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Abstract: Condition monitoring techniques have been successfully applied to detect damaged
bearings. However, the signal acquisition and the subsequent processing are typically outsourced
to expensive data acquisition boards and complex software, resulting in expensive solutions. As a
side effect, the integration of condition monitoring systems in wireless sensor networks can be tough
to achieve. Aiming to overcome such issues, a low-cost and small-size electronic module to be placed
in the proximity of the bearing to be monitored was developed. The acoustic signal delivered by the
bearing is acquired, and the corresponding frequency spectrum is evaluated on-board. Based on that,
the developed module automatically detects the presence of defects and notifies the remote controller
via a wireless connection only when a fault is detected, thus avoiding the use of data cables whilst
minimizing the amount of transferred data. Experimental tests carried out on the proposed system
assessed the accuracy of the evaluated frequency spectrum, resulting in an amplitude error within
±0.6%, as well as the fault detection capability in the presence of environmental acoustic noise.

Keywords: rolling bearings; condition monitoring; reliability; fault detection; wireless node; acoustic
emissions; MEMS microphone; embedded system; Bluetooth Low-Energy

1. Introduction

The reliability of mechanical systems has become an increasingly major topic, as malfunctions
are responsible for extra costs, non-operating time, and unscheduled maintenance. As far as rotating
machines are concerned, it is well established that rolling bearings are one of the root causes of such
failures, indeed, almost 50% of the faults occurring to electric motors is ball- or roller bearing-related [1].
As a consequence, the monitoring of such components is necessary to avoid unwanted malfunctions,
leading researchers and practitioners to investigate condition monitoring techniques even more
performing and accurate. When dealing with condition monitoring, a signal that contains data on
the dynamic response of the structure to be monitored is acquired, and some processing technique
is applied to such signals in order to detect the presence of faults, and possibly to identify them and
to estimate their size. As far as the monitoring of rolling bearing is concerned, usually the acquired
signal corresponds to the vibrations sensed in the proximity to the bearing by means of a transducer,
i.e., an accelerometer, whereas the processing techniques that can be found in the literature are the
most varied. A comprehensive review of such processing methods can be found in [2–4]. More recently,
approaches based on machine learning, as those shown in [5], were applied to a vibration dataset in
order to identify faulty bearings. Further investigations on such topics regard the enhancement of the
fault detection in the presence of noise, as in [6–8].

Besides the exploitation of vibrations, acoustic emission (AE) has emerged as a valid solution,
in particular regarding early-stage damages where the spall has not yet been formed on the surface [9]
of the inner or outer ring. The cyclostationary of such a kind of signal can be even exploited to
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enhance the detection of bearing faults, as reported in [10]. However, the main drawback of AE
is the required sampling frequency, which is typically higher than 1 MHz [11], resulting in a huge
amount of sampled data and expensive acquisition hardware. In between the AE and the vibrations,
the acoustic noise, i.e., up to 20 kHz, can be exploited to detect the presence of defects, as reported
in [12,13], where conventional and low-cost microphones were exploited achieving interesting results.
The major benefit in the use of microphones is that no contact with the cage is required, meaning that
the transducer can be placed in the most convenient location as close as possible to the bearing to
be monitored.

Regardless of the kind of acquired signal, it is worth noticing that the acquisition is outsourced to
high-performance data acquisition board (DAQ), as in [14], and that the subsequent signal processing
is performed by means of high-level software, e.g., Matlab, resulting in an expensive and complex to
be integrated monitoring system. Some previous works have dealt with such issues using a Digital
Signal Processor (DSP) [15] or a Field Programmable Gate Array (FPGA) [16], however they are still
rather expensive solutions.

Such aspects may prevent the bearing monitoring system from being successfully integrated
in low-cost and wireless nodes, which can be the building blocks of more complex Wireless Sensor
Networks (WSN). The design of wireless nodes for the bearing monitoring was already investigated in
previous works. More precisely, the authors of [17] proposed a wireless module that collects the signal
from an accelerometer and sends it to a server using a proprietary protocol. Similarly, in [18], data from
different sensors are acquired, filtered and sent to a central unit to determine the causes of faults in
induction motors. In [19], a machine learning approach is exploited to analyze the dataset collected by
the nodes, and the number of nodes to maximize their life-time is investigated performing simulations.
It is worth noticing that the amount of data to be transferred is an important aspect to be considered in
a wireless link, as it affects the power consumption, the required bandwidth, and also the reliability
of the communication, eventually. In order to address such issue, compression techniques, such as
those shown in [20,21], were proposed to minimize the amount of raw data to be transferred, without
affecting the fault detection. Besides such solutions, a different approach consists in the distributed
computing paradigm, where each node is provided with sufficient computational capability to execute
some part or the entire signal processing. The authors of [22] proposed a system where the frequency
spectrum of the envelope is evaluated by the module itself, and then wirelessly transferred to a host
computer, which is also responsible for the evaluation of the optimum band-pass filter to be applied.

Nonetheless, none of the aforementioned works proposed a low-cost wireless module able to
detect the faults locally. In such a way, the data transfer can be truly minimized, as the node would
occupy the wireless link only in the presence of a fault. Aiming to minimize the cost of such a module,
a low-cost microphone and a microcontroller with an integrated radio transceiver are exploited. In such
a way, the acoustic emission delivered by the bearing is acquired and processed, and the faults are
detected, with all the steps locally performed. This work proposes such a wireless module, where the
cost and hardware and software complexity are kept at minimum. Indeed, the standard Bluetooth
Low Energy wireless link allows for a on-the-fly configuration of the module from several compatible
devices, thus achieving both user and machine-to-machine (M2M) interaction. By choosing target
designs of low cost and small size, it results in different benefits, as the former allows one to place
more modules, and the latter to position the proposed system in the most convenient location closed to
the bearing to be monitored. In such a way, even in the presence of a noisy environment, the module is
able to assess the healthy status of the bearing to be monitored.

The paper is organized as follows. In Section 2, the processing technique and its optimization
are discussed. In Section 3, the proposed system is introduced and its main functional blocks are
analyzed, along with the fault detection algorithm. Experimental results, regarding the computational
performance and the detection capability of the designed module in the presence of environmental
noise, are discussed in Section 4, and final conclusions are drawn in Section 5.
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2. Evaluation of the Frequency Spectrum

2.1. Fundamental Frequencies of Rolling Bearings

Rolling bearing faults are typically due to misalignment, lack of lubrication, or excessive load.
A crack may origin at subsurface or at surface level, and gradually increases up to become a spall, i.e.,
a groove removal from the surface of the inner or the outer race. In such a case, the rolling bearing is
definitely damaged and it has to be substituted. When the defect is localized to the inner or outer ring,
the rolling elements, i.e., the rollers or the balls, impact on it at a given frequency, which depends on
the bearing geometry and on the rotation frequency. The ball pass frequency of the outer race (BPFO)
and the ball-pass frequency of the inner race (BPFI) and can be evaluated as [23]

BPFO =
Z fr
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)
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where Z is the number of rolling elements, fr is the inner rotation frequency, d is the rolling element
diameter, D is the pitch diameter, and α is the contact angle. Similarly, if the defect is located on the
cage or on a rolling-element, it will occur every Fundamental Train Frequency (FTF) or Ball Spin
Frequency (BSF), respectively. Similarly, such frequencies can be evaluated as
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The impact of a ball or a roller on a defect generates an impulsive transient, which will be reflected
on both the vibrations and on the acoustic signal delivered by the bearing. Such an impulsive event
excites the resonant frequencies of the structure, and, if the operating conditions are unchanged, it is
cyclically repeated every BPFI, BPFO, FTF, or BSF, depending on the location of the defect. Thus,
the more convenient way to check whether a defect is present or not, is to verify the amplitude of the
frequency spectrum of the acquired signal at the defect fundamental frequencies. It can be noticed that
such defect fundamental frequencies are valid both for ball and roller bearings [24]. Indeed, when a
defect arises, the amplitude of the spectrum at the corresponding frequency will increase. On the other
hand, it is possible to band-pass filter the signal, evaluate its envelope signal and the corresponding
frequency spectrum, and finally to check the amplitudes at the same fundamental frequencies. Indeed,
the frequency spectrum evaluation is the most expensive computational step, thus it should be carefully
optimize referring to the target application. As such data processing must be performed by the module
itself, and that dedicated accelerating hardware, such as FPGA or Application Specific Integrated
Circuit (ASIC), cannot be exploited to keep the cost of the developed module low, a microcontroller
should be used. A discussion on how to reduce the computational effort of the evaluation of the
frequency spectrum is presented in the remainder of this section.

2.2. Optimized Discrete Fast Fourier Transform

As far as the detection of faulty bearing is concerned, the amplitudes of the frequency spectrum
should be evaluated to verify their values at the defect fundamental frequencies, eventually. In order
for the signal processing to be performed on-board, an efficient and accurate algorithm is required.
The most famous and popular one is the Discrete Fast Fourier Transform (DFFT) algorithm [25],
where the Ns elements of the input sequence X[n] are multiplied by constants, the so-called twiddle
factors, and summed together in the consecutive stages of the algorithm. If the length of the input
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sequence Ns is a power of 2, then the resulting complexity is O(Nslog(Ns)). The required operations are
sums and multiplications, which are highly optimized for both integers and floating data in modern
microcontroller architectures, and the computation of the twiddle factors, where sine and cosine
functions are required. Such twiddle factors can be evaluated only once and then stored in a buffer,
as their values only depends on Ns. Even though more performing algorithm exists in terms of required
operations, e.g., the Fast Hartley Transform (FHT), the radix-2 DFFT was exploited in what follows
since it requires the lowest data memory [26], which is an important aspect in a limited-resources
design. As far as the detection of bearing faults is concerned, the input sequence (X[n]) is the readout
of analog sensors, thus its imaginary part is always zero. As a consequence, symmetry properties
can be exploited to reduce the amount of required operations, resulting an optimized DFFT for real
data [27].

As the fault assessment is based on the amplitudes of the spectrum at given frequencies,
the evaluation of such frequency spectrum must be reliable. However, the spectral leakage
phenomenon, which occurs when the sampling frequency, is not an integer number of the populated
frequencies, may result in an underestimation, up to 3 dB, of some spectral components [28]. In a such
a case, a faulty bearing may be detected as a healthy one, resulting in a false negative. To address
this issue, the input sequence (X[n]) can be multiplied by a proper windowing function, so that X[n]
smoothly reaches zero at its boundaries and the spectral leakage phenomenon is strongly reduced.
Different windows, e.g., top flat, Hann-2, Hann-4, or Blackman, may serve this scope.

Aiming to perform such computations on board, the required steps are reported in Figure 1,
where the encircled numbers refer to the step number and where the data array at the input of the i-th
step is named Xi−1. A detail description of each step is reported in what follows.

Window 

function
Pre-FFT stage

X[2i]-> Re(K)

X[2i+1] ->Im(K)

N/2 kernel

DFFT

Post-FFT 

stage

Amplitude 

evaluation

1 2 3 4 5

Real-data 

samples

X0 X1 X2 X3 X4
X5

Positive 
frequency 
spectrum

Figure 1. Flowchart of the optimized algorithm for the frequency spectrum evaluation.

• Step 1 The windowing function, which was previously evaluated for the Ns samples and stored in
the Kwindow[n] array, is multiplied by the input sequence X0[n] of the sampled data, resulting in
the X1[n] output array.

X1[n] = X0[n] · Kwindow[n] (5)

• Step 2 The even components of X1[n] are placed in the real part of X2[n], and the odd ones in the
imaginary part, so that X2[m] is a complex data array of length Ns/2.

Re(X2[m]) = X1[2n], Im(X2[m]) = X1[2n + 1], n = 0, . . . , Ns/2 (6)

• Step 3 The standard Cooley–Tukey radix-2 transform [25] is evaluated on the basis of the X2[m]

array, resulting in X3[m]. It is worth noticing that the length of the input sequence is Ns/2,
which is one only half of the original input sequence (X0[n]).

• Step 4 Real and imaginary parts have to be recombined together to reconstruct the Ns/2 + 1
samples of the positive frequency spectrum as

Re(X4[k]) = Ar[k]Re(X3)[k]− Ai[k]Im(X3)[k] + Br[k]Re(X3)[N − k] + Bi[k]Im(X3)[N − k] (7)

Im(X4[k]) = Ar[k]Im(X3)[k] + Ai[k]Re(X3)[k] + Bi[k]Re(X3)[N − k]− Br[k]Im(X3)[N − k] (8)
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where Ar, Br and Ai, Bi are the real part and the imaginary part of the A, B coefficients evaluated
from the twiddle factors (Wk

Ns
), respectively, as

A[k] =
1
2

(
1− jWk

Ns

)
B[k] =

1
2

(
1 + jWk

Ns

)
(9)

• Step 5 The amplitude of the frequency spectrum can be evaluated, eventually. Such an array has
to be multiply by the inverse of the coherent gain of the exploited windowing function.

2.3. Comparison with Standard Algorithm

To assess the performance of the optimized algorithm with respect to the traditional one, i.e.,
the one non-optimized for real data, the number of multiplications and sums (Noper) was considered
as a figure of merit. Indeed, the number of operations affects both the computation time and the power
consumption, thus it should be minimized, definitely. As in modern microcontroller architecture,
e.g., Advanced RISC Machine (ARM), the sum and the multiplication required a single operation
to be performed, provided that the data is in fixed-point notation [29], it makes sense to consider
their sum. Figure 2 shows the number of operation for different Ns, in case of the traditional DFFT
algorithm (dashed-dot line) and the optimized one for real data (continuous line). Even though step 4
introduces an overhead with respect to the evaluation of a Ns/2 DFFT, the latter outperforms the
former whatever Ns is, with a percentage reduction varying from 29% (Ns = 28) up to 39.4% in the
best case, i.e., Ns = 216.
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Figure 2. Number of operations (sums and multiplications) required to evaluate the discrete fast
Fourier transform (DFFT) according to the classical algorithm (dashed-dot line) and to the optimized
one (continuous line).

3. Proposed Solution

In order for the proposed system to detect a faulty bearing and wirelessly notify a remote controller,
different hardware and software blocks have to be combined together. As the acoustic noise is exploited,
a microphone is required as a transducer, so that its output signal can be sampled and processed by
the microcontroller itself. Then, the optimized DFFT has to be executed to evaluate the frequency
spectrum of the acquired signal, and the subsequent fault detection algorithm determines whether the
rolling bearing is damaged or not. If one or more defects are present, the microcontroller notifies the
remote controller by means of the wireless link, which is based on the Bluetooth Low-Energy standard
protocol. Moreover, the wireless connection allows the remote controller to access and modify the
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configuration of the module on-the-fly, resulting in a highly reconfigurable solution. A schematic
view of the proposed module is shown in Figure 3, and an in-depth description of each block will be
provided in the remainder of this Section.

Rolling

bearing

MEMS

microphone

Figure 3. Scheme of the hardware blocks required by the proposed solution.

3.1. Signal Conditioning and Data Acquisition

A Microelectromechanical System (MEMS) microphone was exploited as a transducer because of
its low cost, small size, and bandwidth. Before being sampled, the analog signal is band-pass filtered.
Such an operation is performed by means of an audio amplifier, in order to filter the high frequency
components that would cause aliasing and to adapt the signal to the Analog-to-Digital Converter
(ADC) input range. The frequency band is [37 Hz, 20 kHz] and the in band gain is approximately 200.
Subsequently, a 12 bit ADC, which is inside the microcontroller and provided with an internal voltage
reference, digitizes the filtered input signal at a sampling frequency fs.

3.2. Frequency Spectrum Evaluation

The computation of the frequency spectrum of the sampled signal is performed accordingly to
the algorithm discussed in the previous section. More precisely, the data may be represented either in
fixed-point (16 bit) or in floating-point (32 bit) notation, but the former allows one to halve the required
memory. Due to the limited size of the memory available on the microcontroller, an external Static
Random Access Memory (SRAM) was added in case the configuration of the system requires Ns > 212.

3.3. Detection Algorithm

The amplitude of the frequency spectrum |X( f )|, which was evaluated in the previous step, has to
be compared against a set of given thresholds for the frequency ranges to be monitored. More precisely,
each range i = 0, . . . , M− 1 is characterized by the frequency interval [ fs,1, fe,i] and by a threshold THi,
as shown in Figure 4. The detection algorithm works as follows; for each range i = 0, . . . , M− 1, if ∀ f ∈
[ fs,1, fe,i], |X( f )| < THi, then no defect occurs; otherwise, such range is pointed one. The monitored
ranges are centered around a specific defect fundamental frequency (BPFO, BPFI, etc.), and provide a
sufficiently large frequency interval to account for uncertainties. As the frequency ranges are affected
by the geometry of the bearing and on its operating condition, whereas the thresholds are related to
the noise floor, which is strictly related to the particular environment, they can be entirely configured
using the wireless link, thus giving the maximum flexibility to the designed system.



Appl. Sci. 2020, 10, 5645 7 of 14

f

|X(f)|

Monitored

Thresholds

ranges

THi

THj

fs,i fe,i fs,j fe,j
Figure 4. The i-th and the j-th range are shown, alongside their thresholds (THi, THj) and frequency
intervals. In such a case, a fault is detected in the j-th range.

3.4. Bluetooth Low-Energy Interface

As far as the wireless link is concerned, a standard protocol in the 2.4 GHz Industrial, Scientific,
and Medical (ISM) band was preferred rather than a proprietary one, which would be more thought
to integrate with other devices and systems. Among the other standard protocols operating in
the same frequency band, the Bluetooth Low-Energy (BLE) was chosen because of its elevated
spread, which results in low-cost radio transceivers, several compatible devices, and its good radio
performance (10 m range). The fundamental entity that can be transferred between two BLE devices
is the called characteristic, and it is at least 16 byte longer [30]. As the read (the write) of a single
characteristic requires a significant overhead from the reader (writer) point of view, the number of
characteristics should definitely be minimized. Taking into account such two aspects, a set of four
characteristics, i.e., configuration, command, ranges set-up, and over-threshold peaks, was adopted.
The configuration characteristic allows one to control fs, Ns, and the windowing function, the command
one to set the module in idle state, to force a signal acquisition and the postprocessing, or to perform the
fault detection cyclically. The parameters of the ranges to be monitored, as well as their number, can be
modify through the ranges characteristic, and finally the amplitudes of the frequency spectrum that
exceed the given thresholds, and the corresponding frequencies, are pointed out in the over-threshold
peaks characteristic. The list of parameters accessible through the BLE interface are listed in Table 1,
and the size of transferred data in Table 2. Moreover, the exploitation of the notification feature allows
the proposed module to notify the remote controller only when the over-threshold peaks characteristic
changes, meaning that the remote controller is not required to continuously read such characteristic.

Table 1. Configurable parameters via Bluetooth Low-Energy.

Parameter Value

Sampling frequency ( fs) 100 Hz to 50 kHz
Number of samples (Ns) 256–65832

Windowing function No window, Hann-2, Hann-4, top flat, Blackman
How often acquire and process signal 30 s to 100 min

Parameters of i-th range THi, fs,1, fe,i

Table 2. Size of characteristics transferred via Bluetooth Low-Energy.

Characteristic Size

Configuration 12 bytes
Command 3 bytes

Range setup 6 bytes for range, maximum 21 ranges
Over-threshold peaks 6 bytes for peak, maximum 21 peaks
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4. Results and Discussion

Aiming to assess what presented so far, a prototype of the proposed module was realized and
experimental tests were carried out to verify the performance of the optimized DFFT algorithm and
the fault detection capability in the presence of environmental noise. The corresponding results are
discussed in the remainder of the paper.

4.1. Proposed Prototype

A Printed Circuit Board (PCB) was designed and realized to include all the required components
for the module to work as a stand-alone system. The module is provided with a power supply unit,
which regulates the DC input supply voltage, ranging in [8 V, 16 V], to a lower value (3.3 V) to power all
the components. No data cables are required since both configuration and data transfer are outsourced
to the wireless link. A microcontroller, with a on-board BLE transceiver, was exploited to minimize the
number of components. The overall dimensions of the module, i.e., 47.25 mm × 32.35 mm, allow it for
being located in a confined space.

4.2. FFT Accuracy

As the algorithm for the fault detection is based on the exceeding of given thresholds in a set
of frequency ranges, the accuracy of the acquisition channel and of the spectrum evaluation plays a
key role in the capability of the system to detect faults when they occur, avoiding false positives and
false negatives. In order to characterized the acquisition channel and the DFFT algorithm in terms
of frequency offset and amplitude error, a sinusoidal signal was applied to the ADC input, it was
sampled, and the frequency spectrum evaluated by the microcontroller. The sinusoidal input signal
is characterized by 1 kHz fundamental frequency ( f0,nom), 600 mV average value, and 700 mV peak
amplitude (A0,nom). In such a way, the input range of the ADC is almost entirely covered, and the
quantization error is minimized. The nominal parameters of such a signal were measured using
a 6-digit multimeter and a counter, and compared against the ones extracted from the frequency
spectrum evaluated by the microcontroller, i.e., f0,µC and A0,µC. The relative errors affecting the

fundamental frequency (ε f0
r ) and the amplitude of the fundamental tone (εA0

r ) were evaluated as

ε
f0
r = 100 ·

f0,µC − f0,nom

f0,nom
, εA0

r = 100 ·
A0,µC − A0,nom

A0,nom
. (10)

More precisely, different number of samples (Ns), sampling frequencies ( fs), and different
windowing functions were considered, resulting in the graphs shown in Figure 5 (no windowing),
Figure 6 (Hann-2 window), and Figure 7 (top flat).

As far as ε
f0
r is concerned, higher is Ns, lower is ε

f0
r independently from the sampling frequency,

whereas, in case of low Ns, the highest fs = 50 kHz (star markers) corresponds to the highest error.
Indeed, the εA0

r is strongly affected by the windowing function, as in the worst case (no windowing)
such error may reach −35%, while for the top-flat window, it is within ±0.6%. Such a result validates
the exploitation of the windowing technique, since it is crucial for a proper estimation of the amplitude
of the frequency spectrum.

4.3. The Environmental Noise

In practical applications, the acoustic noise delivered by the rolling bearing is combined with the
environmental noise, which causes the detection of faulty bearing to be adversely affected. Thus, it is
important to include such a noise in the experimental validation of the proposed module. Indeed,
in most works, the proposed monitoring techniques are tested considering healthy and faulty rolling
bearings, which are connected to an electric motor and a load. However, the environmental noise is
almost always neglected. Thus, in this work a different experimental setup is proposed. The wheel
bearings of a car, which connect the wheel hubs to the constant velocity joints, are used as a test case



Appl. Sci. 2020, 10, 5645 9 of 14

in what follows. Such an application requires a highly reliable monitoring system, indeed also the
driver safety can be affected by a damaged bearing. Moreover, such test case represents an harsh
environment from the acoustic point of view, since the background noise is time-independent and it
really depends on the driving conditions. As a consequence, the fault detection may be challenging.
By means of an extra microphone patched on the car body over the front-left wheel, the sound of a
moving vehicle was recorded in different scenarios. The frequency spectrum of such noise (An) was
evaluated using Matlab and shown in Figure 8. More precisely, Figure 8a refers to the car started but
not moving, Figure 8b to a straight with asphalt, and Figure 8c to a straight with gravel. It is worth
noticing that such spectra are significantly populated up to 1 kHz, and that in every driving condition
the environmental noise is far from being closed to a white noise.
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Figure 5. Relative error affecting the (a) fundamental frequency and (b) amplitude of the input
sinusoidal signal, when no windowing is used.
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Figure 6. Relative error affecting the (a) fundamental frequency and (b) amplitude of the input
sinusoidal signal, when the order 2 Hann window is used.
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Figure 7. Relative error affecting the (a) fundamental frequency and (b) amplitude of the input
sinusoidal signal, when the top flat window is used.

0 500 1000 1500

(a)   Frequency (Hz)

0

2

4

6

A
n
 (

 1
0

- 3
)

0 500 1000 1500

(b)    Frequency (Hz)

0

5

10

A
n
 (

 1
0

- 3
)

0 500 1000 1500

(c)    Frequency (Hz)

0

2

4

6

A
n
 (

 1
0

- 3
)
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(a) the car is started but not moving, (b) the car is traveling along a straight with asphalt at 60 km/h,
and (c) the car is traveling along a straight with gravel at 20 km/h. The amplitude of the time-domain
signal was normalized between [−1,1].
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4.4. Two Tones Plus the Environmental Noise

Starting from the recorded environmental noise in the case of a car traveling along a straight
with asphalt, two distinct tones were added in order to simulate the presence of an inner and
outer race defect. More precisely, a tapered roller bearing [31] was considered and its dimensions
exploited to evaluate the BPFI and BPFO fundamental frequencies, resulting in BPFO = 1115 Hz
and BPFI = 197.6 Hz. The amplitude of such two tones was not constant, but different values were
tested. In a such a way, it was possible to emulate different defect sizes. The average of the amplitude
spectrum of the environmental noise in the range of 100 Hz to 1 kHz, named Aaver, was evaluated,
and the amplitude of the two tones was defined according to

Atones = Aaver

(
1 + 10

AdB
20

)
. (11)

Thus, the environmental noise containing the two tones, which emulate a bearing with two
defects, was reproduced closed to the proposed module, as shown in Figure 9, by means of a speaker.
The module was configured so that Ns = 16,384, fs = 6 kHz and the top flat window was exploited.
Two ranges, centered around the BPFO and BPFI were considered, in particular THBPFO = THBPFI
= 10 mV and fBPFO,e − fBPFO,s = fBPFI,e − fBPFI,s = 2 Hz. The frequency spectra evaluated by the
modules itself are shown in Figure 10a–d for AdB and are equal to 40, 35, 30, and 25, respectively.
As far as such a configuration is concerned, the proposed module is able to detect the tone at BPFI if
AdB ≥ 30 dB, and the one at BPFO if AdB ≥ 35 dB. Indeed, the detection capability is strongly affected
by the noise floor in the correspondence of the frequency ranges to be monitored.

Developed module

Speaker

To PC

Microcontroller

Figure 9. Test setup including the developed module and the speaker that reproduces the
synthesized sound.
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Figure 10. Frequency spectra evaluated by the developed module in case of 2 tones added to the
environmental noise, for (a) AdB = 40 dB, (b) AdB = 35 dB, (c) AdB = 30 dB, and (d) AdB = 25 dB.
The plus markers refer to the BPFO tone and the cross ones to the BPFI tone.

5. Conclusions

This paper proposed a low-cost and Bluetooth connected module to detect defects in rolling
bearings. The acoustic noise delivered by the bearing to be monitored is acquired by means of a
MEMS microphone and sampled by a microcontroller, which also evaluates the frequency spectrum
of the signal exploiting an optimized version of the Fast Fourier Transform algorithm for real data.
The detection of defects is based on the exceeding of given thresholds in certain frequency ranges. If a
fault is detected, the module notifies the central controller, thus reducing at the minimum the amount
of transferred data and occupying the wireless channel only when it is required. The configuration
parameters of the acquisition process, as well as the frequency ranges to be monitored can be modified
on-the-fly through the wireless link. A prototype of the proposed system was realized, and the relative
errors affecting the evaluation of the frequency spectrum were measured and discussed. It resulted
that the use of a top-flat windowing function allows for an amplitude error within ±0.6% in the case of
a single tone. Then, the wheel bearing of a vehicle was considered as a test case, and the environmental
noise acquired in different driving scenarios. Such recorded noise was used as noise floor for the
simulation of a faulty bearing, and the module successfully detected the damages, provided that the
corresponding fundamental frequencies arose sufficiently from the environmental noise.
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