outer ring is fixed and the displacements for the inner raceway groove curvature center
corresponding to the kth rolling element, including two translations along the y-, z-axes, and one
rotation with respect to the x-axis, are expressed as

δik =
[
uyk, uzk, θxk

]T
(18)

Under the assumption of small deflection, δik could be obtained through coordinate transformations

δik = Tkδi + ∆wk + ∆Dk (19)

where Tk is the transformation matrix, and can be expressed as

Tk =


sinfbk cosfbk 0 0 0

0 0 1 ηicosfbk −ηisinfbk

0 0 0 cosfbk −sinfbk

 (20)

∆wk denotes the additional displacements caused by the waviness of the bearing rings and rolling
elements. Similarly, ∆Dk represents the additional displacements due to roundness error of the bearing
rings and rolling elements.

As illustrated in Figure 4, the waviness exists on each bearing components. pik, pok and qik,
qok represent radial and axial waviness of inner and outer raceways, wik and wok denote the waviness
of rolling elements. The harmonic functions are utilized to express the surface waviness due to the
waviness vary with time periodically.

pik =
N∑

nin=1
Aincos

(
nin

(
(ω0 −ωbk)t−

2π(k−1)
Nb

)
+ fin

)
qik =

N∑
nin=1

Bincos
(
nin

(
(ω0 −ωbk)t−

2π(k−1)
Nb

)
+ψin

)
pok =

N∑
nout=1

Aoutcos
(
nout

(
ωbkt + 2π(k−1)

Nb

)
+ fout

)
qok =

N∑
nout=1

Boutcos
(
nout

(
ωbkt + 2π(k−1)

Nb

)
+ψout

)
wik =

N∑
nout=1

Cbacos(nbaωskt +ϕba)

wok =
N∑

nout=1
Cbacos(nbaωskt + π+ϕba)

(21)

where Ain, Aout, Bin, Bin, Cba, Cba are the amplitudes of the surface waviness; nin, nout, nba, are the
harmonic orders of the surface waviness; φin, ψin, φout, ψout, ϕba are the initial phases angle of the
surface waviness.
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In accordance with the geometric relations, one can obtain

∆wk =


pok − pik
qok − qik

0

 (22)

The effects of the surface waviness on the dynamic supporting stiffness are very small; however,
the effects of the surface waviness on the dynamic rotational error can be reflected in the form of
time-varying bearing force. The distances between the inner/outer raceway groove curvature center
and the rolling element center, considering the effect of surface waviness, are

Lik = ( fi − 0.5)D + pik −wik

Lok = ( fo − 0.5)D + pok −wok
(23)

The geometric relationships can be written as follows:

sinαik = Liksinα0+vzk−uzk
lik

cosαik =
Likcosα0−vyk+uyk

lik

sinαok =
Loksinα0−vzk

lok

cosαok =
Lokcosα0+vyk

lok

(24)

where vyk and vzk are the displacement variation of the kth rolling element along the y-axis,
z- axis, respectively.

The time-varying forces from the kth rolling element to the inner ring considering the surface
waviness can be stated as:

Qik= [Q yk, Qzk, Qθxk

]
(25)

According to Equations (11) and (12), the time-varying force vector Qik can be expressed as
follows: 

Qyk

Qzk

Qθxk

 =

−Qikcosαik +

λikMgk
D sinαik

Qiksinαik +
λikMgk

D cosαik
λikMgk

D ri

 (26)
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Then the sum of the time-varying forces from all of the contacting rolling elements can be obtained:

{Fb} =

Nb∑
k=1

[Tk]
T


Qyk

Qzk

Qθxk


 (27)

2.2. Dynamic Model of the SRB System

Figure 5 shows the layout of the SRB system. The spindle is supported by two pairs of angular
contact bearings. The front and rear bearings are arranged back to back. The types of the front and rear
bearing are 7017 and 7016 C, respectively. The light preload is exerted on the SRB system in assembling
process. The system coordinate O-UsVsWs is fixed at the mass center of the spindle. Table 1 shows the
parameters of the SRB system. In this section, the dynamic model of the SRB system considering the
dynamic supporting stiffness, time-varying bearing force caused by the surface waviness, dynamic
unbalance force and the disturbance force, will be derived, which lays a foundation for evaluating the
dynamic rotational error.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 24 
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Table 1. Calculation parameters of the SRB system.

Items Parameters Items Parameters

ms/kg 30.735 l3/m 0.144
Is/kg m2 0.963 l4/m 0.188
Js/kg m2 0.035 l5/m 0.312

l1/m 0.109 l6/m 0.446
l2/m 0.153

The simplified dynamic model of the SRB system is shown in Figure 6. The spindle can be
regarded as a rigid body and has five degrees of freedom, i.e., three translational freedom along the
Us-, Vs- and Ws-axes, and two rotational freedom with respect to the Us- and Vs-axes. The dynamic
displacement vector of the rotor is

q = [us, vs, ws, θu
s , θv

s ]
T (28)
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The dynamic model for SRB system can be obtained based on the Lagrange equation. The final
equations of motion of the SRB system can be expressed as

[M]
{ ..
q
}
+ ([C] +ω0[G])

{ .
q
}
+

[
Kb

]{
q
}
= {Fe}+ {Fdr}+ {Fb} (29)

where [M] = [ms, ms, ms, Is, Is]T, is the mass matrix of the system, ms is the mass of the spindle and Is

is the inertia moment of the spindle about the Us-axis and Vs-axis. Kb is the stiffness matrix which can
be calculated in Section 2. C is the structural damping matrix constructed from modal damping ratios
identified experimentally. G is the gyroscopic matrix and can be expressed as

[G] =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −Js
0 0 0 Js 0


(30)

Js is the inertia moment of the rotor about the Ws-axis. Fe Fdr and Fb are the dynamic unbalance
force caused by unbalanced mass, disturbance force and the time-varying bearing force caused by
surface waviness, respectively.

Fe can be states as

{Fe} = muesω
2
0[cos(ω0t), sin(ω0t), 0, l3cos(ω0t), l3sin(ω0t)]T (31)

where mu is the eccentric mass and es is the eccentric distance.
The cutting forces have not been considered, since they involve more complicated issues not

covered in this paper. The effect of cutting force on the dynamic rotational error will be studied in
the future.

2.3. Evaluation of Dynamic Rotational Error

It is difficult to measure the dynamic rotational error of the SRB system directly. Precision artifacts
are adopted to aid the metrology to identify the dynamic features of the SRB system. Figure 7 shows
the diagram of radial error motion measurement and discrete time samples of displacement data
measured in radial direction.
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Figure 7. Schematic diagram of radial error motion measurement.

The displacement data express sinusoidal trends, with a deviation from zero level. In accordance
with the ISO or ANSI/ASME test standard, different kinds of error motion values can be evaluated by
using the displacement signals of the artifact [6,7]. The least-square method is used for evaluating the
synchronous error motion value. The solution of the synchronous error motion value is transformed
into a nonlinear least squares problem. The distances xLSC and yLSC of the least squares center from
the polar chart center can be calculated as follows:

xLSC = 2
n

n∑
i=1

xi

yLSC = 2
n

n∑
i=1

yi

(32)

where xi and yi are the values of the ith data points in the X and Y direction, respectively.
RLSC is the radius the least squares circle and can be calculated as follows:

RLSC =
2
n

n∑
i=1

√
(xi − xLSC)

2 +
(
yi − yLSC

)2
(33)

Error motion polar plots and corresponding error motion values are depicted in the Figure 7.

3. Numerical Simulation

Based on the dynamic model established in Section 2 and the ISO 230-7 or ASME B89.3.4 test
standard, the influence of different error factors on the dynamic rotational error can be analyzed.
Polar plots of the dynamic rotational error can be obtained by using the spindle displacement response,
which are measured by the displacement sensor at the end of the SRB system. The least-square
method can be used for evaluating the value of synchronous error motion. In this section, the dynamic
rotational error of the SRB system has been analyzed quantitatively.

3.1. Influence of Bearing Raceway Waviness on Dynamic Rotational Error

Time-varying restoring bearing force can be generated due to the surface waviness of the bearing
parts [25]. The excitation caused by bearing waviness is applied on the SRB system. The spindle
displacement response is represented as dynamic rotational error when the spindle rotates at high
speed. In the simulation, only the effect of a rear bearing waviness is taken into account. Assuming
that the bearing inner ring raceway is ideally circular, the rolling elements do not have any shape
or dimensional errors. The outer raceway surface has a single order of radial and axial sinusoidal
waviness. The amplitude of the bearing waviness is 1–2 µm, and the harmonic order is 11–20 UPR
(Undulations Per Revolution). To show the relationships more distinctly between radial errors and
the number of undulations and rolling elements, values that are larger than actual errors are selected.
The number of rear bearing rolling elements is 20. The length of numerical simulation is set to
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20 revolutions. The discrete time response signals and the polar plots of the radial error motion are
shown in Figure 8.
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As can be seen from Figures 8 and 9, when the bearing waviness has the same amplitude, the radial
displacement response in the Vs-axis is related to the order of the bearing waviness. When the order
of the waviness and the number of rolling elements are the same, the waviness has almost no effect
on the rotational error motion. However, when the difference between the order and the number
of rolling elements is 1, a very obvious asynchronous error motion can be generated in the SRB
system. Meanwhile, waviness hardly causes synchronous error motion. The same trends can be
obtained by comparing the influence of the waviness on the rotational error of a single bearing in
the literatures [32,33]. In the comparing literature, an angular contact ball bearing (SKF, 7012/CD) is
chosen for the calculation. The comparison of the effects on radial error motion is shown in Figure 10.

When the order of surface waviness is the same, the magnitude of the bearing waviness determines
the magnitude of the rotational error. The rotational error motion value, especially for asynchronous
error, increases with the increase of the waviness amplitude.
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3.2. Influence of Dynamic Unbalance on Dynamic Rotational Error

As a typical rotary machine, dynamic unbalance force is a critical factor attributed to the error
motions of the SRB system when its center of mass deviates from the axis of rotation. As a kind of
dynamic excitation, the frequency of the dynamic unbalance force is the same as the rotation frequency
of the spindle. In the traditional test of the spindle rotational error motion, the fundamental frequency
components, including installation eccentricity error of the target, are filtered. The dynamic unbalance
force is a function of the rotational speed. From dynamic point of view, the vibration caused by
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dynamic unbalance force directly affects the total indicator reading (TIR) of the SRB system. Assume
that the spindle has an eccentric mass mu = 0.005 kg on the pulley side, and the eccentricity ec = 0.054 m.
The spindle rotational speed ranges from 1000 to 10,000 rpm. The response displacements at the front
end of the SRB system are shown in Figure 11.Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 24 
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The trends of the overall effect of spindle unbalance on TIR, synchronous and asynchronous
errors are shown in Figure 12. As can be seen in Figure 12, the TIR caused by the spindle unbalance
increases from 0.07 µm in 1000 rpm to 5.61 µm in 10,000 rpm. Spindle unbalance has little effect on
the synchronous error, and the overall synchronous error is less than 0.4 µm. The asynchronous error
increases from 0.03 to 2.27 µm, as the speed increasing from 1000 to 10,000 rpm.Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 24 
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in Figure 13.
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The frequency domain analysis shows that it mainly includes two peaks. The frequency of the
first peak corresponds to the excitation frequency of the spindle dynamic unbalance force, that is,
the fundamental frequency (spindle rotational frequency). The frequency of the second peak corresponds
to the spindle resonance frequency (natural frequency of the SRB system). The asynchronous error motion
presents large value due to the resonance frequency is non-integer multiples of the fundamental frequency.

3.3. Influence of Disturbance Force on Dynamic Rotational Error

The spindle is rotated by the drive system. The mechanical spindle often uses a wedge belt or
a timing belt drive, while the electric spindle is driven by built-in motor. During the rotation of the
spindle, the transmission system and the electromagnetic force will generate a disturbance force on
the SRB system. The dynamic response of the SRB system to disturbance forces is also reflected in the
dynamic rotational error. Based on the established model, the influence of disturbance force on dynamic
rotational error can be analyzed numerically. Assuming that the frequency of the disturbance force is an
integer multiple of the fundamental frequency, the frequency order ranges from 2 to 10 UPR. Polar plots
of the dynamic rotational error, which are caused by the disturbance force with the amplitude of 200 N,
are shown in Figure 14.
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Figure 14. Effects of external disturbance force on radial synchronous errors.

As shown in the polar plots, the influence of external disturbance force, such as the drive system,
on the dynamic rotational error is mainly forced vibration, and the frequency of the radial synchronous
error is the same as the frequency of the disturbance force. By increasing the amplitude of the
disturbance force, the comparison results of the dynamic rotational errors of different orders and
amplitudes can be obtained, as shown in Figure 15.
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Figure 15. Variation trends of radial errors with different amplitude and order of external
disturbance force.

The simulation result shows that both synchronous and asynchronous error motion values
increase slowly with the increasing of disturbance force order. When increasing the amplitude of
the disturbance force from 200 to 400 N, the range of synchronous error motion values increase from
2.13–2.99 to 4.26–6.03 µm, and the range of asynchronous error motion values increase from 0.28–1.63
to 0.47–3.26 µm. Both the synchronous error and the asynchronous error increase as the amplitude of
the disturbance force increases.

4. Experimental Validation

The experimental platform is built up to further verify the validity of the established model.
Figure 16 shows the photo of the experimental setup. A mechanical machine tool spindle, which is
driven by belt driving system, is applied to explore these issues. A high-precision dual ball artifact
mounted in the rotor is used as the testing target, through which eccentricity can be adjusted manually.
The NI (National Instruments) data acquisition (DAQ) card (USB 6356) and capacitive displacement
sensor with nanometer-level resolution are used to acquire the displacement signals. Table 2 shows the
technical parameters of the capacitive sensors used in the experiment. Data acquisition and processing
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software is developed by LabVIEW software and can be used for online analysis. The displacement
data can be also saved for off-line processing.
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Table 2. Technical parameters of capacitive sensor.

Item Parameters Item Parameter

Sensing area diameter 2/mm Linearity error 0.1%
Measurement range 250/µm Operating temperature 4–50/◦C

Output voltage ±10/V Output sensitivity 0.08/V/µm
Connection mode Differential Ambient temperature 20 ± 1/◦C

In order to investigate the dynamic rotational error quantitatively, two experiments are designed.
The schematic diagram of unbalanced mass and disturbance force verification experiment is illustrated
in Figure 17. In the actual operation of the SRB system, there are many factors that affect its dynamic
rotational error. It is difficult to eliminate the impact of these factors effectively. To study the influence
of a certain factor, the proportion of this factor can be artificially enlarged. Compared with other
factors, it will produce more obvious changes.
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Figure 17. Schematic diagram of unbalanced mass and disturbance force verification experiment.

When the SRB system is not subjected to any artificial excitation force, rotational error motion can
also occur due to the influence of some unknown factors. The spindle rotational error measured in this
state is used as the initial value for comparison. The polar plot is shown in Figure 18. The whirling
speed is 300 rpm. The corresponding TIR, synchronous and asynchronous errors are 14.41, 0.55 and
2.86 µm, respectively.
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4.1. Validation of Dynamic Unbalance Force

The spindle rotor used in the experiment is handled by dynamic balancing and it produces very
little centrifugal force at high speeds. An unbalanced mass is mounted at the location of pulley to
generate dynamic unbalance force when it rotates, as shown in Figure 17. The dynamic unbalance force
generated by unbalanced mass increases as the increasing of whirling speed. The dynamic rotational
error can be measured by the DAQ system.

In the experiment, the whirling speed of SRB system ranges from 300 to 6000 rpm. The length of
sampling is set at 60 revolutions, with the sampling frequency of 15 kHz. The dynamic unbalance force
generated at 300 rpm is about 0.54 N. The TIR, synchronous and asynchronous errors are selected as
the initial value due to some unknown factors except unbalance force. The rotational errors generated
in the process of increasing the speed are all considered to be caused by the dynamic unbalance
force. The measured TIR, synchronous and asynchronous errors under different speeds, as well as the
comparisons with the simulated values, are shown in Figure 19.
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Figure 19. Comparing the experimental results with the simulated values.

It can be seen from Figure 19a that experimental results agree well with the simulated values.
The simulated value of TIR varies from 14.53 µm at 300 rpm to 16.78 µm at 6000 rpm, while the
experimental value varies from 14.41 µm to 17.91 µm. The difference between the simulated and
experimental TIR values become large from 3000 to 6000 rpm, due to the vibration of transmission
system. Figure 19b indicates that dynamic unbalance force basically has no influence on synchronous
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error, which is consistent with the simulated results. However, dynamic unbalance force has a
significant effect on asynchronous errors. Asynchronous errors due to unbalanced mass increase with
the speed increasing. The experimental value of asynchronous error varies from 3.21 µm at 300 rpm to
4.69 µm at 6000 rpm, while the simulated value varies from 3.22 to 4.12 µm.

4.2. Validation of Disturbance Force

The same idea is adopted in this section that the disturbance force is enlarged artificially. External
radial dynamic loading is applied by using a signal generator, power amplifier and electromagnetic
vibrator [34]. A signal with known frequency is generated by the signal generator and amplified by a
power amplifier to drive the electromagnetic vibrator to generate a dynamic disturbance force. A deep
groove ball bearing, which is utilized to apply dynamic radial force to the SRB system, is mounted on
the end of the rotor [34]. The error inside the load bearing can be omitted. A force sensor is used to
measure the disturbance force in time domain. The schematic diagram and the experimental setup are
shown in Figure 17.

In order to eliminate the influence of whirling speed change, the speed is set at 300 rpm.
The amplitude and frequency of disturbance force are changed manually. The sinusoidal signal
generated by the signal generator ranges from 10 to 40 Hz. The amplitude of the disturbance force
can be adjusted by using the voltage gain of the power amplifier, approximately between 50 to 100 N.
The theoretical values of the dynamic rotational error caused by the disturbance force are calculated
by using the actual values measured by the force sensor. The spindle synchronous errors of different
exciting orders are shown in Figure 20.
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By changing the amplitude of the disturbance force, the synchronous and asynchronous errors
caused by the disturbance force with different amplitudes and frequencies can be obtained, as shown
in Figure 21. It can be seen that the amplitude of the disturbance force decreases as the increasing of
frequency. So, the corresponding synchronous error also shows an overall downward trend. However,
the asynchronous error does not take obvious change. This can be attributed to the fact that the
range of disturbance force is not large enough. The experimental values of different amplitude forces
are 1.39–1.02 and 1.82–1.32 µm, respectively. The corresponding theoretical values are 1.22–1.03 and
1.52–1.29 µm, respectively. The maximum difference occurs at 3 UPR for about 0.3 µm. The comparison
indicates that the experimental values agree with the theoretical values.
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5. Conclusions

An analytical modeling method, based on dynamic of the SRB system which considers the bearing
nonlinearity, is presented in this paper, so as to study the formative mechanism of dynamic rotational
error and predict the rotational performance for the SRB system. Core conclusions of the study as a
whole are as follows.

The presented modeling method for dynamic rational error, based on the dynamic model of the
SRB system, is feasible and valid to analyze the formative mechanism of the rotational error motion.
Surface waviness, dynamic unbalance force and disturbance force are involved in the established model.
The surface waviness hardly causes synchronous error motion. However, when the difference between
the order and the number of rolling elements is one, the SRB system would produce a very obvious
asynchronous error motion. The effects of dynamic unbalance and disturbance force are verified by the
comparison experiments. Dynamic unbalance force has little effect on the synchronous error; however,
the TIR and asynchronous error increases with the increasing of rotational speed and unbalance mass.
Both synchronous and asynchronous error motion values increase when the amplitude of disturbance
force and its frequency increases. Besides, the frequency of the radial synchronous error is the same as
that of the disturbance force. The merit of this modeling method is that it can provide designers and/or
field engineers with an informative guideline to improve the dynamic rotational accuracy.

Study prospects:
Based on the modeling method in this paper, investigations about the effect of temperature

and lubrication on the dynamic rotational error during the spindle operation will be emphasized in
future studies.
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Nomenclature

δi The displacement vector of the inner ring
φbk The position angle of the kth ball
Nb Number of the rolling element of the bearing
ω0 The rotation angular speed of the inner ring (rad/s)
ωbk The orbital angular speed of the rolling element (rad/s)
ωsk The self-rotation angular speed of the rolling element (rad/s)
αo Initial contact angle of the bearing (◦)
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αik Inner ring contact angle of the bearing of the kth rolling element (◦)
αik Outer ring contact angle of the bearing of the kth rolling element (◦)
βk The angle between the spinning axis of the rolling elements and Z axis (◦)
D The diameter of the rolling element (mm)
dm Pitch Diameter (mm)
δik/δok The contact deformation between the inner/outer bearing ring and kth rolling element
fi/fo Inner/Outer groove curvature radius coefficient
ri/ro Inner/Outer groove curvature radius (mm)
ηi The distance between the rotating axis Z and inner raceway groove curvature center (mm)

Lik/Lok
The distance between the inner/outer raceway groove curvature center and the rolling
element center before deformation

lik/lok
The distance between the inner/outer raceway groove curvature center and the rolling
element center after deformation

Qik/Qok The contact force between the inner/outer ring and the rolling element (N)
Mgk Gyroscopic moment of the kth rolling element (N.mm)
Kok Coefficient of the load-displacement between inner ring and kth rolling element (N/mm1.5)
Kik Coefficient of the load-displacement between outer ring and kth rolling element (N/mm1.5)
λik, λok, The friction coefficients between the inner/outer raceway and kth rolling element
Fck The centrifugal force of kth rolling element (N)
Fi The resultant force vector of the inner ring due to all of the contacting rolling elements (N)
Kb The dynamic supporting stiffness matrix of the bearing (N/µm)

δik
The displacements for inner raceway groove curvature center corresponding to the kth
rolling element (mm)

Tk The transformation matrix

∆wk
The additional displacements caused by the waviness of the bearing rings and rolling
elements (mm)

∆Dk
The additional displacements due to roundness error of the bearing rings and rolling
elements (mm)

pik, pok The radial waviness of inner and outer raceways
pik, pok The axial waviness of inner and outer raceways
wik, wok The waviness of kth rolling elements
Ain, Aout, Bin,
Bin, Cba, Cba

The amplitudes of the surface waviness

nin, nout, nba, The harmonic orders of the surface waviness
φin, ψin, φout,
ψout, ϕba

The initial phases angle of the surface waviness

Fb The sum of the time-varying forces from all of the contacting rolling elements (N)
q The dynamic displacement vector of the rotor
αi Outer ring contact angle of the bearing (◦)
C The structural damping matrix of the system
G The gyroscopic matrix of the system
Js The inertia moment of the rotor about the Ws-axis
RLSC The radius the least squares circle
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