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Abstract: In the current manuscript we assess to what extent X-ray photoelectron spectroscopy (XPS)
is a suitable tool for probing the dipoles formed at interfaces between self-assembled monolayers and
metal substrates. To that aim, we perform dispersion-corrected, slab-type band-structure calculations
on a number of biphenyl-based systems bonded to an Au(111) surface via different docking groups.
In addition to changing the docking chemistry (and the associated interface dipoles), the impacts
of polar tail group substituents and varying dipole densities are also investigated. We find that
for densely packed monolayers the shifts of the peak positions of the simulated XP spectra are a
direct measure for the interface dipoles. In the absence of polar tail group substituents they also
directly correlate with adsorption-induced work function changes. At reduced dipole densities this
correlation deteriorates, as work function measurements probe the difference between the Fermi
level of the substrate and the electrostatic energy far above the interface, while core level shifts are
determined by the local electrostatic energy in the region of the atom from which the photoelectron
is excited.

Keywords: X-ray photoelectron spectroscopy; XPS; self-assembled monolayer; SAM; collective
electrostatics; band-structure calculation; density-functional theory; DFT

1. Introduction

In the field of organic electronics, chemically bonded self-assembled monolayers (SAMs) have
been used to change the electronic properties of a huge variety of interfaces [1–18]. They have allowed
the realization of n-type organic transistors by screening interface traps [3], they have been used to shift
turn-on voltages of devices by several dozens of volts via the introduction of polar and reactive groups
into transistor channels [4–7], and they have been employed for tuning injection barriers by adsorption
on electrode surfaces, changing contact resistances by orders of magnitude [8–18]. Especially for the
latter applications, the shift in the (electrostatic) energy landscape generated by the SAM is of crucial
importance. On the one hand, this shift is a consequence of the intrinsic dipoles of the adsorbed
molecules due to polar groups (like carboranes, pyrimidines, aromatic sulfones and sulfides, or esters)
embedded into the molecular backbones [15,17,19–23] or due to polar tail group substituents (like
halogens, amines, nitriles, nitro groups, pyrimidines, alcohols, ethers, or carboxylic acids) [9,24–38].
On the other hand, there is always an interface dipole localized in the immediate contact region
between the substrate and the adsorbed molecule, as discussed in a variety of experimental and
theoretical studies [11,25,27,28,31,32,39–44]. This interface dipole consists of the surface dipole of
the (metal) substrate, the dipole associated with the (typically polar) docking group, and the bond
dipole due to interfacial charge rearrangements following bond formation. The superposition of the
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electric fields due to the interface dipoles of all adsorbed molecules causes a step in the electrostatic
energy, as explained in detail in several review papers [31,40,42,45,46]. This step in electrostatic energy
triggers a shift in the position of the vacuum level above the surface and, consequently, as the most
common observation, changes the sample work function [8,11,14–17,19,21,22,25,27,28,31,32,35,39,41,43,44,
47–52]. Additionally, theoretical as well as experimental studies reveal that it modifies the interfacial
energy-level alignment, i.e., the positions of the electronic states of the adsorbed monolayer relative
to those of the substrate [27,28,31,39,40,42,45–47,53–62]. A change in the interfacial level alignment
has an immediate impact on charge-transport through the adsorbed layer [53–62] and also on the
positions of the core levels of the adsorbate [42]. The latter has been primarily discussed for embedded
dipole SAMs, with a focus on shifts caused by esters [20,63,64] or pyrimidines [21,22,48,49]. Notably,
El-Sayed et al. also used it to assess the level alignment in mixed monolayers consisting of flat-lying
donor and acceptor molecules [65].

Changes in core level binding energies can be probed by X-ray photoelectron spectroscopy
(XPS) [66–70], which is one of the default techniques for characterizing SAMs, used, for example,
for analyzing the quality of self-assembled monolayers and to verify bonding [67,71–82]. In this paper
we will argue that the electrostatic core level shifts make XPS an ideally suited tool for probing interface
dipoles. For supporting that claim, we will use state of the art quantum-mechanical simulations to
determine core level shifts encountered in biphenyl-based SAMs attached to an Au(111) substrate by
a variety of chemically different docking groups. To the best of our knowledge, a corresponding set
of experimental XPS data with systematically varied docking groups and consistent film structures
and morphologies does not exist yet. Nevertheless, first steps in that direction have been undertaken
and biphenyl-based SAMs on various metallic substrates have been studied, albeit with a clear focus
on thiol docking groups [60,73,81–89]. We, however, do not consider this to be an all too serious
problem for a study focusing on the conceptual physical aspects that allow a determination of interface
dipoles by XPS. Moreover, we have high confidence in the employed computational approach, which
is described in the following section. This confidence is based on the fact that in the past we have
performed several joint theoretical and experimental studies on aliphatic [63,64] and aromatic [22,48,49]
SAMs bonded to the substrate by thiol and dithiocarbamate [90] groups, for which we observed an
excellent agreement between measured and simulated core level shifts.

In the present study we will show that core level spectroscopy is not only useful for measuring
chemical shifts or to explore the role of dipoles contained in the adsorbates. Rather, it can also be used
as a tool for systematically determining the “interface dipole” at the interface between a substrate and
an adsorbate.

2. Computational Methodology

The structural and electronic properties of the metal–SAM interfaces were simulated by density
functional theory (DFT) employing the all-electron, full potential FHI-aims code (version 190715 [91–95]
(see also aimsclub.fhi-berlin.mpg.de) and periodic boundary conditions. The Perdew–Burke–Ernzerhof
(PBE) [96,97] functional was used for describing exchange and correlation. Furthermore, long-range
van der Waals interactions were accounted for by employing the surface version [98] of the
Tkatchenko–Scheffler dispersion correction [99], which was specifically parameterized for treating
adsorbing molecules on metal substrates. The dispersion correction between the Au atoms of the
metal slab was turned off. All calculations were done with the so-called tight basis set for all atomic
species (as supplied by FHI-aims). A thorough description of the corresponding basis functions is
included in the Supplementary Materials. Reciprocal space was sampled by a converged Γ-centered
15 × 10 × 1 grid for the full coverage systems and by accordingly smaller sized grids for larger super
cells. The change of the volume-integrated electron density was converged to 10−5 e− and the total
energy to 10−6 eV.

Interfaces were modeled employing the repeated-slab approach with the Au(111) substrate
represented by five metal layers. The bottom three Au layers were kept fixed in all calculations to avoid
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spurious relaxations at the bottom surface. The periodic replicas of the slabs were quantum-mechanically
and electrostatically decoupled by a vacuum gap of more than 20 Å and a self-consistent dipole
correction [100,101]. The geometries of the adsorbate molecules and the top two Au-layers in the full
coverage unit cells were fully relaxed until the remaining forces on each atom were below 10−3 eV/Å.
The geometries of the other supercells considered here were directly derived from the full coverage
unit cell by replicating it in x- and y-directions and removing all but one molecule from the resulting
cell (see Supplementary Materials). These supercells were considered as model systems to study the
impact of diluting the interfacial dipoles. Thus, we fixed the remaining molecule in the geometry it
adopts in the densely packed layer to prevent it from falling over [102].

The change of the work function was obtained from the difference of the calculated work functions
at the bottom side of the Au(111)-slab (ΦAu = 5.10 eV for all systems) and above the self-assembled
monolayer. Furthermore, the work function change of the nominally non-interacting system, i.e.,
the SAM without a docking group moved 1 Å away from the substrate compared to its equilibrium
adsorption distance (see Section 3.2), was defined as a reference point relative to which the work
function changes (∆Φ) for all other systems are reported. The difference between lower and upper slab
work function for the reference system amounts to δΦref = −0.11 eV.

The core level binding energies were calculated using the initial state approach, relying on the
Kohn–Sham eigenvalues of the respective orbitals. This approach does not provide absolute values of
the core level binding energies, but yields relative shifts between different systems [65,68,103–108].
We have also found it to provide a very good description of core level shifts in SAMs [21,22,48,49,63,64].
In fact, when modeling the X-ray photoelectron (XP) spectra of (partially) aromatic hydrocarbon
SAMs bonded to Au substrates, we typically find that shifting the calculated spectra to higher binding
energies by between 18.9 to 19.0 eV [22,49,90,109] yields an excellent correlation with experimental data.
Therefore, throughout the manuscript (like for the work functions) core level shifts are reported relative
to the nominally non-interacting reference system consisting of a SAM without the docking group
moved 1 Å away from the substrate compared to its equilibrium adsorption distance (see Section 3.2).
The calculated value of that reference energy was −263.95 eV.

Another complication when employing the initial-state approach is that (in contrast to final-state
approaches) [68,70,110,111] it does not account for core hole screening effects. Unfortunately, final-state
approaches are not applicable to systems like the ones considered here, as in conjunction with periodic
boundary conditions one would need unit cells comprising of thousands of atoms in order to avoid
spurious collective electrostatic effects due to periodic replicas of the core holes (and the compensation
charges) [63,112]. Therefore, we resorted to an a posteriori correction of screening by the metal
substrate relying on an image charge model, which is explained in detail in the Supplementary
Materials [113,114]. In passing we note that screening by the metal substrate has only a comparably
minor impact on the spectra shown below, as we are dealing with rather extended, upright standing
molecules, whose spectra are dominated by excitations of atoms, which are rather far away from
the substrate. To account for the finite escape depth of the photoelectrons from lower-lying atoms,
we scaled their contributions by an exponential attenuation function [115] setting the incident photon
energy to 580 eV, as described in detail in the Supplementary Materials. To obtain the final spectra,
the discrete peaks were convoluted with a Gaussian function with a variance of 0.3 eV. A flowchart
summarizing the simulation procedure can be found in the Supplementary Materials. Furthermore,
for the sake of reproducibility, we also provide all FHI-aims input and output files for all simulations
contained in this manuscript. The data set has been uploaded to the NOMAD database and can be
accessed and downloaded via the doi: 10.17172/NOMAD/2020.08.13-1.

For the analysis and visual representation of the data, Python was used in combination with
NumPy [116] and matplotlib [117]. Ovito [118] was applied for generating the 3D view of the systems
and for the 2D potential plot we used VESTA [119]. Finally, the figures were compiled with GIMP [120].



Appl. Sci. 2020, 10, 5735 4 of 21

3. Results and Discussion

3.1. Energetics of a Metal–SAM Interface

For understanding the correlation between XP spectra and interface dipoles, it is useful to first
consider how interface dipoles impact the electronic properties of a system consisting of an inorganic
substrate and a chemically bonded monolayer (formed by upright-standing molecules). For the sake
of simplicity, in the following we will focus on metal substrates. In this way, further complications due
to band-bending effects [35,63,121,122] in semiconducting substrates (and their modification by the
adsorbate layer) can be avoided.

A schematic representation of the electronic structure of the metal–SAM interface is shown in
Figure 1 for the case of a SAM in which an interface dipole occurs (virtually all SAMs) and in which
also a functional tail group is used bearing a tail group dipole. Due to the superposition of the
fields generated by the dipoles in the densely packed monolayer (i.e., due to collective electrostatic
effects) [27,31,40,42,45,46,63,123,124], steps in the electrostatic energy occur. The steps due to the
interface dipole, ID, and due to the tail group dipole, TD, are indicated by vertical blue arrows. The sum
of these two energy shifts causes the change in substrate work function due to monolayer adsorption,
∆Φ. Conversely, only the interface dipole is responsible for the change in injection barriers, ∆IB,
which determines the final electron- and hole-injection barriers, EIB and HIB, respectively. The core
levels are shifted in line with the frontier levels. Consequently, the interface dipole should result in
a shift of the positions of the core levels relative to the Fermi level of the substrate, ∆EC1s, that is
equivalent to ∆IB. This shift is directly translated into a modification of the kinetic energies of the
electrons, Ekin, and, thus, in a shift of the XP spectra.

In this context it is important to stress that the above considerations disregard energetic shifts
due to interfacial charge transfer processes, which could significantly modify the energies of strongly
localized orbitals (i.e., the core levels). Indeed, for the atoms in a SAM that are in the immediate vicinity
of the interface, such a charge transfer typically modifies the core level binding energies [68,69,125,126],
which has also been observed for simulations on SAMs [90]. In experiments on extended, upright
standing molecules it will, however, be often inconsequential for the measured spectra, as the atoms in
the immediate vicinity of the interface mostly affected by these “chemical” shifts hardly contribute
to the measured spectra, especially when using primary photon energies of a few hundred eV in
synchrotron measurements. This is a consequence of the finite escape depth of the photoelectrons.
The situation changes for experiments with typical lab sources with primary photon energies of, e.g.,
1253.6 eV (Mg-Kα) and 1486.6 eV (Al-Kα), for which the attenuation length can be larger than the
typical thickness of SAMs. Thus, for properly resolving the electrostatic shifts discussed her, the said
synchrotron experiments are preferable (also because of the often higher energy resolution).

Finally, it should be mentioned that in the absence of an energetic shift due to a tail group dipole (or
when comparing differently docked systems with identical tail group dipoles), the above considerations
imply that SAM-induced changes of the substrate work function should directly correlate with shifts
in core level binding energies. Below, we will test under which circumstances such a situation is
encountered at a metal–SAM interface.
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Figure 1. Schematics of the energy landscape of a metal–self-assembled monolayer (SAM) interface and
an XPS experiment (disregarding the bias voltage applied between substrate and detector). The interface
electronic structure is characterized by the work function, Φ, by the alignment of the frontier levels
determining electron- and hole-injection barriers, EIB and HIB, and by the energetic positions of the core
levels, here exemplarily denoted as EC1s. The shift of the electrostatic energy due to the interface dipole,
ID, determines the changes in the injection barriers, ∆IB, and the core level shifts, ∆EC1s. The work
function change, ∆Φ, is additionally influenced by the energetic shift due to the tail group dipole, TD.
Absorption of an X-ray photon with energy hν creates a photoelectron, which at the position of the
detector has a kinetic energy of Ekin. Additional positive potentials (not included in the plot) applied to
the detector relative to the substrate increase the measured kinetic energy of the photoelectron. The top
panel sketches the metal–SAM interface, whose properties are determined by the interface and the
tail group dipole. In passing we note that the actual situation can be further complicated, e.g., when
additional dipoles are contained along the backbones of the molecules [15,17,19–22].

3.2. Investigated Systems

To assess the possibility of probing bond dipoles by X-ray photoelectron spectroscopy, we simulated
SAMs on Au(111) surfaces, as such systems have been studied extensively [71,72,74,79,127], which
qualifies them as prototypical model systems. As molecular backbones we chose biphenyls with two
molecules per (3 ×

√
3)rect surface unit cell arranged in a herringbone structure [85]. As docking groups

we considered thiolates (system I) [71,72,74,79], methyl thiolates (system II) [71,72,74,79], pyridines
(system III) [54,128–133], isocyanides (system IV) [39,133–135] and cyanides (system V). The structures
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of all investigated systems can be seen in Figure 2. Furthermore, for the sake of comparison, we also
simulated an upright-standing biphenyl layer not bearing a dedicated docking group (system VI),
which represents a metastable structure, as the equilibrium configuration for the biphenyl-Au interface
would very likely be flat-lying molecules. Due to different interfacial charge rearrangements and
intrinsic dipole moments associated with the docking groups in these six systems, we expect distinct
variations of the respective interface dipoles. Notably, in system VI, the only reason for an interface
dipole would be Pauli-pushback [47,136,137]. To eliminate also that effect and to generate an essentially
dipole-free interface, we also considered a system with the biphenyl layer shifted by 1 Å further away
from the substrate (system VIa). In passing we note that increasing the distance from the substrate by
yet another 1 Å does not change the spectrum (see Supplementary Materials). The electronic structure
of system VIa is essentially identical to what is obtained when assuming vacuum-level alignment
between an Au(111) surface and a free-standing biphenyl monolayer (the calculated work function
reduction is on the order of 0.1 eV; for further information see Supplementary Material). Additionally,
we considered two systems bearing electron accepting (system VII) and electron donating (system VIII)
tail group substituents. These are known to change the work function without affecting the alignment
of the frontier levels [27].
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Figure 2. Front view of the unit cells investigated in the present study. The self-assembled monolayers
are all derived from a biphenyl backbone and bear different docking groups (Systems I to VI) or
different tail groups (System VII and VIII). The SAMs are bonded to an Au(111) metal slab consisting of
5 layers of gold atoms. The docking groups comprise of thiolate (System I), methyl-thiolate (System II),
pyridine (System III), isocyanide (System IV) and cyanide (System V). System VI is an upright
standing biphenyl layer not bearing any docking group. Systems VII and VIII are both bonded via
thiolates, but contain different (polar) tail groups (a nitrile in the case of system VII and an amine in
the case of system VIII). The molecules are arranged in a herringbone pattern, as can be seen in the
top views of the unit cell shown in the Supplementary Materials. Color code: dark yellow: Au, bright
yellow: S, grey: C, blue: N, and white: H.
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3.3. Calculated Core-Level Binding Energies, XP Spectra, and Work Function Changes

3.3.1. Energetic Shifts Due to Variations in the Interface Dipole

In Figure 3, we show the core level binding energies and XP spectra of systems I, III, V, and VIa as
prototypical examples for the impact of the docking groups on the core level binding energies. In the
following, the “vacuum level alignment” system VIa was used as an energy reference for the work
function as well as for the core level binding energies (for the absolute values of the reference energies
see the Methods Section). This directly yields ∆EC1s and ∆Φ (i.e., the quantities shown in Figure 1).
As far as the systems not displayed in Figure 3 are concerned, the data points for II essentially coincide
with those of I and (apart from chemical shifts for the carbon atoms directly bonded to nitrogen atoms)
the binding energies of III and V are also similar. System VI is similar to VIa with binding energies
shifted to higher values by 0.34 eV. The corresponding data can be seen in the Supplementary Materials,
where we show a (somewhat busy) plot analogous to Figure 3 containing values for all investigated
systems. Compared to System VIa, the core level binding energies in all chemically bonded SAMs are
shifted to higher (more negative) binding energies by several electronvolts. The effect is largest for
III, for which the shift amounts to 2.8 eV (see black arrow). Even between docked systems, the peak
positions vary by 1.6 eV with the smallest value (−265.2 eV) for the methyl thiolate and the largest
(−266.8 eV) for the pyridine. This is exactly the situation one would expect according to Figure 1 for
varying interface dipoles as a consequence of collective electrostatic effects [31,40,45,46,63].

In passing we note that, to the best of our knowledge, there is no systematic experimental study
of docking group induced shifts in a series of well-ordered monolayers, but there are examples
comparing thiols and isocyanides: Zangmeister et al. compared 4,4′-ethynylphenyl-1-benzenethiols on
polycrystalline Au bonded either by thiols or by isocyanides and for the isocyanide-docked SAMs they
observed a C1s peak at 0.6 eV higher binding energy than for the thiol case [138]. There is also indirect
evidence that such shifts occur in other types of SAMs: when comparing thiolate and isocyanide
bonded acene SAMs, Kim et al. measured a distinctly larger ionization energy of the isocyanide-bonded
system with the shift between the valence orbitals amounting to 0.7 eV [139]. Unfortunately, they did
not report corresponding C1s core level spectra, but, as discussed above, the shifts of valence and core
levels have the same physical origin. Overall, the results in [138,139] are well in line with the data for
systems I and IV in Figure 3, where the somewhat larger shift in the simulations is presumably due to
assumed perfect ordering of the SAMs.

Superimposed on the electrostatic shifts of the XPS peaks, one can also identify the chemical
shifts due to the differently bonded carbon atoms (cf. Figure 3a). For example, the carbon atoms
connecting the two benzene rings are shifted by 0.5 eV relative to the other carbon atoms of the rings.
Additionally, the carbon atoms attached to the docking groups are chemically shifted, resulting in
distinct variations of the binding energies. This is, however, rather inconsequential for the positions
and shapes of the XP spectra as a consequence of the finite escape depth of the photoelectrons. This is
well visible, for example, for the isocyanide-docked SAM (system IV), where the lowest carbon atoms
are shifted by 2 eV relative to the ones in the rings. The latter still rather exclusively determine the
position of the peak in the corresponding XP spectrum.

Provided that the primary core level shifts are truly a consequence of collective electrostatic effects
caused by interface dipoles they should directly correlate with the SAM-induced changes in the work
function for systems I to VIa. To test that, we plotted ∆Φ as a function of ∆EC1s for all investigated
SAMs in Figure 4. Indeed, the data for all SAMs without polar tail group substituents align perfectly
along a straight line with a slope of 1 passing through the origin. This supports the assessment that in
these systems core level shifts and work function changes have the same origin (namely the interface
dipole). In passing we note that the dipole due to the terminal C-H bond of the biphenyl cancels out
for the evolution of ∆Φ vs. ∆EC1s (at least for similar coverages and tilt angles), as the non-interacting
biphenyl monolayer is used as the reference for both quantities.
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and the metal substrate varies due to the different docking groups, this choice of the x-axis also largely 
aligns biphenyls in the different systems. System IV is shown in the background as an example of the 
structure of one of the SAMs considered in the plot. Due to the different SAM thicknesses, we 

Figure 3. (a) Simulated shifts of carbon 1s orbital energies, ∆EC1s, as a function of the escape depth
of the electrons for the prototypical systems I, III, IV, and VIa and (b) the corresponding XP spectra
generated from the calculated energy levels. The energy scale is chosen relative to the position of the
peak in the XP spectrum for the vacuum-level aligned system VIa. The escape depth defined as the
distance from the topmost carbon atom is chosen as the parameter on the x-axis considering that the
highest atoms primarily determine the XP spectra. As the extent of the SAMs between the bottom ring
and the metal substrate varies due to the different docking groups, this choice of the x-axis also largely
aligns biphenyls in the different systems. System IV is shown in the background as an example of the
structure of one of the SAMs considered in the plot. Due to the different SAM thicknesses, we included
vertical lines in panel (a), which designate the positions of the centers of the atoms of the topmost
Au layer. The large number of data points for each system is a consequence of the two inequivalent
molecules per unit cell.
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Figure 4. Correlation between the change in work function, ∆Φ, and the shift in binding energy, ∆EC1s,
for all systems relative to system VIa (as non-interacting reference system in which no interface dipole
occurs). The black line indicates a linear curve with a slope of 1 through the origin. The shaded area
represents the range over which the values for ∆EC1s vary between systems I, VII, and VIII.
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3.3.2. Influence of Different Tail Groups on the XP Spectra

This raises the question, what would happen if the SAM-forming molecules were substituted
with tail groups bearing dipoles significantly different from the terminal C-H bond of a phenyl ring.
According to Figure 1, this should (significantly) modify the work function shift, while leaving the core
level binding energies essentially unchanged, with the exception of chemical shifts experienced by
carbon atoms in or directly bonded to the substituents. To test that hypothesis, we simulated systems
VII and VIII containing -CN and -NH2 tail groups. As far as the simulated core level binding energies
are concerned, we find them to be very similar for all three systems (I, VII, and VIII), as shown in
Figure 5. Concerning the chemically shifted C1s binding energies of the uppermost carbon atoms,
for system VII the shift of the top carbon atoms in the phenylene and the carbons in the -CN groups go
in opposite directions. Thus, their impacts on the XP spectrum essentially cancel. As a consequence,
the peak position of the C1s XP spectra of I and VII are virtually the same. Additionally, in VIII
the shift of the peak remains comparably small (amounting to only 0.19 eV), as there are only the
topmost carbon atoms in the two molecules per unit cell that are affected by the presence of the amine.
This means that for all systems considered in the present study, the position of the peak in the C1s
spectrum is a valid measure for the interface dipole.
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Figure 5. (a) Simulated shifts of carbon 1s orbital energies, ∆EC1s, as a function of the escape depth of
the electrons for the equally docked systems I, VII, and VIII and (b) corresponding XP spectra generated
from the calculated energy levels. As the substituents significantly impact the extent of the SAMs above
the top ring, but its volume density is rather low, the topmost carbon atom of the benzene ring was
chosen as the origin of the x-axis. In this way, the axis is consistent with the x-axis of Figure 4 and the
carbon rings are aligned at essentially the same positions. The large number of data points for each
system is a consequence of the two inequivalent molecules per unit cell.

As shown in Figure 4, in sharp contrast to the core level spectra, the work function changes for
VII and VIII differ significantly from that of I (by 3.63 eV for VII and by −1.30 eV for VIII). This is again
fully consistent with the model described in Section 3.1.

3.3.3. Coverage Dependence

As a last aspect it should be addressed to what extent the above conclusions hold for less densely
packed polar layers at the interface [42,113]. To assess that, in a gedankenexperiment we constructed
hypothetical low-coverage systems with upright-standing molecules (for details see the Methods
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Section and the Supplementary Materials). Based on the Helmholtz solution to the Poisson equation,
one would expect a linear dependence of the dipole density and, thus, of ∆Φ and ∆EC1s on coverage.
The actual coverage-dependence of ∆Φ and ∆EC1s is shown in Figure 6 for the same systems that had
already been considered in Figure 3. Interestingly, one observes that ∆Φ changes much more strongly
at low than at high coverages. This is a consequence of depolarization effects. These strongly reduce
the interface dipoles at high coverages [140–148]. Therefore, work function changes at full coverages
are strongly reduced compared to what one would expect based on the dipoles associated with the
adsorption of a single molecule [149].Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 21 
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relative to the values of the non-interacting reference system VIa.

Another observation in Figure 6 is that the coverage-dependence of the core level binding energies
(circles and solid line) is much weaker than that of ∆Φ (squares and dotted line). This is particularly
obvious for system VI, for which there is almost no change of ∆EC1s with coverage, while the work
function still changes by 0.5 eV. Qualitatively, the behavior is, however, the same for all studied systems,
as shown in Figure 7. There, one sees that the energy range covered by the ∆Φ values is significantly
larger than that for ∆EC1s. As a result, the slope of the linear fit to the dependence of ∆Φ on ∆EC1s

(black lines in Figure 7) significantly decreases with decreasing coverage.
The main consequence of this observation is that at low dipole densities (in contrast to the

full-coverage case, see above) ∆EC1s is no longer a direct measure for the interface dipole. This can be
explained by the different degrees of locality with which ∆Φ and ∆EC1s probe the electronic structure
of the interface [48,148,150]. The value of ∆Φ is determined by the energy difference between the Fermi
level and the vacuum level far above the surface, i.e., in the far field. Conversely, core level binding
energies probe the electrostatic energy in the immediate vicinity of the atom whose core electron is
excited [48]. The latter is comparably close to the interface dipole at the bond between the molecule
and the substrate. Thus, the shift in the electrostatic energy due to the dipole is still relevant, even if
it is strongly reduced due to the drop of the shift with the inverse of the third power of the distance
between atom and dipole. This is illustrated in Figure 8, where we show the change in electrostatic
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energy due to the formation of the bond between the pyridine-docked SAM and the metal substrate.
Consequently, Figure 8 does not actually reflect the impact of the entire interface dipole, but only of
the part resulting from the bond dipole. This quantity can, however, be calculated conveniently by
subtracting the electrostatic energies of the subsystems from that of the bonded interface, which is
not possible for the full interface dipole. It is also well suited to qualitatively illustrate the difference
between the local and the far-field situation, even if one cannot expect quantitative agreement with the
data from Figures 6 and 7, which are still determined by the entire interface dipole. For the full coverage
system in the bottom panel of Figure 8, the main drop in electrostatic energy occurs at the immediate
metal–pyridine interface and the electrostatic energy in the region of the top ring is essentially the
same as far above the sample (despite a minor potential variation at the distance of the topmost C-H
bond). Conversely, at 1/16 coverage the far-field electrostatic energy far above the interface (relevant
for the work function) is several tenths of an eV higher than in the region of the upper carbon atoms
(determining the position of the XPS peak).Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 21 
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Figure 7. Core level shift, ∆EC1s, as a function of the work function change, ∆Φ, for system I (blue),
system II (red), system III (orange), system IV (green), and system VI (violet). Results for full, 1/4,
and 1/16 coverage are compared. The black lines are fits to all systems for specific coverages, while the
colored lines were fitted to the coverage-dependence for a specific system.
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Figure 8. Contour plot of the change in the electrostatic energy due to metal–SAM bonding, i.e., due to
the bond dipole (as part of the interface dipole) for system III. The potential is plotted for a plane
defined by the plane of one of the molecules in the unit cell (see Supplementary Materials). The top
(bottom) panel contains the result for 1/16 (full) coverage. Isolines are shown in steps of 0.05 eV.

3.3.4. The Role of Structural Imperfections of the Interface

For all systems we assumed perfectly ordered structures, which is triggered by the fact that
especially for thiol-bonded SAMs highly ordered monolayers can be routinely obtained in carefully
performed experiments. Still, in the following the possible consequences of deviations from perfect
interfaces shall be briefly summarized: reduced dipole densities diminish the observed shifts, as can be
inferred from the description in Section 3.1 and as discussed explicitly in Section 3.3.3. This also applies,
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when disorder reduces the net dipole per docking group perpendicular to the surface, i.e., although
the shifts discussed in Section 3.3.1 are comparably large, for imperfect samples high-resolution
measurements will be necessary. In passing we note that lateral inhomogeneities of the dipole density
can result in a significant broadening of the spectra and in extreme cases even in the occurrence
of multiple peaks, as we showed for mixed monolayers of embedded-dipole SAMs [48]. This is a
consequence of XPS probing the local electrostatic potential at the atom from which the electron is
excited. Similar considerations would apply to substrates with laterally inhomogeneous local work
functions. Finally, it should be noted that the actually measured electrostatic shifts are determined by the
“true” interface dipoles, where contaminants at the interface, e.g., for ex-situ prepared samples (or also
the presence of ad atoms) can change the situation compared to the model case assumed in simulations.
When dealing with strongly bonded adsorbates, like thiolates, one, however, is in the fortunate situation
that their bonding to noble metal substrates typically displaces contaminants, which also explains,
why for the XPS simulations on model systems mentioned in the introduction section, we typically
obtained a favorable agreement with experiments on ex-situ prepared samples [22,48,49,63,64,90].

4. Conclusions

In the present contribution it is shown that X-ray photoelectron spectroscopy is a suitable tool
for determining interface dipoles in densely packed self-assembled monolayers. This is shown via
simulations on a number of biphenyl-based monolayers bonded to an Au(111) substrate by a broad
range of different docking groups. The varying interface dipoles in these systems result in shifts of the
core level binding energies by more than 1 eV, concomitantly shifting also the associated XP spectra.
For SAMs not bearing polar tail groups the electrostatically triggered core level shifts directly correlate
with SAM-induced work function changes. This correlation is broken, when work functions are further
modified by polar tail group substituents. Nevertheless, even in these cases the XP spectra are a direct
measure for the interface dipoles. The situation changes, when the dipole density at the interface
is reduced. Then core level binding energies are still determined by the local electrostatic energy at
the atoms from which the photoelectrons are excited. This energy is, however, no longer directly
representative of the magnitude of the interface dipole, as it is strongly influenced, for example, by the
distance of the excited atom from the location of the dipole. As a result, also the direct equivalence
between core level shifts and work function changes is lost at reduced coverages, even though XPS
still is suited for probing the local electrostatic energy (at least as long as chemical shifts, e.g., due to
interfacial charge transfer are not superimposed on the electrostatic ones).

Supplementary Materials: Additional information on the computational methodology, a flow-chart summarizing
the computational procedure, additional computational results, and views of unit cells and supercells are available
online at http://www.mdpi.com/2076-3417/10/17/5735/s1.
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