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Abstract: Acoustic metamaterials have proven to be a versatile tool for the precise control and
manipulation of sound waves. One of the promising designs of acoustic metamaterials employ
the arrays of bubbles and find applications for soundproofing, blast mitigation, and many others.
An obvious advantage of bubble-based metamaterials is their ability to be relatively thin while
absorbing low-frequency sound waves. The vast majority of theories developed to predict resonant
behavior of bubble-based metamaterials capitalize on Minnaert frequency. Here, we propose
a novel theoretical approach to characterize bubble-based metamaterials that are based on our
previous findings for a single bubble trapped in circular cavity modeled as a thin clamped plate.
We obtain analytical expressions for resonant frequencies of bubble metascreens using self-consistent
approximation. Two geometry factors, distance between bubble centers and distance between
bubble center and interface of acoustic impedance change, are taken into account. We demonstrate
the existence of multiple bandgaps and possibility of switching between them via adjustment of
geometry parameters and reflector properties.
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1. Introduction

The concept of the metamaterials with negative properties was proposed about half a century
ago by Veselago [1]. However, this area remained almost undeveloped [2] up to the early 2000s when
the interest was inspired by Pendry [3], who developed a theory for left-handed electromagnetic
metamaterials. The analogy between electromagnetic and acoustic waves potentially opened new
horizons to create left-handed acoustic metamaterials possessing negative mass density and negative
elastic modulus. Since that time the area was actively explored and attracted researchers’ attention
both theoretically and experimentally. Two strategies were employed by researchers to model acoustic
metamaterials. One of them was based on mass-spring model with further addition of dashpots
and it resulted in obtaining dispersion relation that allowed tuning metamaterials properties varying
mechanical parameters (masses, spring constants, and dissipation coefficients). Another approach
capitalized on so-called Multiscattering Theory (MST) and Self-Consistent Approximation (SCA)
dealing with mean field created by the array of independent scatterers that allowed significant
simplification of output signal analysis.

One of the key features expected from the metamaterials is a controllable and tunable transmission
of signal, namely acoustic waves [4,5]. The simplest one-dimensional (1D) spring-mass model was
proposed by Milton and Willis [6] and verified experimentally by Yao et al. [7]. More specifically,
the authors demonstrated the possibility to create the bandgaps and, thus, control the dynamic
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transmission of the material due to negative effective mass effect. The next step was done by
Huang et al. [8]. The authors proposed 1D mass-in-mass-spring model. They built 1D lattice and
demonstrated that it could be replaced by monatomic lattice for which an effective mass was introduced
and shown to be negative in certain frequency ranges. However, the application of this model was
limited, since it only exhibited two complete bandgaps and, thus, was rather more suitable for
gaining fundamental understanding of negative effective mass concept then for practical applications
in working prototypes. To tackle this problem, Huang and Sun [9] developed multiresonator
(dual-resonator) acoustic metamaterial model. The authors demonstrated the presence of several
varying bandgaps dependent on driving frequency. Dual-resonator model was experimentally verified
by Tan et al. [10]. Moreover, the authors demonstrated that acoustic wave attenuation can be achieved
for the wider frequency range as compared to a single-resonator system. However, even this model
had a significant disadvantage, namely it did not take into account the dissipation that was inevitable
in real materials. To address this issue, Manimala and Sun [11] first considered single resonator
system containing a dissipative element. The authors covered the most commonly used dissipative
models, including Kelvin-Voigt, Maxwell, and Zener. In particular, Kelvin-Voigt oscillator-based
metamaterial acts as a low-pass filter exhibiting broad spectrum performance. For the Maxwell
oscillator model, the bandgap properties vary from the stopping one for low damping to almost
passing for high damping. Finally, the Zener model allows tailoring damping and stiffness and, thus,
to span the bandgaps of two previous cases. However, as mentioned above, the single-resonator
systems have a limited number of bandgaps which might be not suitable for practical applications.
Thus, the dissipative multiresonator (dual-resonator) system was developed by Chen et al. [12].
More specifically, three dashpots were introduced in each unit cell that allowed enhancing the
attenuation and absorption by the metamaterial. Moreover, this model also allowed the merging of
multiple bandgaps observed in non-dissipative multiresonator system and, thus, come up with the
broadband wave mitigation region.

Soundproofing becomes a challenge at low frequencies and it requires the use of heavy or
thick materials. To address this issue, metamaterials have recently been employed that included
subwavelength resonant microstructures, namely acoustic bubbles. Free bubbles and bubbles trapped
in a bulk of the soft media are known to exhibit low-frequency Minnaert resonances. Thus, bubbly
media can be considered as an acoustic metamaterial with the bandgaps associated with bubbles’
resonant frequency and small phase velocities at relatively low frequencies (audible range). An array of
bubbles exhibits strong scattering properties. When modeling its interaction with an incident acoustic
wave, the strong coupling between individual scatterers should be taken into account. This issue
was resolved by Leroy et al. [13], who proposed to consider all of the bubbles to be affected by the
same average field according to Fpe = f ptot, where ptot is the field acting on all the scatterers, pe is
an incident wave amplitude and f and F stand for the scattering functions of an individual scatterer
and the bubble array, respectively. Interaction between the bubbles resulted in a shift of the resonant
frequency of the system to the higher values according to:

ω0 =
ωM√

1− 2
√

πa
d

, (1)

where a and d stand for the bubbles’ radius and distance between the centers of adjacent bubbles,
respectively, ωM is a Minnaert frequency of a single bubble. From this relation, it can be deduced
that d > 2

√
πa for the resonant frequency to be real, which is the essence of SCA. When it comes

to the transmission and reflection of acoustic waves by bubble array, one more parameter becomes
important, κ = 2π/(kd2), where k and d are acoustic wave number and distance between centers
of adjacent bubbles. This parameter defines the mechanism of coupling for the bubble array and
incident acoustic wave. Moreover, κa term, which will appear in further considerations is responsible
for radiative damping.



Appl. Sci. 2020, 10, 5720 3 of 16

The next step was done by Bretagne et al. [14], who considered the case of the bubble metascreen
being close to the interface where acoustic impedance of the media changed abruptly. It led to
changes in transmission behavior. More specifically, the transmission maximum arrived in addition
to preserved transmission minimum. This effect was observed both for the cases with one-side and
two-side interfaces. The corresponding resonant frequencies are given by:

ω0 =
ωM√

1− A + B
, ω0 =

ωM√
1− A + B/2

, (2)

where A and B stand for A = 2
√

πa
d , B = 4πa h

d2 , respectively, h is the distance between the bubble’s
center and adjacent interface. As can be seen from these relations, there are two parameters that allow
controlling the amplitude and position of the resonances, namely d and h. In particular, a decrease in d
caused deepening of the transmission minimum and shifted it to the higher frequencies. In contrast to
it, an increase in h resulted in deeper transmission minimum and shift of the transmission maximum
to lower frequencies.

Nowadays, the field continues to attract more researchers. Most recent studies considered the
absorption of acoustic waves by bubble metascreen [15] and locally resonant metamaterial architectures
capitalizing on emerging fabrication techniques [16]. Following the trend, this paper proposes a novel
design of the acoustic metamaterial. In contrast to what has been done previously and declared
impossibility to generate stable ordered bubbles of the equal size [17], we develop a model to predict
oscillatory and dissipative properties for the array of bubbles trapped in cylindrical cavities. We employ
an approach proposed and developed in our previous study [18], where the trapped bubble (gas-liquid
interface) was treated as a thin clamped circular plate. Next, in accordance with SCA, we consider
an array of bubbles in averaged acoustic field and revisit analytical expressions for the resonant
frequencies of bubble metascreens. Finally, the effect of the reflector, placed in a vicinity of metascreen,
is considered.

2. Problem Formulation

2.1. Domain Definition

We model a single bubble as a thin clamped plate in accordance with Kirchoff–Love theory.
As a reminder, Kirchhoff–Love plate theory extends Euler–Bernoulli beam theory and features several
kinematic assumptions. First, straight lines, which are normal to the middle surface of the plate, remain
normal after deformations. Second, straight lines, which are normal to the middle surface of the plate,
remain straight after deformations. Finally, plate thickness remains constant during deformation.

Introduce cylindrical coordinate system (r, θ, z) with the origin at the bubble center and consider
vertical displacement of the bubble surface (along z axis). The schematic of a single bubble is given in
Figure 1a. The geometry of the cavity array for bubble entrapment is shown in Figure 1b. All of the
bubbles in the array are assumed to be identical and ordered. Figure 1c shows the system geometry
with reflector adjacent to bubble array.

2.2. Single Bubble

The governing equation for a single bubble trapped in a circular cavity along with boundary and
initial conditions read as [18,19]:

ρ2
∂ϕ2

∂t
− ρ1

∂ϕ1

∂t
− 2η

∂vz

∂z
= σ∇2W, (3)

W(a, θ, t) = 0,
∂W
∂r

(a, θ, t) = 0, W(r, θ, 0) = 0, (4)

where η, a, W(·), σ, vz, ρi, ϕi stand for the liquid dynamic viscosity, bubble radius, gas-liquid
time-dependent interface displacement, interfacial tension coefficient, flow velocity at the interface,
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mass density, and velocity potentials. Subscripts i = 1, 2 correspond to liquid and gas media,
respectively. Velocity potentials, ϕ1, ϕ2, and velocity at the interface, vz, are given by [18,19]:

ϕ1 = −i
ϕ0ω

κ
eκzW(r, θ, t), ϕ2 = i

ϕ0ω

κ
e−κzW(r, θ, t), vz =

∂ϕ2

∂z

∣∣∣∣
z=0

, (5)

where ϕ0, ω, κ stand for velocity potential amplitude, angular driving frequency, and radial wave
number, respectively.

(a) (b)

(c)

Figure 1. Domain definition for (a) single bubble; (b) bubble array; (c) bubble array with reflector.
Numbers 1 and 2 in (a) correspond to subscripts in Equation (3).

2.3. Bubble Array

In our previous study [18], displacements and resonant frequencies of a single bubble trapped in
a cylindrical cavity have been derived. Moreover, we considered oscillatory behavior of the bubble
pair and identified resonant frequency shifts due to coupling. Strong coupling in bubble pair has
been demonstrated. However, the bubble pair is a relatively simple structure and, when it comes to
a bubble array, the problem becomes much more complicated as the coupling between multiple bubble
pairs should be considered. Luckily, the approach exists to successfully solve this problem: MST [13].
Despite having some limitations (ordered scatterers systems or finite number of disordered scatterers),
this approach is quite powerful yet relatively simple. In particular, in the case of in-plane array of
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bubbles all of them are subjected to an average acoustic field. This simplification allows developing
a theory that predicts resonant behavior of the array and accounts for both properties of an individual
bubble and geometry of the array.

Here we use the approach developed earlier [13,14], but replace Minnaert frequency with the one
derived in our previous study [18]. Using SCA, amplitude transmission and reflection coefficients are
given by:

t =
Ω− iδ

Ω− i(δ + κa)
, r =

iκa
Ω− i(δ + κa)

, (6)

where Ω, δ, a stand for nondimensional frequency parameter, dissipation factor, and bubble radius,
respectively. Ω and κ are given by:

Ω = (ωb/ω)2 − (1− A), κ =
2π

kd2 , (7)

where k and d are the acoustic wave number and the distance between the bubble centers, respectively.
Subsequently, energy transmission coefficient is given by:

T = T0|t|2, (8)

where T0 is a transmission amplitude. Transmission extremal problem reads as:

dT
dΩ

= 0 (9)

For the case considered we assume that the bubble array was formed in the bulk of liquid far
from any interface. If a single interface is present in a vicinity of the array, the energy transmission
coefficient is given by:

T1 = T01

∣∣∣∣∣ Ω− iδ
Ω− i(δ + Bkh)− B

∣∣∣∣∣
2

, (10)

where T01 is a transmission amplitude. Transmission extremal problem reads as:

dT1

dΩ
= 0 (11)

Finally, in the case of two interfaces from both sides of the bubble array, the energy transmission
coefficient is given by:

T2 = T02

∣∣∣∣∣ Ω− iδ
Ω− i(δ + 2Ωkh)− B/2

∣∣∣∣∣
2

, (12)

where where T02 is a transmission amplitude and transmission extremal problem reads as:

dT2

dΩ
= 0 (13)

2.4. Bubble Array with Reflector

It is expected that the practical applications of the metascreens coupled with the metal reflector to
increase the absorption of the incoming acoustic wave, as proposed in literature [20], can be limited due
to relatively high total mass of the system. The system proposed in [20] operates in MHz range for the
buubles trapped in cavities with square cross-section (14× 14 µm). To address this issue, we propose
to use lighter reflectors (e.g., machine wax, which has a mass density almost 10 times smaller than
the steel). To reduce the transmission of the incoming wave, several layers of the metascreens can be
stacked and coupled with the reflectors. The similar concept was proven to be beneficial in designing
bubble phononic crystals [21] and resulted in existence of multiple bandgaps in relatively wide (MHz)
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frequency range [17]. This will allow both to reduce the total mass of the device and increase the
number of the scatterers.

Now, let us estimate an effect of presence of the reflector on the frequency dependence of the
energy coefficients. Leroy et al. [20] demonstrated that, if the reflector is present near the bubble
metascreen, the total amplitude transmission coefficient is given by:

rtot = r +
t2r0e2ikh

1− rr0e2ikh (14)

where r0 is a an amplitude reflection coefficient of the reflector. Introducing energy transmission
coefficient, Tri we obtain extremal problems:

dTr

dΩ
= 0,

dTr1

dΩ
= 0,

dTr2

dΩ
= 0 (15)

for cases of absence of interface, 1- and 2-interface, respectively.

3. Results and Discussion

3.1. Metascreen Modes

To determine the resonant frequencies of the array, we should first know the resonant frequencies
of the individual scatterer (trapped bubble). Instead of commonly used Minnaert frequency, we employ
an approach proposed in [19] and developed in our previous work [18]. The modes of the interface
vibrations read as [18]:

ωb =

√
κ3

mnσJ−n(κmna)(ρ1 + ρ2)− κ4
mnη2

ρ1 + ρ2
, (16)

where Jn(κmna) is the Bessel function of the first type of the order n, with κmn being mode-dependent
radial wave number. Here, we only account for the viscous damping. It is well known that for the
clamped membrane multiple modes can be excited. However, we only pick the modes (m, 1) for our
calculations. Once the resonant frequency of the individual scatterer was identified, we apply all of the
analysis [13,14,20] to make the corrections to the resonant frequency of the system due to the strong
coupling between the bubbles that allows shifting the resonant frequencies of the system.

The general approach to find resonant frequencies of the metamaterial includes two steps: (1) find
Ω from extremal problem for energy transmission coefficient; and, (2) find ω from Equation (7). Let us
first consider an array of bubbles positioned in the liquid bulk. Solving Equation (9), we arrive at:

Ω01 = 0, (17)

or in terms of resonant frequency:

ω01 =
ωb√
1− A

, (18)

where A = 2
√

πa
d , a, and d stand for the bubble radius and distance between the centers of adjacent

bubbles. Hereafter, we will use the notions of “negative” and “positive” branches of the solutions.
These branches correspond to the values of Ωi that has “−” and “+” in front of the “square root”

terms. For instance, in Equation (19) ∆0 −
√

δ2 + ∆2
0 is a “negative” branch of the solution, whereas

∆0 +
√

δ2 + ∆2
0 is a “positive” one. The transmission dip given by Equation (18) is always present in

the system, regardless of its complexity.
Next, let us assume the presence of the interface where the acoustic impedance changes abruptly

from one side of the bubble array and bulk fluid from the other side. The interface can be formed
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by two media with different acoustic properties (e.g., water-air interface). Subsequently, solving
Equation (18), we get:

Ω1,2 = ∆0 ±
√

δ2 + ∆2
0, (19)

where ∆0 = (B(1 + h2k2) + 2hkδ)/2. Here, B = 4πa h
d2 and h is the distance between the bubble’s center

and adjacent interface. Subsequently, the resonant frequencies of the system read as:

ω01 =
ωb√

1− A + ∆0 +
√

δ2 + ∆2
0

, ω02 =
ωb√

1− A + ∆0 −
√

δ2 + ∆2
0

(20)

Now, let us assume that hk� 1. Subsequently, Equation (19) becomes:

Ω1,2 =
1
2

(
B±

√
B2 + 4δ2

)
(21)

and the resonant frequencies of the system read as:

ω01 =
ωb√

1− A + B/2 +
√
(B/2)2 + δ2

, ω02 =
ωb√

1− A + B/2−
√
(B/2)2 + δ2

(22)

Finally, if both hk� 1 and δ� 1, the solution reduces to:

Ω1 = 0, Ω2 = B, (23)

that results in two resonant frequencies of the system:

ω01 =
ωb√
1− A

, ω02 =
ωb√

1− A + B
(24)

Similarly, if there are interfaces with abrupt acoustic impedance change from both sides of the
bubble array, we obtain from Equation (13):

Ω1,2 = ∆1 ±
√

δ2 + ∆2
1, (25)

where ∆1 = (B + 4hkδ)/4. Now, let us assume that hk� 1, Subsequently, Equation (25) becomes:

Ω1,2 =
1
4

(
B±

√
B2 + 16δ2

)
(26)

and the resonant frequencies of the system read as:

ω01 =
ωb√

1− A + B/4 +
√
(B/4)2 + δ2

, ω02 =
ωb√

1− A + B/4−
√
(B/4)2 + δ2

(27)

Finally, if both hk� 1 and δ� 1, the solution reduces to:

Ω1 = 0, Ω2 = B/2, (28)

that results in two resonant frequencies of the system:

ω01 =
ωb√
1− A

, ω02 =
ωb√

1− A + B/2
(29)

Solutions given by Equations (24) and (29) are identical to Equation (2) from [14], where the
dissipation factor was neglected.
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3.2. Reflector Effect

We will now apply the technique developed above to solve the same problems in the case of
presence of reflector in a vicinity of metatamaterial. Let us consider a case of a single interface first.
Assuming that hk� 1, Ωi read as:

Ω1,2 = Γ3 ±
√

∆2
3 + δ2, (30)

where Γ3 and ∆3 are given by:

Γ3 =
B(−1 + r2

0)

2r0
, ∆3 =

B(1 + r0)
2

2r0
(31)

Afterwards, the resonant frequencies of the system read as:

ω01 =
ωb√

1− A + Γ3 +
√

∆2
3 + δ2

, ω02 =
ωb√

1− A + Γ3 −
√

∆2
3 + δ2

(32)

If both hk� 1 and δ� 1 the solution reduces to:

Ω1,2 = Γ3 ± ∆3 (33)

Subsequently, the resonant frequencies of the system are:

ω01 =
ωb√

1− A + Γ3 + ∆3
, ω02 =

ωb√
1− A + Γ3 − ∆3

(34)

or in more explicit form:

ω01 =
ωb√

1− A + B(1 + r0)
, ω02 =

ωb√
1− A− B

(
1 + 1

r0

) (35)

Analogous to this, in case of two interfaces near the bubble metascreen for hk� 1, we obtain:

Ω1,2 = Γ4 ±
√

∆2
4 + δ2, (36)

where Γ4 and ∆4 are given by:

Γ4 =
B(−1 + r2

0)

4r0
, ∆4 =

B(1 + r0)
2

4r0
(37)

Subsequently, the resonant frequencies of the system read as:

ω01 =
ωb√

1− A + Γ4 +
√

∆2
4 + δ2

, ω02 =
ωb√

1− A + Γ4 −
√

∆2
4 + δ2

(38)

If both hk� 1 and δ� 1 the solution reduces to:

Ω1,2 = Γ4 ± ∆4 (39)

Afterwards, the resonant frequencies of the system are:

ω01 =
ωb√

1− A + Γ4 + ∆4
, ω02 =

ωb√
1− A + Γ4 − ∆4

(40)
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or in more explicit form:

ω01 =
ωb√

1− A + B
2 (1 + r0)

, ω02 =
ωb√

1− A− B
2
(
1 + 1

r0

) (41)

3.3. Numerical Validation

Now, let us examine dispersion relations for all of the frequencies obtained above. Introduce
non-dimensional quantities p = d/a and q = h/a for convenience and consider the behavior of
modes (m, 1) normalized by mode (0, 1). The case of 1 interface without reflector is shown in Figure 2.
Figure 2a represents the case without interface and without reflector (given by Equation (18)) and it is
provided for reference. Figure 2b,d correspond to ω01 from Equation (24) and ω02 from Equation (22).
The plots look pretty similar due to relatively low value of dissipation factor (δ = 0.05) and demonstrate
the presence of bandgaps while the values of the resonant peaks increase with increasing p until hardly
recognizable maximum (compare p = 10 and p = 50) and then reaches saturation. Large values
of p correspond to the case of independent scatterers. Finally, Figure 2c corresponds to ω02 from
Equation (22). The behavior of dispersion curve changes dramatically as p increases from p = 3 to
p = 4. More specifically switching between the modes happens. Hereafter, under “switching” between
modes we understand changing dispersion curve position along horizontal axis that corresponds to
a different value of κa. Moreover, the value of the resonant peak increases before mode switching and
starts to decrease after it.

Figure 3 shows the case of 1 interface with reflector featuring amplitude reflection coefficient
r0 = 0.5. Figure 3a,c correspond to ω02 from Equations (32) and (35), respectively. The difference
between them is that Figure 3a neglects the dissipation, while Figure 3c accounts for it. The switching
between modes is observed in both cases, while it happens for higher values of p if dissipation is
considered. For ω01 from Equations (32) and (35) (Figure 3b,d, respectively) no switching is observed
and the solutions look pretty much similar. If compared with Figure 2b,d, no maximum value of the
peak is visible, while only increasing with p until saturation in case of independent scatterers. It can
also be seen that in presence of reflector peak values reduce significantly.

Figures 4 and 5 provide the similar plots for two interfaces. For “negative” branch, there is a usual
switching between modes that, however, also differs in case of absence (Figure 4a,c) and presence of
reflector (Figure 5a,c) with the later exhibiting lower values of the resonant peak. As for “positive”
branch of the solution, there is, again, no switching between the mode is observed while the peak
values visibly increase, reach maximum, and decrease down to saturation with increasing p.

Next, we consider the effect of reflector explicitly, by fixing one of the geometry parameters p, q
and varying another one along with the amplitude reflection coefficient, r0. Let us first fix q = 1
(the smallest possible value that represents the case of a reflector positioned just next to the bubble
array) and vary p = 2...10 and r0 = 0...1.

Figure 6 shows the corresponding dispersion relation. As can be seen from it, no switching
between modes is observed while the value of the resonant peak decreases (from red to black plot)
monotonically with increasing r0. This trend remains the same with p increasing. At the same time,
the effect of variation in amplitude reflection coefficient becomes smaller as p increases.

Alternatively, we fix p = 3 and vary q = 1...10 along with r0 = 0...1, as shown in Figure 7. In this
case, the maximum values of the peak decrease monotonically with both r0 and q increasing and
several bandgaps are present, as previously.



Appl. Sci. 2020, 10, 5720 10 of 16

(a) (b)

(c) (d)

Figure 2. Dispersion relation for metascreen (a) w/o interface and w/o reflector; (b) w/1 interface
and w/o reflector, kh � 1, δ � 1; (c) w/1 interface and w/o reflector, kh � 1, “negative” branch;
(d) w/1 interface and w/o reflector, kh� 1, “positive” branch. For all plots n = 1, q = 2. Dashed lines
in (a,c) are used to demonstrate switching between modes; dotted lines in (b,d) demonstrate the largest
resonant peak for various configurations of metamaterial and compare it with the case of independent
scatterers (black curve).

(a) (b)

(c) (d)

Figure 3. Dispersion relation for metascreen (a) w/1 interface and w/reflector (r0 = 0.5), k h� 1, δ� 1,
“negative” branch; (b) w/1 interface and w/reflector (r0 = 0.5), kh � 1, δ � 1, “positive” branch;
(c) w/1 interface and w/reflector (r0 = 0.5), kh � 1, “negative” branch; (d) w/1 interface and
w/reflector (r0 = 0.5), kh � 1, “positive” branch. For all plots n = 1, q = 2. Dashed lines in
(a,c) are used to demonstrate switching between modes; dotted lines in (b,d) demonstrate the largest
resonant peak for various configurations of metamaterial and compare it with the case of independent
scatterers (black curve).
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(a) (b)

(c) (d)

Figure 4. Dispersion relation for metascreen (a) w/o interface and w/o reflector; (b) w/2 interfaces
and w/o reflector, kh � 1, δ � 1; (c) w/2 interfaces and w/o reflector, kh � 1, “negative” branch;
(d) w/2 interfaces and w/o reflector, kh� 1, “positive” branch. For all plots n = 1, q = 2. Dashed lines
in (a,c) are used to demonstrate switching between modes; dotted lines in (b,d) demonstrate the largest
resonant peak for various configurations of metamaterial and compare it with the case of independent
scatterers (black curve).

(a) (b)

(c) (d)

Figure 5. Dispersion relation for metascreen (a) w/2 interfaces and w/reflector (r0 = 0.5), kh� 1, δ� 1,
“negative” branch; (b) w/2 interfaces and w/reflector (r0 = 0.5), kh � 1, δ � 1, “positive” branch;
(c) w/2 interfaces and w/reflector (r0 = 0.5), kh � 1, “negative” branch; (d) w/2 interfaces and
w/reflector (r0 = 0.5), kh � 1, “positive” branch. For all plots n = 1, q = 2. Dashed lines in (a,c)
are used to demonstrate switching between modes; dotted lines in (b,d) demonstrate the largest resonant
peak for various configurations of metamaterial and compare it with the case of independent scatterers
(black curve).
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(a) (b)

(c) (d)

Figure 6. Dispersion relation for metascreen w/1 interface and w/reflector (a) q = 1, p = 2;
(b) q = 1, p = 4; (c) q = 1, p = 6; (d) q = 1, p = 10. For all plots n = 1, r0 = 0.5, kh � 1, δ � 1.
“Positive” branch only is shown.

(a) (b)

(c) (d)

Figure 7. Dispersion relation for metascreen w/1 interface and w/reflector (a) q = 1, p = 3;
(b) q = 2, p = 3; (c) q = 5, p = 3; (d) q = 10, p = 3. For all plots n = 1, r0 = 0.5, kh � 1, δ � 1.
“Positive” branch only is shown.

Now, let us examine the behavior of the system resonant frequency normalized by that of a single
bubble with respect to geometry parameters p and q. In Figure 8, the dependence of normalized
system frequency from p for case of 2 interfaces with and without reflector is shown. For all values
of q and all solution branches normalized frequency tends to 1 for large values of p that corresponds
to the case of independent scatterers. For “positive” branch of the solution (Figure 8a,c) the presence
of the reflector flattens the resonant peak observed for small values of p (strongly coupled bubbles).
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The behavior of normalized frequency also changes from resonant to monotonically increasing until
saturation with increasing q. A completely different behavior is observed for “negative” branch of the
solution (Figure 8b,d). In particular, the system experiences abrupt monotonic decay of normalized
frequency starting from a certain value of p that is almost independent from q if the reflector is absent.
The situation changes when the reflector is added. In this case, the starting point of abrupt decay shifts
to higher values of p with increasing q.

(a) (b)

(c) (d)

Figure 8. Normalized frequency as a function of p (distance between bubble centers) for metascreen
(a) w/2 interfaces and w/o reflector, “positive” branch, kh� 1; (b) w/2 interfaces and w/o reflector,
“negative” branch, kh � 1; (c) w/2 interfaces and w/reflector (r0 = 0.5), “positive” branch, kh � 1;
(d) w/2 interfaces and w/reflector (r0 = 0.5), “negative” branch, kh� 1.

Figure 9 shows the dependence of normalized system frequency as a function of q. Similar to
above, we consider the case with two interfaces with and without reflector. For “positive” branch
of the solution (Figure 9a) the presence of reflector (Figure 9c) does not effect the behavior of the
system. The normalized frequency decreases monotonically with increasing q and tends to 1 with
increasing p. However, the situation changes for “negative” branch of the solution. If the reflector is
absent (Figure 9b) the normalized frequency does not change with q and decreases with increasing p.
If the reflector is present (Figure 9d), the normalized frequency increases abruptly with increasing q.
However, the trend becomes more moderate with increasing p until it becomes independent of q for
large values of p.

Finally, consider the case of varying reflection coefficient, r0. It is shown in Figure 10. Here, we fix
q = 1 (lowest possible value) and examine the behavior of normalized frequency of the system with
p. In Figure 10a,c the “positive” branch of the solution is presented without (Figure 10a) and with
dissipation (Figure 10c). The trend is overall repeatable with normalized frequency reaching saturation
for large p. The dramatic difference is that for small dissipation the rate of reaching saturation
decreases with increasing r0 whereas it increases with increasing r0 when dissipation is taken into
account. For “negative” branch of the solution (Figure 10b,d) the trend is almost the same: abrupt
decrease of normalized frequency with increasing p. However, the starting point of abrupt decay
moves to lower values of p with increasing r0, opposite to the trend observed in Figure 8d.
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(a) (b)

(c) (d)

Figure 9. Normalized frequency as a function of q (distance between bubble center and interface) for
metascreen (a) w/2 interfaces and w/o reflector, “positive” branch, kh � 1; (b) w/2 interfaces and
w/o reflector, “negative” branch, kh � 1; (c) w/2 interfaces and w/reflector (r0 = 0.5), “positive”
branch, kh� 1; (d) w/2 interfaces and w/reflector (r0 = 0.5), “negative” branch, kh� 1.

(a) (b)

(c) (d)

Figure 10. Normalized frequency as a function of p (distance between bubble centers) for metascreen
(a) w/1 interface and w/reflector, “positive” branch, kh� 1, δ� 1; (b) w/1 interface and w/reflector,
“negative” branch, kh� 1, δ� 1; (c) w/1 interface and w/reflector, “positive” branch, kh� 1; (d) w/1
interface and w/reflector, “negative” branch, kh� 1. For all plots q = 1.

4. Conclusions

We have developed a theoretical model to predict the resonant behavior of bubble-based
metamaterials. The dispersion relations for the bubble array in bulk and in a vicinity of one and
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two interfaces of acoustic impedance abrupt change were derived. Different degrees of accuracy of
the solution were investigated, accounting for dissipation and neglecting it. Multiple bandgaps are
predicted for all the solutions. Moreover, for the solutions in bulk and without interface as well as
for “negative” branches of the solution (1 and 2 interfaces, with and without reflector) the switching
between bandgaps is predicted. For “positive” branches of the solutions bandgaps are predicted
to be stable. The system behavior can be adjusted with both geometrical parameters and reflector
properties. In particular, an increase of the distance between bubble centers (decoupling) results in
either non-monotonous behavior of system resonant frequency (“negative” branch) or its monotonic
increase up to saturation/increase up to peak followed by decay to constant value (“positive” branch).
In contrast, an increase in amplitude reflection coefficient results in a monotonic decrease of the system
resonant frequency. These results clearly demonstrate that various regimes of metamaterial operation
can be achieved via fine tuning of resonant frequency of the system, adjusting its geometry and
reflector properties.

The following is worth noting. While here we report theoretical developments, the general
approach employed to describe resonant behavior of bubble array structures has been experimentally
verified in previous studies [13,22].
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