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Abstract: The integration of large-scale wind farms and large-scale charging stations for electric
vehicles (EVs) into electricity grids necessitates energy storage support for both technologies. Matching
the variability of the energy generation of wind farms with the demand variability of the EVs could
potentially minimize the size and need for expensive energy storage technologies required to stabilize
the grid. This paper investigates the feasibility of using the wind as a direct energy source to power EV
charging stations. An interval-based approach corresponding to the time slot taken for EV charging
is introduced for wind energy conversion and analyzed using different constraints and criteria,
including the wind speed averaging time interval, various turbines manufacturers, and standard
high-resolution wind speed datasets. A quasi-continuous wind turbine’s output energy is performed
using a piecewise recursive approach to measure the EV charging effectiveness. Wind turbine analysis
using two years of wind speed data shows that the application of direct wind-to-EV is able to provide
sufficient constant power to supply the large-scale charging stations. The results presented in this
paper confirm that the potential of direct powering of EV charging stations by wind has merits and
that research in this direction is worth pursuing.

Keywords: direct charging; electric vehicle; fast charging; wind energy

1. Introduction

The rapid adoption of electric vehicles (EVs) is making significant progress in addressing the
continuous increase of greenhouse gas (GHG) emissions worldwide [1,2]. However, with this considerable
progress come enormous challenges. Charging infrastructure is expected to increase with the increasing
number of EVs, resulting in huge electricity demand. Moreover, power quality issues related to grid
connections and integration with these newly added nonlinear loads and high-frequency switching
converters are expected to arise [3,4]. Hence, the demand for different types of renewable-energy-based
EV charging stations is growing in many countries [5].

Although the currently implemented EV charging stations are mostly powered by electric power
distributed by utility grids [6,7], other charging station designs powered by various renewable energy
sources have been reported in the technical literature. EV charging stations powered by solar or grid
electric power are reviewed in [8]. Several studies have used wind energy for EV grid-connected
mode [9,10] and off-grid stations [11]. Other studies [12,13] discussed design problems and proposed
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optimization methodologies for the size of EV charging stations in both solar and wind microgrids,
and concluded that a mix of renewable energy sources and storage systems is best for the optimal
design of EV charging stations. Stand-alone solar and wind generators are not suitable sources to
supply near-constant power for long periods, at least for slow power charging stations [8,11].

Fast-charging technology is key to increasing the expansion of EV adoption, because it removes
one of the barriers that have stopped many consumers from purchasing their first EVs. However,
establishing fast-charging points not only requires a parallel increase in the power supply from the
utility companies but also induces significant adverse impacts on the grid and degrades its power
quality [4,14]. Hardman et al. reviewed the consumer preferences for EV charging infrastructure,
including the fast-charging technology and its impact on the electricity grid [15]. However, with this
extensive review, the authors could not draw definite conclusions on several aspects, such as payment
for charging, charging locations, the time at which charging occurs, and any impacts these fast charges
may have on electricity grids, suggesting that further research in the field is needed. It is known that
DC fast chargers are considerably more expensive than other lower rate chargers and have a very
high power demand when large numbers of EVs are charged at the same time, inducing problems
in the utility supply. These impacts can be seen as deviations in the power line voltage, frequency,
and total harmonic distortion (THD). The use of renewable energy systems is one promising method
for mitigating these impacts [11].

In previous studies, integrating energy storage (i.e., backup batteries) into the electricity grid
was the easiest way to reduce the intermittency, unpredictability, and power fluctuations, therefore
providing a stable and continuous renewable electricity supply [16]. An energy hub (EH) that combines
different types of energy sources (e.g., wind and energy storage) requires optimal management to reduce
the wind uncertainties. In this context, Najafi et al. proposed an information gap decision theory (IGDT)
considering the demand response (DR) and an energy storage system (ESS) to decrease the uncertainty,
hence achieving greater wind turbine generation [17]. The necessity of adding battery banks for
energy storage is considered the primary drawback of stand-alone charging stations. The reason for
such a drawback is the high installation and maintenance costs, the relatively short life-span when
frequently charged and discharged, and the high cost of the associated energy conversion power
electronics [18,19]. Several attempts to extend the life-span of lithium-ion batteries have been made
in previous studies, for example by using battery degradation prediction methods for the reliable
estimation of a battery’s state of health (SOH) [20,21] and optimizing charging patterns to increase the
efficiency and the life-span of lithium-ion batteries [22–24]. A recent study [25] suggested replacing
the conventional battery storage with a permanent lifetime fuel cell system as a supporting power
source. However, despite the high reliability and efficiency of fuel cells, this technology is expensive,
lacks distribution infrastructure, and is still in the development stage, which presently makes it an
unviable solution. An alternative approach is to reduce the dependency on battery storage and rely
more on the direct charging of EV using wind energy. An accurate prediction of wind power and the
implementation of adaptive maximum power point tracking (MPPT) algorithms are vital parts of the
successful establishment of these solutions.

In this paper, the feasibility of powering an EV charging station that incorporates fast-charging
technology with wind energy generation is documented. Unlike previous studies that implemented
energy system analysis using simulated hourly distributions, we use real wind speed measurements
averaged on a minute basis obtained from two sites over two different years. We perform extensive data
analysis and benchmark comparisons using different scenarios of possible constraints on the introduced
EV charging methodology. A piecewise recursive approach is implemented to study the wind data on
an interval-based manner to provide precise estimates of the wind power stability over short time
intervals, as well as the EV charging station capacity. A case study using the fast-charging-supported
Tesla Model 3 Standard Range Plus is discussed.

The main contributions of this work are the following: (1) we rigorously evaluate the possibility
of using stand-alone wind energy sources for direct fast EV charging; (2) we conduct wind speed and
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power analysis using real-world high sampled datasets from two years; (3) we evaluate different wind
turbines using a large library (i.e., 68 turbines) of power curves; and (4) we examine different averaging
time intervals for wind speed and their effects on the power output certainty of wind turbines.

The rest of the paper is organized as follows. Section 2 presents the wind data used in this study
and outlines the related data preprocessing steps. Section 3 describes the performance of different
technologies for direct use of wind energy as a stand-alone source to power either large-scale or
fast-charging EV stations. Section 4 reports the analysis and comparative evaluation between the
introduced methods under different criteria, as well as the verification and discussion of such results.
Finally, Section 5 concludes the study.

2. Wind Data and Preprocessing

We used the publicly available database obtained from the National Renewable Energy Laboratory’s
National Wind Technology Center (NWTC) [26]. The NWTC is located approximately 8 km (5 miles)
south of Boulder, Colorado, 36 km (20 miles) northwest of Denver (United States). We use both
M2 and M4 tower datasets. The M2 tower is located at the western end, while M4 is located at
the southwest corner of the NWTC grounds. The data from M4 were obtained at 20 Hz, including
various atmospheric properties (i.e., wind speed, wind direction, temperature, dew point, pressure,
acceleration, and precipitation) collected from different heights (3 to 134 m). On the other hand, the data
from M2 were taken every two seconds and averaged over one minute. All data were measured at
different heights, starting from 2 to 80 m. Finally, based on the data quality, one-year data from each
tower were selected for this study from the years 2004 and 2018 for M2 and M4, respectively.

The wind speed data were preprocessed by imputing the not-a-number (NaN) and encoded values
using a sliding window average. Let the wind speed data y have missing data at time t. The average
of the sliding window y = [yt−2, yt−1, yt+1, yt+2] was used for imputations, considering the location
(head or tail of data) and consecutive missing values. The high-resolution (20 Hz) wind speed data
were then averaged over different time intervals (i.e., one, two, and three minutes) to investigate the
wind speed and power output variability. The World Meteorological Organization (WMO) standard for
estimating the mean wind is the 10-min average [27]. For smaller intervals, WMO has recommended
wind speed conversion gust factors for four different land classes. The recommended gust factors
are higher than 1 for the averaging intervals implemented in this study. Therefore, in this paper,
the average wind speed is calculated by using a simple scalar average of the wind speed observations,
regardless of gust effects. Figure 1 shows the one-minute average wind speed data for both the M2
and M4 towers. It is worth noting that the wind speed data for the M4 tower have some missing
observations for long periods (sometimes days at a time, as shown in Figure 1b). However, we visually
inspected the data and only considered the observations with fewer missing values and less noise.
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3. Methodology

There are two ways to utilize wind energy to charge EVs as a source. The first one is via the
electricity grids, where energy storage is required for both wind and the grid. The second could
potentially be an off-grid solution to avoid expensive energy storage equipment, power conversion
equipment, and conversion stages, because a direct current (DC) bus system can be used in the
second case.

Figure 2 shows the general procedure of an isolated wind energy, direct EV fast-charging system.
The system objective is to perform power analyses of different wind turbines to investigate their ability
to provide a near-constant power supply over specific time intervals. As shown in Figure 2, the wind
speed data were first extrapolated to match the hub height of the selected wind turbine. The output
power of the wind turbine was then calculated over overlapping time intervals. The time interval
corresponds to the charging time of the EV battery (e.g., from 20% to 80% state-of-charge (SoC)) with a
fast charging capability. The interval-based output power converted from the entire wind speed data
was then analyzed to satisfy the near-constant power criteria. The power intervals were then used to
calculate the daily energy output of the wind turbine. Using the output energy and the EV charging
point characteristics, the number of EVs that could be directly fast-charged was calculated.
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Figure 2. Schematic view of the data analysis procedure for off-grid wind-to-EV charging stations,
where std is the sample standard deviation, Pcharger is the charging point avg power, Pw is the
instantaneous output power of a wind turbine.

3.1. Wind Turbine Selection

We used an open source database available online from the Open Energy Platform (OEP) [28]
for a library of 68 turbines from the leading turbine manufacturers. The data constitute nominal
power, rotor diameter, swept area, and power curve values (i.e., wind speed vs. output power).
Figure 3 shows the power curves of all turbines with diverse nominal power, cut-in, and cut-out values.
The International Electrotechnical Commission (IEC) [29] has widely established accepted standards
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for wind turbines, including the determination of the measured power curves. Commonly, the power
curve of the wind turbine is represented using the average wind speed with intervals of 0.5 m/s [30].
In this study, the wind speed intervals (bins) of all wind turbine power curves were limited to 0.5 m/s.
To select the turbines that show minimal variations in output power within a specific time interval
(e.g., 21 min), we conducted statistical analysis on the annual wind speed data. For each time interval
window, the output power was constrained to have a standard deviation of less than 0.1 kW. The wind
turbine with the highest total annual time intervals with constant power was selected for the analysis
in this study. The equations involved in this calculation are detailed in the following subsection.
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3.2. Wind Energy Calculation

The 68 utilized wind turbines operate at different hub heights. The wind speed data for these
hub heights are mostly not available. The wind speed observations of the hub heights 20 m and 26 m
above ground for M2 and M4, respectively, were selected for wind turbine power analysis. The power
law wind profile (Hellmann exponential law) was used to extrapolate the wind speed observations to
higher hub heights, which is expressed by:

v = v0

(
z
z0

)α
(1)

where v is the wind speed at height, z, v0 is the measured speed, height z0 is known, and α is the power
law exponent (shear exponent or Hellman exponent) describing the terrain topology, varying with
atmosphere stability (temperature changes), which is commonly set to 1/7 or 0.143 for open land [31].
However, in this study the exponent α parameter was of less concern than the stability of the wind
speed itself for charging EVs. Therefore, α = 0.143 was chosen for this assessment. The instantaneous
output power of a wind turbine Pw(t) as a function of the wind speed v at a turbine hub height z,
given the power curve Pc, is described by:

Pw(t) =


0, i f v ≤ vcutin

Pc, i f vcut_in < v < vr

Pr, i f vr ≤ v < vcutout

0, i f v ≥ vcutout

(2)

where vcut_in, vcut_out, and vr are, respectively, the cut-in, cut-out, and nominal (rated) speed of the
wind turbine (see Figure 3). Pr represents the turbine output power at rated wind speed vr. However,
the actual wind power output is usually more than the theoretically calculated power, as in Equation
(2), which may produce an estimation error of about 3%. This is because the gained momentum by
the rotating turbine blades sustains the continual rotation when a sudden decrease in wind speed
occurs with no major change in the angular wind direction [32]. The output power P(t) quantifies
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the variable turbine power at each time point t (in minutes). However, the charging time of each EV
battery depends on the stability of the supplied power, the battery capacity Bc, the battery SoC, and the
charging point specifications. In order for the EV battery to be fully charged, the charging time tcharge
can be obtained according to [13] by:

tcharge =
Bc × (1− SoC)

Pcharger
. (3)

Fast charging is a technology that allows higher currents to be delivered to the battery before it
reaches its peak voltage (usually 80% SoC). Each EV model has its predefined parameters, such as Bc

and tcharge for different Pcharger capacities. In this study, we assumed that the tcharge value is known for
carrying out the wind power analysis. Due to the intermittency of wind energy over time, the isolated
EV charging station was restricted to the stability of the supplied piecewise energy. As shown in
Figure 2 and described in Algorithm 1, the wind energy fed to the EV station is subject to several
constraints, as detailed in the rest of this subsection.

The instantaneous power contained in each tcharge interval must ensure the stability of the power

supply to EVs with minimum variability, i.e., the standard deviation σ
(
Pw

(
tcharge

))
must not exceed

0.1 kW. The interval-based average output power is selected such that

Pw =
∑

t Pw(tcharge)
tcharge

subject to σ
(
Pw

(
tcharge

))
< 0.1 kW.

(4)

Algorithm 1: EV wind power supply

Inputs: Pw, The instantaneous wind power;
tcharge, EV battery time to charge;
tov, Overlap time of intervals;
Pcharger, EV charger power;

Output: Enov, Constant supplied energy;
EVno, Number of EVs

/* Calculate the number of overlap intervals */
1: tno =

(
length(Pw) − tcharge

)
/
(
tcharge − tov

)
2: for i := 2 to tno step

(
tcharge − tov

)
do

3: Pov1 = Pw
[
i− 1 : tcharge − 1

]
4: Pov2 = Pw

[
i : tcharge

]
/* Check the stability of wind power*/

5: if std(Pov1) > 0.1 or std(Pov2) >0.1 then
6: Continue
7: end if

/* Find non-overlap intervals*/
8: if (Pov1 ∩ Pov2 = φ) then
9: Pnov[i] = Pov2
10: end if
11: end for

/* Calculate the total energy*/
12: Enov =

(
tcharge/60

) ∑
Pnov[i]

/* Calculate number of EVs*/
13: EVno =

(
Enov/Pcharger

)

The total wind energy per unit of time (i.e., one day) was calculated from the intervals that show
power stability and do not intersect (overlap) in time. Let Pov be the instantaneous power intervals of
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duration Pcharge (i.e., charging time of EV battery) distributed over the entire day. These intervals are
found by using overlapped sliding windows, where the overlapped intervals are required to be omitted
prior to calculating the total energy for the whole day. The non-overlap total energy is found by:

Ew =
N∑

i=1

Pi
w ×

tcharge

60
(5)

where N is the total non-overlap interval (lines 8–10 in Algorithm 1) within a specific period of time that
satisfies the condition (Pov1 ∩ Pov2 = φ) for each of the consecutive intervals Pov1 and Pov2. The sum
of wind energy generated Ei

w within a tcharge time interval is more than the EV charger energy per the
smallest time unit (i.e., one minute) for partial charging or is more than the EV charger energy per
tcharge time for full charging (80%).

3.3. Charging Station Capacity

In this work, the considered EV fast-charging station consists of renewable sources (wind turbines)
and DC power chargers to charge the EV batteries. The defined criteria and constraints in Section 3.2 for
the wind-to-EV charging system are generalized on a specific EV model. In this study, we selected the
Tesla Model 3 Standard Range Plus EV, or any other EV with similar specifications. Table 1 summarizes
the relevant characteristics of Tesla Model 3 + EV.

Table 1. Relevant Tesla Model 3 Standard Range Plus specifications.

Parameter Description or Value

Battery pack capacity (Bc) 50 kW
Driving range Between 225–465 km
Fast charging range From 10–80%
Charging point Supercharger v3 (250 kW DC)
Charging point max power 170 kW
Charging point avg power (Pcharger) 100 kW
DC charging time (tcharge) 21 min
Real energy consumption 10.2–21.1 kWh/100 km

4. Results

4.1. Wind Speed Data Averaging

Three case scenarios for wind speed averaging were used to typify possible variations of wind
power stability by using one, two, and three minutes. For each case, during the averaging process,
no time interval includes observations from two data segments with missing wind speed values.
The monthly percentage of missing data was calculated for M4, while no missing data were found
from M2. The missing data at M4 were not scattered over time but were found to be sustained for long
periods—sometimes days—and it was not practical to perform data imputations to fill the data gaps.
For this reason, the power analysis in the following subsections was performed on a daily basis.

Figure 4 shows the boxplots of the entire one-year data of M2 and M4 using the three averaging
scenarios. Obviously, the M2 data have a lower annual wind speed average with fewer variations
compared to that of M4. The three averaging intervals also show almost identical statistics, with a
mean ± standard deviation of 3.7002 ± 2.9095, 3.7002 ± 2.8803, and 3.7002 ± 2.8616 for one, two,
and three minutes, respectively. Similarly, for the M4 data, the figure shows higher wind averages
of 4.4040 ± 3.5194, 4.4031 ± 3.4893, and 4.4023 ± 3.4702, respectively, for the same three averaging
intervals. The stationary analysis of wind averaging was also investigated using the obtained wind
angular directions and Weibull distribution parameters, as shown in Figure 5. The wind directions of
M2, as in Figure 5a–c, show new patterns with different averaging intervals, which could be explained
as extreme variations in the wind directions within small time intervals of one to three minutes. On the
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contrary, the wind directions of M4, as illustrated in Figure 5g–i, are stable over the three averaging
intervals. The wind histograms and Weibull distribution parameters show slight changes when varying
the averaging intervals, as explained in the caption of Figure 5. These results do not provide a shred of
evidence on which averaging interval is more suitable for wind energy harvesting when considering
the stability of the power output. Since wind time series data are highly non-stationary, the dynamic
analysis of statistical parameters over shorter periods may reveal more underlying behaviors of wind
changes. This will be provided in the following subsections, where the moving window power analysis
is presented over the three averaging scenarios.
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4.2. Wind Turbine Selection 

Figure 5. Windrose plots and wind speed distributions for M2 (a–f) and M4 (g–l) when averaged over
one (a,d,j,i), two (b,e,h,k), and three (c,f,i,l) minutes. (d) Wind speed distribution for M2 averaged over
one minute and fitted on Weibull distribution of scale = 4.0849 and shape = 1.3948. (e) Two minutes
averaged wind speed distribution of the M2 tower data with Weibull scale = 4.0930 and shape = 1.410.
(f) The M2 tower wind speed data averaged over three minutes interval with Weibull scale = 4.0986
and shape = 1.421. (j) The M4 tower wind speed of one minute average with Weibull distribution scale
= 4.8212 and shape = 1.3444. (k) The M4 wind speed data when averaging over two minutes with
Weibull scale = 4.8299 and shape = 1.3576. (l) The wind speed distribution of the M4 tower averaged
over three minutes with Weibull distribution scale = 4.8357 and shape = 1.3669.
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4.2. Wind Turbine Selection

Most wind turbines in the market are of variable speed and produce variable-frequency power,
while AC–DC–AC converters are required to rectify the output power and stabilize the frequency.
Variable-speed wind turbines are designed to achieve maximal aerodynamic efficiency to make use of
a wide range of wind speeds. In this study, we performed a benchmark performance analysis of the
68 wind turbines to determine the turbines with the most stable power outputs. Table 2 summarizes
the nine selected turbines and the corresponding power stability measured as the percentage of the
total tcharge intervals over different averaging intervals for both M2 and M4 tower data. The optimal
selection of wind turbines may depend on other indicators, such as the total energy production, cost of
produced energy, reliability, and installation cost. However, the main concern of this study is the
availability of stable output power; hence, the turbines with more near-constant power intervals were
selected for EV charging analysis. In Table 2, the selected turbines show nominal power in the range of
2200–3500 kW, with hub heights ranging from 99.5 to 137 m.

Table 2. Selected wind turbines output power stability (%) using M2 and M4 wind speed data with
different averaging intervals.

ID *
Height
(m/s)

Cut-In
(m/s)

Rated
(m/s)

Cut-Out
(m/s)

Power M4 Tower Data (%) M2 Tower Data (%)

(kW) 1 Min 2 Min 3 Min 1 Min 2 Min 3 Min

no16 134 3 10 20 3300 9.41 14.34 18.35 5.22 8.28 9.78
no17 114 3 10 20 3000 9.22 14.44 17.74 5.22 7.74 9.64
no44 119 3 10 22 3000 12.61 17.69 21.26 6.82 9.12 10.49
no67 129 3 10 23 3150 13.41 17.94 22.20 7.20 9.41 10.87
no73 99.5 3 10 25 2300 14.96 18.73 22.20 6.92 8.97 10.21
no94 139 3 10 22 3200 12.42 17.05 21.45 7.10 9.41 11.01
no95 136 3 10 22 3000 12.33 17.00 21.31 7.10 9.46 10.91
no124 137 3 10 25 3500 16.04 20.21 23.76 7.86 9.96 11.34
no128 99 3 10 25 2200 14.96 18.73 22.20 6.86 8.97 10.21

* The ID column contains the turbine names generated by sequential numbering (e.g., no16 indicates turbine number
16 in the turbines’ data library).

4.3. Charging Station Capacity

The wind-powered EV charging station is strongly dependent on the availability of constant power
supply from wind turbines, which limits the station in terms of providing smart charging compared
with an immediate charging scenario. Grid power compensation could partially solve this issue and
provide enough power to charge the EVs when turbines fail to satisfy the EVs’ power demands. In this
study, the direct wind-to-EV charging using DC fast-charging technology was preferable due to the
significant reduction in power conversion stages. Moreover, the study aimed to reduce the reliance on
grid and storage systems. Excess wind power that is not used for fast charging can be injected into the
utility grid. The (re-)scheduling of the charging events is triggered whenever the charging system
predicts stable wind energy that falls within user-defined EV charging specifications (energy volume
and charging duration). All time intervals (the holding time of EV for charging) were statistically
analyzed, and the intervals that did not show stable or enough power within the EV charging standards
were filtered. Finally, the cumulative daily wind energy and the estimated number of EVs that the
station could handle were obtained from the remaining charging intervals.

Figure 6 summarizes the average monthly number of EVs calculated from each individual wind
turbine power output over one-, two-, and three-minute wind speed averaging for the M2 and M4
datasets. For all scenarios, turbine no124 shows the best performance from the selected nine turbines,
followed by turbine no44. Even though the wind speed data variations and power curve sampling are
the same for all turbines, instantaneously mapping the wind speed to wind power using the power
curve gives more stability in the output wind power, which strongly depends on the shape of the
power curve itself.
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The comparison results using different wind speed averaging intervals revealed that as the
averaging interval (in minutes) increases, the stability of wind power output increases, which verifies
the blades’ momentum effects. Comparing the results of one-minute averaging (Figure 6a,c) with the
two-minute averaging (Figure 6b,d), it is evident that there is a significant increase in power stability,
which leads to a higher number of EVs that the station can serve on a monthly basis. Taking turbine
no16 (e.g., January) as an example, the two-minute averaging intervals show 47% and 45% increases in
total EVs for the M2 and M4 datasets, respectively. Similarly, the three-minute intervals compared to
the one-minute averaging intervals show superior improvement in the system, producing almost 81%
and 91% increases in the system’s monthly coverage of EVs.
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Furthermore, Figure 6 illustrates the comparison results of using two different wind speed
datasets (M2-2018 and M4-2014). According to the results, it can be seen that M4 data (Figure 6d,c,f)
provide a greater wind turbine power output, and therefore a greater number of EVs can be charged.
However, the performance is not stable throughout the months of the year. The M2 dataset shows
the best performance during January, February, March, April, November, and December, with lesser
performance during the other months. The M4 data lead to the same conclusion as M2, except for
December, where almost 12 days of the data were missing and were excluded from the calculations.

Figures 7 and 8 show examples of a direct wind energy EV charging conversion procedure over
one month for both M2 (January 2018) and M4 (January 2014) data, respectively. The wind speed
data were averaged using three minute intervals, as concluded from Figure 6, while Figures 7a and 8a
show the heat maps of interval-based wind speed progression (m/s) rearranged in daily vectors to
observe the correlation between wind speed observations and wind turbine output power. For each
predefined charging time slot (tcharge = 21 min), the algorithm converts the wind speeds to turbine
power outputs using an overlapped sliding window procedure (Figures 7b and 8b). It can be concluded
that the regions of the wind speed heat maps that show no changes in the color (wind speed) are
reflected as stable power outputs in the corresponding power heat maps. The filtered wind power time
slots (tcharge = 21 min) are shown in Figures 7c and 8c. We can see that the power time slots that are
constrained for EV charging are scattered throughout the day, with the M4 dataset showing a greater
availability of EV charging time slots. For power time slots available at night and for better charging
system efficiency, prior alerts must be sent to the customers when the power is expected to be available
and when parking lots are available in the charging station. The conversion of wind power to energy
can be seen in Figure 7d,e and Figure 8d,e. The M2 and M4 datasets show different patterns of daily
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energy availability, with minimal EV charging energy on some days, especially for the M2 data. It will
be beneficial to add another renewable energy source, connect to the grid, or combine these scenarios
to tackle this energy uncertainty. The excess power harvested from the wind can be injected into the
utility grid during the windy days, which will compensate for the system energy cost provided to the
customers. As shown in Figures 7f and 8f, only a few days had zero wind energy, which was harvested
from an individual wind turbine, where wind energy aggregation from the multi-turbine grid could
enhance the overall system efficiency. Furthermore, for certain days, the wind energy availability
for EV charging could be beyond the charging station’s capacity, which in turn could be sold to the
utility grid and be re-used when wind energy is not available, thus reducing the reliance on battery
storage systems.
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5. Conclusions

In this paper, we described a large-scale fast EV charging approach that considers wind turbines
as a direct energy source. The benefits of this approach can be seen from the reduced dependency on
electricity grids, battery storage systems, and energy conversion power electronics. We conducted wind
speed and power data analysis of high-resolution datasets acquired from two different sites within
two distanced years. We performed investigations on wind averaging intervals. The results showed
that averaging wind speed over intervals of three minutes gives superior EV charging performance.
We also conducted a comparison of different wind turbines using a large data library (68 turbines)
of power curves. Analysis of the results revealed that only nine turbines showed continuous power
availability. We presented the proposed charging approach by using a standard EV (Tesla Model
3 standard range plus) to analytically measure the overall performance of the charging approach.
The analysis concluded that the introduced charging approach is able to provide convincing results.
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