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Abstract: In recent years, deep learning has dominated medical image segmentation.
Encoder-decoder architectures, such as U-Net, can be used in state-of-the-art models with powerful
designs that are achieved by implementing skip connections that propagate local information
from an encoder path to a decoder path to retrieve detailed spatial information lost by pooling
operations. Despite their effectiveness for segmentation, these naïve skip connections still have
some disadvantages. First, multi-scale skip connections tend to use unnecessary information and
computational sources, where likable low-level encoder features are repeatedly used at multiple
scales. Second, the contextual information of the low-level encoder feature is insufficient, leading to
poor performance for pixel-wise recognition when concatenating with the corresponding high-level
decoder feature. In this study, we propose a novel spatial-channel attention gate that addresses the
limitations of plain skip connections. This can be easily integrated into an encoder-decoder network
to effectively improve the performance of the image segmentation task. Comprehensive results
reveal that our spatial-channel attention gate remarkably enhances the segmentation capability of
the U-Net architecture with a minimal computational overhead added. The experimental results
show that our proposed method outperforms the conventional deep networks in term of Dice score,
which achieves 71.72%.

Keywords: medical image segmentation; semantic segmentation; U-Net; attention gates

1. Introduction

Semantic image segmentation is one of the most desirable and difficult tasks to analyze medical
images. Segmenting a target object in a medical image is important to diagnose and treat various
diseases. In clinical practice, manual annotation is still popular for analyzing medical images, but there
are some disadvantages, including that it is a time-consuming process that is easily prone to errors.
Therefore, precise, faithful, and automatic segmentation is mandatory for improving clinical workflows
and supporting quick decision-making for patient treatments.

Recently, deep learning approaches, such as convolutional neural networks (CNNs), have been
used to obtain an advanced performance in image classification and segmentation [1–6].
These networks are composed of layers that can learn the understructure of the information from the
data with multiple levels. Deep learning approaches can save time and effort by effectively extracting
features by themselves since the features that compose these layers are learned from the data and do
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not need to be designed by a human. CNNs have achieved promising results in medical analyses
including for brain tumor segmentation [7], liver tumor segmentation [8], pancreas segmentation [9],
and in computer-aided diagnostic applications [10].

For medical image segmentation, an encoder-decoder architecture network, such as U-Net, is a
popular choice [11]. These networks are commonly composed of a downsampling sub-network
that captures the high-level features of the images and an upsampling sub-network that rebuilds
a pixel-wise segmentation from these high-level features. By using skip connections at multiple
scales, they can produce dense predictions in multi-levels. However, despite their strong power of
representation, the use of skip connections tends to use redundant information in likable low-level
encoder features in a multi-scale approach. Furthermore, the contextual information of the encoder
feature at the beginning of the network is insufficient, leading to poor performance for pixel-wise
recognition when concatenating with the corresponding high-level decoder feature map.

To overcome such above problems, we propose the spatial-channel attention gate (scAG), a novel
framework that resolves the weakness of plain skip connection in the segmentation task. It introduces
an attention mechanism to emphasize meaningful information along the channel dimension and
spatial dimension of the features that are beneficial for segmentation. Specifically, we integrate
two-component attention gates into the skip connections of the encoder feature and the corresponding
decoder feature of the U-Net model. One is a spatial attention gate (sAG) and the other is a channel
attention gate (cAG). By incorporating scAG into a standard encoder-decoder U-Net, the intermediate
feature maps from the downsampling path are supposed to be more efficiently utilized to solve the
segmentation tasks. sAG automatically concentrates on the region of interest, while cAG automatically
learns the representation meaning of the region without additional supervision. The encoder-decoder
architecture integrated scAG can be trained end-to-end in a similar way as popular CNNs models.
Comprehensive experiments with various medical datasets prove that scAG provides promising
results in segmentation tasks.

In this research, we tackle the limitations of the U-Net architecture in medical image segmentation.
Our contributions are described, as follows:

(1) We attempt to explore the advantages and disadvantages of the popular encoder-decoder U-Net
architecture. We then propose a novel spatial-channel attention gate (scAG) while using attention
mechanisms to reduce the weakness while maximizing the advantages of using skip connections.

(2) The proposed scAG combines two components: the spatial attention gate (sAG) and channel
attention gate (cAG). sAG automatically concentrates on ’where’ is the region of interest
while cAG automatically learns ’what’ is the meaningful representation of the given feature.
It significantly suppresses the drawbacks of the plain skip connections in U-Net models,
thus improving the segmentation results.

(3) Our proposed method achieves superior results when compared with reference state-of-the-art
methods on three types of medical images.

The remainder of the paper is organized, as follows. In Section 2, we provide an overview of the
segmentation models and some related literature using the attention mechanism. Section 3 represents
our proposed scAG. Section 4 describes the datasets and comprehensive experiments to demonstrate
the potential power of our scAG. The conclusion is finally presented in Section 5.

2. Related Works

2.1. Segmentation Model

A common task in medical image analysis is to detect and segment pathological regions that are
present in the image. In recent research, CNNs have been successfully applied to automatically
segment two-dimensional (2D) and three-dimensional (3D) biological data [11–14]. U-Net uses
an encoder-decoder architecture and it is one of the most popular networks for segmentation [11].
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The U-Net network has become a popular for segmentation of medical images due to its multi-scale
skip connections and learnable up-convolution layer. The valuable addition of U-Net is the introduction
of skip connections that concatenate the encoder features with the corresponding decoder features
for further successful calculations. By combining the location information from the encoder path and
contextual information from the decoder path, general information that is obtained is necessary to
achieve a good segmentation map, thus increasing the performance of the networks.

Based on this idea, some extension networks have been proposed to better deal with semantic
segmentation problems. In [15,16], the authors presented a powerful architecture called U-Net++
in which encoder and decoder sub-networks are connected through a series of nested and dense
skip pathways. This network has been demonstrated to be effective when compared to a standard
U-Net but it involves a massively computational costs due to the large number of intermediate
convolutions. In [17,18], the authors proposed Attention U-Net to leverage salient regions in medical
images. Through an integrated attention gate, Attention U-Net can automatically focus on relevant
regions for the segmentation tasks. However, Attention U-Net lacks focus of the semantic concepts
where there is still a large semantic gap between the encoder and the decoder feature map. It does
not have deep supervision module. Thus, it cannot capture different level features at decoder path.
Therefore, we try to propose a method that can be useful in an encoder-decoder U-Net architecture.

2.2. Attention and Gating Mechanism

Several recent attempts have been made using attention mechanisms to increase the capabilities
of CNNs in various vision tasks, including classification [19], detection [20], segmentation [21],
image captioning [22], and visual question answering [23]. Attention mechanisms guide the model
to emphasize the most salient features, avoiding useless features that are beneficial for specific tasks.
Wang et al. [19] proposed a Residual Attention Network using non-local self-attention mechanisms
to capture long-range dependencies. Hu et al. [24] introduced the Squeeze-and-Excitation method
that uses global average pooling to compute the channel-wise attention to highlight useful channels,
outperforming other methods in ILSVRC 2017 image classification. Woo et al. [25] present attractive
research, called Convolutional Block Attention Module (CBAM), a self-attention method to aggregate
spatial and channel information for effective feature refinement.

For specific semantic segmentation tasks using an encoder-decoder network, there are interesting
studies that can incorporate attention to improve the capabilities of the network. Jo et al. [17,18]
proposed attention gate modules (AG) that are incorporated into the skip connections of the
encoder-decoder network, using the information of the decoder feature to better guide information
to the encoder feature. Li et al. [21] proposed a Global Attention Upsample (GAU) method that
performs global average pooling of the high-level features from the decoder path to supply contextual
information to introduce the corresponding encoder to recognize context details. AG is designed to
focus on spatial information, but it lacks channel information, while GAU is designed to concentrate
on the channel concept, but does not care about the spatial concept. Therefore, we propose a method
that can take both useful spatial and channel information to address these limitations.

3. Proposed Method

In this section, we introduce an overview of our proposed spatial-channel attention gate method
(scAG). We then describe the two components, the spatial attention gate (sAG) and channel attention
gate (cAG), which respectively focus on the information from the spatial and channel dimensions.
Finally, we describe the aggregation of both for further refinement.

3.1. Overview and Motivation

The core idea of U-Net is to gradually fuse high semantic but coarse spatial decoder feature
maps with the corresponding low semantic but fine spatial encoder feature maps. It provides location
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information from the encoder path to the decoder path in an attempt to recover the details of the
spatial information that are lost by the max pooling operation.

However, the working mechanism for U-Net still exhibits limitations and needs further
investigation. First, multi-scale skip connections tend to use unnecessary information and
computational sources where likable low-level encoder features are repeatedly used at multiple
scales. When considering that low-level encoder features have rich spatial details, if the fusion
mechanism can concentrate on the salient spatial region of the encoder feature, the network can recover
fined-grained detail from the semantic results. Second, contextual information from the encoder
feature is insufficient, leading to poor performance for pixel-wise recognition when concatenating
the corresponding high-level decoder features. Because there are different semantic gaps between
low-level encoder feature and the corresponding high-level decoder features, concatenating the two
incompatible features will adversely affect the prediction procedures. The fusion between the encoder
and decoder features could be more effective by increasing more semantic information into the
low-level encoder features.

Inspired through the above observations, we propose a novel spatial-channel attention gate
(scAG) that aims to overcome the drawbacks of the working mechanism of U-Net. Our proposed
model consists of four modules: encoder module, decoder module, fusion module and prediction
module as shown in Figure 1. The input image is directly fed into the encoder module. The decoder
features are generated by multiplying the encoder features with spatial-channel attention gate (scAG)
and then concatenating with the corresponding decoder features. All of the decoder features are fused
and then put into prediction module to predict abnormal tissue. scAG can adaptively boost location
information and semantic information in the naive skip connection, leading to better segmentation
results. The proposed scAG includes two types of attention modules that address the following
aspects. (1) To guide the model to focus more on the spatial, detailed structure of an important region,
we propose the spatial attention gate (sAG), and (2) to increase the contextual information into the
low-level encoder feature, decreasing the semantic gap between the encoder and decoder features,
we suggest the channel attention gate (cAG).

Our proposed scAG stands in contrast to plain skip connections that lead to a combination of
incompatible feature maps. Instead of a direct feed-forward of the low-level encoder feature to the
corresponding high-level decoder feature, we propose scAG to be integrated into the skip connection,
as illustrated in Figure 1. The scAG can obtain information from both the encoder and decoder feature
maps to generate attention values that will be multiplied with encoder features to refine them before
fusing with the corresponding decoder features.

Given the features from the encoder and the corresponding features from the decoder, which have
sizes of Fe ∈ RC1×H×W and Fd ∈ RC2×H×W , respectively, where C1, C2 denote the number of channels
and H, W correspond to height and weight of the feature map. scAG will construct a spatial attention
map Ms ∈ R1×H×W and channel attention map Mc ∈ RC1×1×1, as depicted in Figures 2 and 3.
The progress of refining the encoder features (Figure 4) can be summarized as:

F
′
e = Fe ⊗Ms(Fe, Fd)⊗Mc(Fe, Fd) (1)

where ⊗ denotes element-wise multiplication, and the spatial attention map Ms, and channel attention
map Mc are copied along the channel dimension and spatial dimension, respectively, resulting in the
same sizes as the input feature map. The details of the channel and spatial attention gate are as follows.
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Figure 1. Proposed U-Net model using Spatial-Channel Attention Gate and Deep supervision.

Figure 2. Diagram of the Spatial Attention Gate (sAG).

Figure 3. Diagram of the Channel Attention Gate (cAG).
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3.2. Spatial Attention Gate (sAG)

Naïve skip connections [11] just concatenate the encoder and decoder features, so it is a waste
computational resources and redundant information is produced, since the model cannot recognize
where an object is located. Because the encoder feature has rich location information, it is better to
focus on salient region that are beneficial to find the location of the object and determine the target
structure of the object. The proposed sAG aims to provide insight into ’where’ is an important region
to predict and segment an object. The spatial attention map is constructed based on the interrelation
between the spatial information that focuses on the salient regions.

Figure 4. Process of refining the input feature.

As illustrated in Figure 2, the spatial attention map is a combination of spatial information from
both encoder and decoder features. To compute the spatial attention map in each encoder and decoder
feature, we first apply average pooling, max pooling, and 1× 1 convolution through the channel
dimension and then concatenate them to construct a capable feature representation. Applying the
average pooling and max pooling through the channel dimension, inspired by [25], and applying a 1× 1
convolution, inspired by [26,27], are effective to represent the important information. We then apply a
convolution layer on the concatenated features to produce a spatial attention map Ms(F) ∈ R1×H×W

that highlights the salient region. The above process is applied for each encoder and decoder feature
separately. Finally, we summarize the spatial attention map from the encoder feature and decoder
feature to compute the final spatial attention map. The detailed operations are shown below.

We aggregate information along the channel dimension of each encoder and decoder feature by
utilizing pooling and a 1× 1 convolution operation. Fs

avg ∈ R1×H×W , Fs
max ∈ R1×H×W , and Fs

1×1 ∈
R1×H×W denote the map generated from average pooling, max pooling and 1 × 1 convolution,
respectively. Those generated maps are concatenated, and then a convolution is applied with a
large kernel size 7× 7 (a large kernel size is effective to capture long-range contextual information [25])
to generate the spatial attention map. Me

s(Fe) and Md
s (Fd) denote the generated spatial attention

maps of the encoder and decoder features, respectively. The final spatial attention map Ms(Fe, Fd) is
calculated by applying a sigmoid function on the summation of Me

s(Fe) and Md
s (Fd).

Me
s(Fe) = F7×7

1 ([AvgPool(Fe), MaxPool(Fe), F1×1
1 (Fe)])

= F7×7
1 ([(Fe)

s
avg, (Fe)

s
max, (Fe)

s
1×1])

(2)

Md
s (Fd) = F7×7

1 ([AvgPool(Fd), MaxPool(Fd), F1×1
1 (Fd)])

= F7×7
1 ([(Fd)

s
avg, (Fd)

s
max, (Fd)

s
1×1])

(3)
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Ms(Fe, Fd) = σ(Me
s(Fe) + Md

s (Fd)) (4)

where f a×a
b denotes the b filters of the a× a convolution, and σ indicates the sigmoid function.

3.3. Channel Attention Gate (cAG)

Although the low-level encoder features are rich in detailed spatial information, they still lack
semantic information. Due to this large gap in semantic concepts, a naive fusion of low-level encoder
and high-level decoder features adversely affects the prediction procedure. A natural way to overcome
this problem is to include more semantic concepts into low-level features, thus fusing becomes more
effective. cAG is proposed in order to support ’what’ is meaningful given an input feature. The channel
attention map is constructed based on interdependencies between the channels of the convolutional
features, which focus on meaningful discrimination of the features [28].

The channel attention map is a combination of channel information from both the encoder and
decoder features, as illustrated in Figure 3. The low-level encoder feature itself includes poor semantic
information while the high-level decoder feature contains rich semantic information that can be used
to support a low-level encoder feature to capture semantic dependencies. Therefore, improving the
contextual information of the low-level encoder feature makes it easier to ensure effectual fusion.
First, in each encoder and decoder feature, we squeeze spatial features by utilizing average pooling
and max pooling simultaneously, as inspired by [25]. Second, we apply N 1× 1 convolutions on
the squeezed feature, where each 1 × 1 convolution has a role of capturing the dependencies of
the channels to generate the squeeze channel attention map. In our method, N is assigned the
value equal to 1/16 of C1, which is the number of channels of the encoder feature, to reduce the
parameter overhead. Finally, we apply C1 1× 1 convolutions on the summarized encoder squeeze
channel attention map and decoder squeeze channel attention map to construct the final attention map.
The detailed operations are described below.

We aggregate information along spatial dimension of each encoder and decoder feature map
by using the pooling operation. Fc

avg ∈ RC×1×1 and Fc
max ∈ RC×1×1 denote the map generated from

average pooling and max pooling, respectively. Those generated maps are then forwarded to the
shared N 1× 1 convolutions to produce a squeeze channel attention map. After the shared N 1× 1
convolution operation, we combine the output attention by applying element-wise summation. Me

c(Fe)

and Md
c (Fd) denote the generated squeeze channel attention map of the encoder and decoder features,

respectively. The summation of Me
c(Fe) and Md

c (Fd) was forwarded to C1 1× 1 convolutions, and then
a sigmoid function is applied in order to obtain the final channel attention map Mc(Fe, Fd). In short,
the channel attention map is computed as:

Me
c(Fe) = F1×1

N (AvgPool(Fe)) + F1×1
N (MaxPool(Fe))

= F1×1
N ((Fe)

c
avg) + F1×1

N ((Fe)
c
max)

(5)

Md
c (Fd) = F1×1

N (AvgPool(Fd)) + F1×1
N (MaxPool(Fd))

= F1×1
N ((Fd)

c
avg) + F1×1

N ((Fd)
c
max)

(6)

Mc(Fe, Fd) = σ(F1×1
C1

(Me
c(Fe) + Md

c (Fd))) (7)

3.4. Spatial-Channel Attention Gate (scAG)

sAG and cAG are complementary, where sAG focuses on spatial concepts and cAG concentrates
on channel concepts. Therefore, in order to take full advantage of both attention gates, we multiply
the input feature with a spatial attention map and channel attention map to construct the final refined
features. The refined features are then incorporated with decoder features for further calculation.
Figure 4 depicts the combination of the information from the two attention gates.
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4. Experimental Results and Discussion

4.1. Datasets

The effectiveness of our proposed method is evaluated with comprehensive experiments that
were conducted on three medical datasets, as depicted in Table 1. Some examples of three dataset
are shown in Figure 5. The comprehensive results reveal that our scAG can effectively increase the
segmentation performance though an added small fraction for the model complexity.

Figure 5. Example of images and ground truth images from three dataset.

Table 1. Overview of the datasets.

Dataset Application No. of Images Input Resolution Modality

CVC-ClinicDB [29] Polyp 612 256× 192 Endoscopy
VIP-CUP18 [30] Lung tumor 5204 256× 256 CT

TCGA [31] Brain tumor 1373 256× 256 MRI

4.1.1. Colonoscopy Images (CVC-ClinicDB)

We have used a colonoscopy image CVC-ClinicDB [29] dataset for our experiments. This dataset
contains 612 polyp images and the corresponding ground-truth images are taken from 29 colonoscopy
videos. The images are resized to 256 × 192 pixels from the original 384 × 288 pixels, which is
convenient in terms of computational resources.

4.1.2. Lung Tumor Images (VIP-CUP18)

The lung tumor image dataset is provided by the 2018 IEEE Video and Image Processing Cup
(VIP-CUP18) [30]. It includes computed tomography (CT) scans of 300 patients with a varying
number of slices for each patient, where each slice is manually annotated by a radiation oncologist.
Because the data are provided in the DICOM format, we have to convert the DICOM file from voxels
to world-coordinates and then normalize the data to generate 512× 512 pixel images. Only slices
containing tumors have been examined with a total of 5204 images. This dataset was resized to
256× 256 pixels due to limitations in the computational resources.

4.1.3. Brain Tumor Images (TCGA)

The brain tumor image dataset contains brain magnetic resonance imaging (MRI) together with
manual fluid-attenuated inversion recovery (FLAIR) abnormality segmentation masks. The images
were obtained from The Cancer Imaging Archive (TCIA). They correspond to 110 patients included
in The Cancer Genome Atlas (TCGA) lower-grade glioma collection with at least FLAIR sequence
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and genomic cluster data available [31]. This dataset contains 1373 brain images with a resolution of
256× 256 pixels.

4.2. Network Architecture

In our experiments, we conducted experiments with the standard U-Net. The U-Net model
includes four blocks of the encoder path, one bottleneck layer, four blocks of the decoder path, and a
classification layer at the end of the network. Each block had a sequence of two 3× 3 convolutional
operations with a batch-norm layer and ReLU activation following. At the end of the network, a 1× 1
convolution operation with sigmoid activation is applied in order to generate the final segmentation
map. The filter numbers of the encoder and decoder layer are 32, 64, 128, 256, and that for the bottleneck
layer, is 512.

Figure 1 describes how to integrate our proposed scAG to the baseline U-Net. Similar to the
works in [32,33], we utilize deep supervision [34] that allows for more direct back propagation to the
hidden layers for faster convergence and better accuracy. Using deep supervision forces the attention
map at the intermediate features to be eagerly discriminative at each specific level, thus improving the
performance of the model.

4.3. Training and Implementation

The experiments are implemented using the Pytorch framework. All of the models were optimized
via the Adam optimizer [35] with a learning rate of 0.0001, batch size of 8. The datasets are splited
into two set: training set and validation set with the ratio of 8:2. The Dice overlap coefficient was
adopted as a regional loss function [12]. The Dice score is not only a measure of how many positives
are found, but it also penalizes for the false positives, similar to precision. Thus, it is more similar to
precision than accuracy. The only difference is the denominator, where the true positives are replaced
by the total number of positives. The Dice score is also penalizing for the false positives. We did not
incorporate any transfer learning or use any data augmentation in order present a fair evaluation.
Furthermore, the average results from 5-fold cross-validation were used as the overall performance
of our proposed method. The models are trained until they cannot achieve further improvement.
In this research, we adopt the Dice similarity coefficient, Precision, and Recall as evaluation metrics to
validate the effectiveness of the proposed method. Three metrics described in the formulas:

Dice score =
2× |X ∩Y|
|X|+ |Y| (8)

where ∩ denotes the intersection operator, X and Y are the predicted segmented and
ground-truth, respectively.

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

where TP is score of identifying ground truth pixels exactly, FP is score of failing in identifying ground
truth pixels, and FN is score of failing in identifying background pixels into ground truth pixels.

4.4. Experimental Results

We conducted comprehensive experiments in order to evaluate scAG using the three datasets
described above. We also investigate the combination of a spatial-channel attention gate as well as
to separate each attention gate. We further compare the performance of our scAG for self-attention
methods as well as attention gate methods in medical segmentation tasks.
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4.4.1. Ablation Studies

In this subsection, we experimentally show the effectiveness of our design choice. We utilize
the CVC-ClinicDB dataset to train and compare the performance of variants of channel attention
and spatial attention. We sequentially combine the spatial and channel modules. We only change
the reduction ratio of channel attention module, the size of kernel and the 2D descriptor of spatial
attention module.

Channel attention: we utilize both of pooling methods ( max-pooling and average pooling)
to share information. Subsequently, we apply standard 1 × 1 convolution to reduce the number
of channel. Finally, we add both of them to yield the channel attention module. We compare the
effectiveness of the reduction ratio that conducts on three ratios: 16, 8, and 2.

Table 2 shows the experimental results. We observe that the dice score and recall score achieve
best performance on ratio of 16 as compared to other ratios. In this experiment, we concentrate on
Dice metric so that we choose ratio of 16 for getting best performance on Dice score.

Table 2. Comparison of different channel methods on CVC-ClinicDB dataset (best results marked bold).

Model Dice Score (%) Precistion (%) Recall (%)

U-Net + spatial + channel (ratio = 16) 71.72± 6.81 69.81± 8.97 74.21± 4.56
U-Net + spatial + channel (ratio = 8) 70.55± 4.98 70.44± 6.29 73.04± 5.52
U-Net + spatial + channel (ratio = 2) 70.76± 5.98 70.05± 9.76 73.97± 3.80

Spatial attention: to generate a 2D spatial attention map, we first apply a convolution layer
that encodes information obtained from raw feature map. Subsequently, we utilize max-pooling,
average pooling, or standard 1 × 1 convolution. Finally, we use Sigmoid function to normalize the
spatial map. We compare the effectiveness of a kernel size that conducts on four kernel sizes: 7, 5, and 3.
In addition, we also investigate on concatenating or using only one of three modules: max-pooling,
average-pooling, and 1 × 1 convolution.

Experimental results with different ratios are shown in Table 3. I find that the combination of
pooling modules and standard 1 × 1 convolution achieves better performance. Max-pooling extracts
the most salient information, average-pooling encodes global statistics softly, and 1 × 1 convolution
slightly improves accuracy in the context of deep axis. Additionally, we also observe that the dice
score and recall score of kernel size of 7 are higher than other kernel sizes. Inclusion, we use the joint
of all three modules and a convolution with kernel size of 7 to generate spatial attention map.

Table 3. Comparison of different spatial methods on CVC-ClinicDB dataset (best results marked bold).

Model Dice Score (%) Precistion (%) Recall (%)

U-Net + spatial (avg-max) + channel 70.18± 4.63 71.52± 8.66 72.04± 3.13
U-Net + spatial (1 × 1 conv) + channel 70.15± 5.49 67.62± 8.21 73.94± 4.84

U-Net + spatial (avg-max-conv) + channel 71.72± 6.81 69.81± 8.97 74.21± 4.56

U-Net + spatial (k = 7) + channel 71.72± 6.81 69.81± 8.97 74.21± 4.56
U-Net + spatial (k = 5) + channel 70.47± 5.12 70.05± 7.32 73.35± 5.14
U-Net + spatial (k = 3) + channel 70.94± 6.20 71.06± 10.00 73.31± 3.94

4.4.2. Comparison with Other U-Net Architectures

We evaluate our proposed method with state-of-the-art U-Net architectures in semantic
segmentation tasks, such as Attention U-Net [17,18] and U-Net++ [15,16]. For experiments on the
CVC-ClinicDB dataset, the baseline U-Net yields a dice coefficient of 65.93%. In Table 4, Attention
U-Net and U-Net++ achieve accuracy of 67.57% and 68.89%, respectively. Our proposed scAG boosts
performance to 73.31%, which increases an approximately seven-point gap when compared to the
standard U-Net model though adding small parameters, as shown in Table 4. Besides, for the lung
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tumor dataset provided by VIP-CUP, our proposed scAG shows a dice coefficient of 56.26% and also
outperforms the Attention U-Net and U-Net++ with a performance of 53.15% and 54.66%, respectively.
For the brain dataset from TCGA, our proposed scAG still surpasses Attention U-Net and U-Net++
with a dice score of 85.83%. Attention U-Net was designed using the attention gate model, which is
beneficial for locating the target object, but lacks focus on different semantic information between
the encoder and decoder features. U-Net++ was proposed by redesigning the dense skip connection
to alleviate the gap semantic between the encoder and decoder features, and it thus offers better
segmentation results. By capturing useful information from both spatial and channel information
using scAG, our proposed U-Net outperforms other state-of-the-art U-Net architectures.

Table 4. Experimental results on three datasets (best results marked bold).

Model Deep Supervision Dataset Dice Score (%) Precision (%) Recall (%)

CVC-ClinicDB 65.93± 6.34 61.49± 7.30 70.00± 6.62
U-Net [11] × VIP-CUP18 52.47± 3.83 48.14± 6.45 54.44± 3.40

TCGA 83.52± 1.61 77.79± 2.90 83.44± 2.30

CVC-ClinicDB 67.57± 6.47 64.03± 7.13 71.68± 5.96
Attention U-Net [17,18] × VIP-CUP18 53.15± 3.21 47.52± 3.24 54.75± 4.03

TCGA 83.88± 1.72 78.42± 2.91 82.27± 2.61

CVC-ClinicDB 68.89± 6.87 66.18± 7.40 71.61± 5.68
U-Net++ [15,16] × VIP-CUP18 54.66± 3.77 49.89± 5.47 55.87± 2.23

TCGA 84.54± 1.62 79.47± 2.45 82.50± 2.42

CVC-ClinicDB 71.72± 6.81 69.81± 8.97 74.21± 4.56
U-Net+scAG (Proposed) × VIP-CUP18 55.89± 3.97 51.41± 6.81 58.24± 1.82

TCGA 85.18± 1.31 81.74± 1.89 83.84± 3.33

CVC-ClinicDB 73.31± 5.85 72.43± 7.14 76.82± 2.94
U-Net+scAG (Proposed) X VIP-CUP18 56.26± 3.51 51.79± 4.42 57.11± 3.54

TCGA 85.83± 1.41 83.74± 1.81 83.86± 2.46

In Table 5, the inference time is presented between other U-Net architectures and our proposed.
These models were trained and tested on Intel i7-4790 CPU and Nvidia GTX 1070 GPU. The GPU
handled procedures related to CNN. The latency of our proposal takes more than 2.3 times, 1.5 times,
and 1.2 times compared to U-net, Attention U-net and U-net++ architecture, respectively. Although
the scAG takes more time to extract rich location information of objects and semantic information, it is
not considerable to be utilized for real-time segmentation systems. There is a trade-off between speed
and accuracy, better speed is lower accuracy, and vice versa.

Table 5. Comparison of latency of testing consumption on three datasets.

Model Deep
Supervision

No.
of Parameters

Inference Time(ms/img)

CVC-ClinicDB VIP-CUP18 TCGA

U-Net [11] × 8637× 106 15 15 14
Attention U-Net [17,18] × 8726× 106 22 21 21

U-Net++ [15,16] × 10, 198× 106 28 26 26
U-Net+scAG (Proposed) × 8656× 106 33 32 32
U-Net+scAG (Proposed) X 8804× 106 34 33 34

Representative results are also depicted in Figure 6. For example, in polyp segmentation,
U-Net manages to segment the polyp with a low-level performance with a poor shape of the
segmentation. By focusing on salient regions, the shape result of the Attention U-Net looks better,
but it still is not good enough. By using the dense skip connection at different scales, U-Net++ has
created rough boundaries of the segmentation. Our proposed method generates superior result with
a reasonable shape similar to the ground truth. With a small tumor of the lung dataset, U-Net fails
to predict the fine shape of the tumor. Although Attention U-Net and U-Net++ have a competitive
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Dice score of 89.97%, 90.99% as compared to 91.92% of our proposed method, their segmentation
results still have worse shapes than ours when comparing with ground truth. For the brain example
of the TCGA dataset, standard U-Net seems to poorly under-segment the tumor. Attention U-Net
though has a good shape in its prediction, but it still lacks semantic information to fully predict tumor.
The predicted result is almost identical to the ground truth by enhancing the feature representation
using scAG.

Figure 6. Representative results from three datasets by using different U-Net architectures.

4.4.3. Combining the Spatial and Channel Attention Gate

We investigate the combined strategy of sAG and cAG. We present results on the CVC-ClinicDB
dataset for polyp segmentation. Table 6 reported the performance of separate attention gates and
combined attention gates and the number of parameters in the models. Remarkably, by integrating
our proposed method to the baseline U-Net, the model complexity increases a very small fraction with
only 0.22% of the parameters more. We observe that all attention gate methods boost the segmentation
performance when integrated into the standard U-Net. The inclusion of sAG improves the performance
over the baseline U-Net model, and integrating cAG is even more effective. The aggregation of both
produces the best results when combining both sAG and cAG (i.e., our scAG).

Table 6. Performance on the CVC-ClinicDB dataset by using separate attention gates (best results
marked bold).

Model No. of Parameters Dice Score (%) Precision (%) Recall (%)

U-Net 8637× 106 65.93± 6.34 61.49± 7.30 70.00± 6.62
U-Net + sAG 8639× 106 (+0.025%) 67.55± 6.97 63.65± 3.96 70.16± 8.01
U-Net + cAG 8654× 106 (+0.195%) 70.49± 5.40 67.43± 9.38 76.07± 6.13
U-Net + scAG 8656× 106 (+0.22%) 71.72± 6.81 69.81± 8.97 74.21± 4.56

Figure 7 shows empirical results to identify the contribution of sAG and cAG. We can observe
that sAG helps the model to better localize and refine the structure of the target object, but it still lacks
semantic information. In contrast, cAG boosts the semantic concepts, but fails to refine the shape
of the object. However, combining both provides the advantages of these behaviors and produces
superior results.
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Figure 7. Example results by using separate attention gate.

4.4.4. Self-Attention for the Encoder Feature Map

We also investigate the effects of self-attention only on the low-level encoder feature itself.
We conducted an experiment with the CVC-ClinicDB dataset. Table 7 reports the Dice coefficient
for self-attention on the encoder feature map and our scAG, which obtains information for both the
encoder and decoder feature map. We observe that only self-attention in the encoder feature can
improve the performance over a classical skip connection in U-Net, but our scAG is even more effective.
An explanation of the superior performance of scAG is its ability to seize useful information from the
high-level decoder feature in order to guide the low-level encoder feature, while self-attention only
on the encoder feature cannot exhibit effective performance due to poor information in the low-level
encoder itself.

Table 7. Performance on the CVC-ClinicDB dataset by using the self-attention encoder feature (best results
marked bold).

Model Dice Score (%) Precision (%) Recall (%)

U-Net 65.93± 6.34 61.49± 7.30 70.00± 6.62
U-Net + encoder CBAM [25] 68.37± 6.09 66.00± 7.79 73.48± 5.42

U-Net + scAG 71.72± 6.81 69.81± 8.97 74.21± 4.56

4.4.5. Comparison with Other Attention Gate Methods

We further compare scAG to state-of-the-art attention gates in segmentation task. We conducted
experiments on the CVC-ClinicDB to evaluate the effectiveness of scAG. Our method is compared
to the Attention Gate (AG) [17,18] and Global Attention Upsample (GAU) [21]. The results of the
experiment are depicted in Table 8. We can see that scAG outperforms other approaches with a
dominant advantage. The baseline U-Net yields a dice coefficient of 65.93%. With the integration of AG
and GAU, an accuracy of 67.59%, 68.59% is respectively achieved. Our scAG boosts the performance
to 71.72%, which is an increase of an approximately five-point gap as compared to the standard U-Net
model. The AG is designed to focus on spatial information, but it lacks channel information while GAU
is designed to concentrate on the channel concept, but it does not care about spatial concepts. On the
other hand, our scAG caputres both spatial and channel information, thus achieving superior results.

Table 8. Performance on the CVC-ClinicDB dataset using other attention gates (best results marked bold).

Model Dice Score (%) Precision (%) Recall (%)

U-Net 65.93± 6.34 61.49± 7.30 70.00± 6.62
U-Net + AG [17,18] 67.57± 6.47 64.03± 7.13 71.68± 5.96
U-Net + GAU [21] 68.59± 6.31 65.75± 8.24 72.64± 4.36

U-Net + scAG 71.72± 6.81 69.81± 8.97 74.21± 4.56

4.5. Visualization of the Attention Gate

We further provide an illustration through a visualization of our scAG to obtain a deeply
intuitive understanding of its efficacy in addition to showing quantitative results that demonstrate
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the effectiveness of our proposed method. For convenience, we assume that the U-Net model has
four levels, where the first level corresponds to the first encoder feature and the last decoder feature
whereas the last level corresponds to the last encoder feature and the first decoder feature.

For cAG, it is difficult to produce a direct, explicit picture of the channel attention map. Therefore,
we take some of the attended channels that are emphasized by cAG to see how much semantic
information they contain. In Figure 8, we depict the channel of the encoder feature map that is
emphasized by cAG. At each level, the left-side columns show the attended channel that has more
emphasis while the right-side columns illustrate the attended channel that is less emphasized by cAG.
As we can see, the channel with greater emphasis contains more semantic information than the other
channel. For example, in the brain tumor TCGA dataset, we select the attended channel emphasized
by cAG at all four levels, where the left-side columns (c,e,g,i) depict the channels with more emphasis
that have a higher attention value of nearly one, while the right-side columns (d,f,g,k) show channels
with less emphasis that have a lower attention value of nearly 0. As we can see, channels #9, #1, #68,
#92 contain more noticeable semantic information of the ’tumor’ class while channels #7, #38, #55,
#44 contain worse semantic information. The encoder features enhanced by sAG now include more
semantic concepts and, thus, fusing with the decoder features becomes more effective.

Figure 8. Channel feature map emphasized by the Channel Attention Gate (cAG).

For the sAG, we focus on the spatial attention map at all four levels. Figure 9 shows the spatial
attention map from level #1 to level #4, which is multiplied with the corresponding encoder feature
maps for further calculation. As we can see for the spatial attention map at level #4, where the spatial
attention map depicts the general, coarse-grained details of the salient region to have a low resolution.
As we gradually go to a higher resolution, the spatial attention map becomes more specific and
fine-grained to emphasize the salient region of the target object. For example, look at row (i) of the
polyp image of the CVC-ClinicDB dataset, we draw the spatial attention map created by sAG at all
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four levels. At level #4, where the feature maps have the coarse spatial information, sAG can only
focus on the general, coarse-grained salient region of polyp in the features. However, when going up
on a level where have higher resolution feature maps, the spatial attention map becomes more clear.
At level #1, sAG can now concentrate on specific, fined-grained polyp regions. By focusing on the most
salient region of interest on the encoder features, where each has rich spatial information, the network
can predict the details of the segmentation results.

Figure 9. Spatial attention map created by the Spatial Attention Gate (sAG).

In order to have the best view of the spatial attention map as well as the segmentation results of
our scAG, we provide an illustration in Figure 9. For example on CVC-ClinicDB, standard U-Net seems
to over-segment the polyps (row (i), column (g)). Our proposed method segments the polyps much
better, close to the ground truth (row (i), column (h)). On row (ii) of the VIP-CUP18 dataset, although
the Dice score for both standard U-Net and our proposed method are quite similar (87.04% versus
89.43%), the predicted tumor masks are very different (columns (g,h)). The predicted masks from our
method are similar in shape with the ground truth while U-Net tends to produce irregularities along
the boundaries. For the TCGA dataset, at a small tumor figure on row (ii), our proposed method can
produce a sharp tumor mask as compared to U-Net, which fails to make a sharp prediction (columns
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(g),(h)). Thanks to the powerful ability of our scAG, the proposed U-Net obtains superior results as
compared to the standard U-Net, as shown in Figure 9g,h.

4.6. Statistical Analysis of Variance on Dice Score, Precision and Recall Metrics

We use the ANOVA tool to analyze whether there are any statistically significant differences
between the means of two or more methods at each evalutation metrics. We use one-way ANOVA
to compare two methods. The standard hypothesis for one-way ANOVA, used to compare two
methods, are null and alternative. The null hypothesis is that the two means are equal. The alternative
hypothesis is that the two means are unequal. If the p-value from output of ANOVA tool is less than
the significant level, we can reject the null hypothesis. In other words, our sample data provide strong
enough evidence to conclude that the means are not equal. We show the statistical analysis of Dice
score, Precision, and Recall metrics on TCGA, CVC-ClinicDB, and VIP-CUP18 datasets in Table 9.

Table 9. Comparison of p-value between Deep UNet-scAG versus UNet, Attention UNet, and UNet++
based on Dice score, Precision, and Recall on the three dataset CVC-ClinicDC, TCGA and VIP-CUP18.

Method1:Method2 Metric CVC-ClinicDB TCGA VIP-CUP18

Dice score 0.1251 0.0622 0.1822
Deep U-Net-scAG:U-Net Precision 0.0646 0.0082 0.3779

Recall 0.0963 0.8083 0.3072

Dice score 0.2243 0.1168 0.2272
Deep U-Net-scAG:Attention U-Net Precision 0.0728 0.0185 0.0039

Recall 0.8755 0.3836 0.3507

Dice score 0.3551 0.2639 0.5512
Deep U-Net-scAG:U-Net++ Precision 0.2591 0.0234 0.6049

Recall 0.8626 0.4368 0.1372

Table 9 presents the conduction of p-value analysis on Dice score, Precision, and Recall metrics
for the three dataset CVC-ClinicDC, TCGA, and VIP-CUP18. The term “Deep UNet-scAG: UNet”
represents the comparison between the proposed Deep UNet-scAG model and the traditional UNet
model, “Deep UNet-scAG: Attention UNet” represents the comparison between the proposed Deep
UNet-scAG model and the attention UNet model, and “Deep UNet-scAG: UNet++” represents the
comparison between the proposed Deep UNet-scAG model and the UNet++ model. In the table, all of
the comparisons have p-value < 0.05 for TCGA dataset related to Precision metric, indicating that the
proposed model and conventional models have statistical significance; it means that the proposed
model performs better than other three models on TCGA dataset in terms of Precision. Moreover,
the ”Deep UNet-scAG: Attention UNet” has p-value < 0.05 for VIP-CUP18 dataset related to Precision
metric, indicating that the proposed Deep UNet-scAG model performs better on VIP-CUP18 dataset in
term of Precision.

5. Conclusions

In this paper, we proposed a novel attention gate in order to overcome the limitations of the encoder-
decoder U-Net architecture. Our spatial-channel attention gate can be easily incorporated into popular
U-Net architectures while minimizing the computational cost and remarkably increasing the power of the
model. By taking advantage of the information on the encoder and decoder features, our proposed
attention gate can capture meaningful information of the “where” and “what” for segmentation.
Comprehensive experiments show that the proposed method significantly improves the segmentation
results by adding very few parameters. We also expect that the proposed spatial-channel attention gate
will be extensively used in deep learning, which is a vital approach for medical image analysis.
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