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Abstract: Address matching is a crucial step in geocoding; however, this step forms a bottleneck
for geocoding accuracy, as precise input is the biggest challenge for establishing perfect matches.
Matches still have to be established despite the inevitability of incorrect address inputs such as
misspellings, abbreviations, informal and non-standard names, slangs, or coded terms. Thus, this study
suggests an address geocoding system using machine learning to enhance the address matching
implemented on street-based addresses. Three different kinds of machine learning methods are tested
to find the best method showing the highest accuracy. The performance of address matching using
machine learning models is compared to multiple text similarity metrics, which are generally used for
the word matching. It was proved that extreme gradient boosting with the optimal hyper-parameters
was the best machine learning method with the highest accuracy in the address matching process,
and the accuracy of extreme gradient boosting outperformed similarity metrics when using training
data or input data. The address matching process using machine learning achieved high accuracy and
can be applied to any geocoding systems to precisely convert addresses into geographic coordinates
for various research and applications, including car navigation.

Keywords: geocoding; machine learning; address; alias

1. Introduction

Addresses are one of several methods that people perceive location as a textual natural language
description. Geographic locations are associated with 80% of the information local government use,
and addresses are related to most of the geographic locations [1]. Especially in urban areas, they are
used to communicate and reference a spatial location through direct and indirect methods [2,3].
Since these addresses serve as a link to locate demographic, social, economic, or environmental
attributes, Geographic Information System (GIS) proves to be a useful tool across application domains.
Integration allows for further analysis and exploring relationships in the context of location, even up
to the individual level [4-7].

Addresses are critical components of geocoding. Geocoding is a process to transform the addresses
into geographic coordinates and has become increasingly important in many fields to locate the
addresses on a map in GIS. The geocoding was initially developed by the U.S. Bureau of the Census
to “allocate population accurately within blocks, census tracts, and other geographic areas, without
the expense of dispatching enumerators to every dwelling unit in the country” [8]. While Global
Positioning System (GPS) may be desirable due to its accuracy, geocoding is regarded as more reliable
since GPS may not always be feasible or affordable [9]. Additionally, geocoding supports an expanded
view of addresses, including not just structured hierarchical definitions of locations, but also building
names, postal codes, and telephone area codes [3]. These days, geocoding has been widely used
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in many different fields and research areas, including transportation, public health, and logistics,
for mapping not only a particular location itself, but also events and phenomena [10-12].

Address matching is an essential process in geocoding [13], where input addresses are matched
with the counterparts in a reference database to get corresponding coordinates eventually from the
matched addresses. This step, however, forms a bottleneck for geocoding accuracy, as precise input is
the biggest challenge for establishing perfect matches [14]. Matches still have to be established despite
the inevitability of incorrect address inputs [15] such as misspellings, abbreviations, informal and
non-standard names, slangs, or coded terms. For example, in the street-addressing system, a street
name ‘Park Avenue’ can have different aliases, such as ‘Park Ave.’, ‘Park Av.". It can have variants
input by different users, and the geocoding system needs to match these aliases with the corresponding
counterparts in a reference database. Regarding geocoding, previous studies widely used similarity
metrics for matching addresses [16,17]. Each similarity metric, however, has its characteristic in
matching addresses showing different performance in different cases, and we need to find a way to
combine such different characteristics for ideally matching addresses correctly.

Thus, this study suggests an address geocoding algorithm using machine learning techniques
to enhance the address matching implemented on street-based addresses. The developed address
geocoding algorithm contains three modules—address parsing, address matching, and address locating.
A regex-based parsing method divides the input addresses into elements of the street-based system.
For the address matching, this study introduces a way to combine similarity metrics using machine
learning to improve performance. We evaluate the suggested address matching, especially the
performance of three machine learning models in the address matching process by comparing to
multiple text similarity metrics, which are present in previous studies for text matching [18]. This study
contributes to the enhancement of geocoding by adopting machine learning techniques for address
matching and will be helpful for relevant geocoding research and applications.

The sections in this paper are structured as follows: Section 2 describes past studies on geocoding.
Section 3 demonstrates the components of the suggested geocoding algorithm. Section 4 deals with the
evaluation of the developed geocoding algorithm, and the findings in this study are discussed and
concluded in Section 5.

2. Overview of Geocoding and Its Advancement

In this section, we will review the general steps involved in geocoding and existing studies on
geocoding and word matching.

2.1. General Steps for Geocoding

As one of the primary functions of a GIS [19], geocoding works to assign positions, such as latitude
and longitude, into textual addresses using a reference database [3,5,10,15,19]. These addresses are
attached to datasets that are applicable across various applications domains; hence by geocoding,
a bridge between spatial and attribute data is established [20]. This association to the geographic
information enables not just visual display through accurate maps, but also the application of more
in-depth spatial analysis [21,22]. This integration strengthens the function of GIS as a vital tool across
various fields of interest such as urban planning and management [13], human activity and movement
studies [5], health [9,23,24], emergency dispatching [7], traffic accidents [12], and management of
administrative data [4].

Generally, the geocoding process includes three steps—parsing, matching, and locating, as shown
in Figure 1 [5]. Previous studies have presented analogous procedures that mostly aim to accept
textual input, perform a preprocessing step to this input, and perform a match to a database to
return coordinate value pairs for position [8,22,25]. Parsing converts unstructured or semi-structured
input addresses into structured ones. This process is crucial in giving out precise location, even if
input addresses or even the address databases are imprecise and vague [3]. Input addresses may
have problems matching due to their unstructured forms. Thus it is essential to capture meaningful
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units of addresses and enhance the quality of these address elements, which is critical in improving
geocoding accuracy [22]. Matching compares and links the structured input addresses to an address
reference database. The address reference database includes the information on the addressing system
to be matched with the input addresses. Locating finds coordinates based on the results from the
matching process.

Structured

Input Location

Matching
Function

results

Parsing Coordinate

Function

Matching
Function

addresses addresses locations

Geocoding
Methods

Address reference
databases

Figure 1. General steps for geocoding.

2.2. Existing Studies on the Advancement of Geocoding and Word Matching Using Machine Learning

Geocoding has been the subject of multiple studies, particularly on the improvement of its process.
Lee (2009) [5] focused on an area-based address geocoding method since street-based address geocoding
methods are limited to Western countries and thus, do not apply to countries with area-based addressing
systems. The suggested area-based address geocoding method was able to define house locations
within a block accurately. In order to do that, this method models the boundaries with block number
and building number range information, and the network distance defines the geographic coordinates
of houses along segments of block polygons using a linear interpolation technique. Furthermore, a 3D
address geocoding method was also proposed based on the 3D indoor geocoding [26]. The 3D address
includes an address for building and an indoor address, such as an apartment number. Especially
for the 3D indoor geocoding, network models of buildings are ideal. The constructed network model
forms the foundation of calculating network distances from an interpolation method and finding
location information in a building. Lee et al. (2017) [27] also suggested a novel idea for 3D indoor
geocoding that utilizes optical character recognition to detect the current indoor location and semantic
queries to determine a destination of interest. Yao et al. (2015) [6] suggested three fuzzy matching
algorithms for Chinese address matching based on a full-text search. They focused more on user input
and result control rather than address standardizations and models, which current researchers pay
attention to. With the three fuzzy matching methods, the address matching engine was able to achieve
higher match efficiency than the traditional database retrieval. In addition, it guaranteed greater
freedom on user input and result control and showed very high accuracy (100%).

Matci and Avdan (2018) [14] proposed a method to standardize addresses to improve geocoding
results. The address data undergo parsing, semantical analysis, and reformatting through the natural
language process. The developed method was tested on 233 primary school addresses using Google
Geocoding API and ArcGIS geocoding APL In addition, the test data were standardized in three
formats—the Turkish National Post Telephone Telegraph, Google, and ArcGIS. The results indicated
that the standardized addresses significantly improved the accuracy of the geocoding results. Especially,
when the addresses were standardized in the Google format and geocoded using Google Geocoding
AP, it showed the highest accuracy (99.1%).

Regarding word matching, some studies suggested ways of using machine learning
methods [13,18,28,29]. Christen et al. (2006) [28] developed a novel geocode match engine with
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arule-based approach to find an exact match or other approximate matches. Especially, hidden Markov
models were adopted to achieve better address standardization accuracy. The developed geocoding
engine achieved 94.94% matches at different levels (address, street, locality). Choi and Lee (2019) [18]
proposed an approach to the alias database management for efficient POI (Point of Interest) retrieval.
The authors adopted Word2vec, a simple neural network structure, for word embedding to convert
text data into the form of numeric vectors. The word embedding is capable of making a machine
learning model understand similar meanings of words. The suggested method determines the match
of a given POI name and the corresponding POI in the alias DB based on text similarity. The most
similar word with the similarity degree of 60% or more is retrieved, and the user confirms whether it is
the correct one. Santos et al. (2018) [29] used supervised machine learning methods for combining
multiple similarity metrics concerning toponym matching. The use of machine learning with multiple
similarity metrics has the benefits of avoiding setting similarity thresholds manually. The authors
showed that the methods based on machine learning outperform the individual usage of similarity
metrics with setting a manual threshold. Lin et al. (2020) [13] introduced a novel address matching
method based on deep learning techniques for identifying the semantic similarity between address
records. The suggested method computed the semantic similarity of the compared address records
for determining whether they match. It was evaluated using the Shenzhen Address Database and
achieved 97% of accuracy outperforming other current address matching methods.

This study proposes an algorithm for accurate and efficient geocoding. For the matching process,
machine learning methods with multiple similarity metrics are used, like Santos et al. (2018) [29].
Compared to Santos et al. (2018) [29], this study introduces more similarity metrics for better
performance of matching. Moreover, the proposed method utilizes a hyper-parameter tuning of
machine learning methods to select the best machine learning method for the matching process.
An alias DB is the source of training data for machine learning methods. Regarding the quality of the
training data, we also apply different ratios of matching and non-matching pairs to understand the
effect of different combinations of the pairs on the performance of matching.

3. Geocoding Algorithm Using Machine Learning Techniques

In this section, we discuss the proposed geocoding algorithm divided into three major
parts—address parsing, address matching using machine learning, and address locating. The input
addresses undergo a parsing process in order to determine which parts of the text belong to each
address component. Then, each of these components undergoes a matching process integrated with a
machine learning method in order to increase matching accuracy. We then compare resulting matches
to a reference database for calculating coordinate information. Figure 2 summarizes this process,
and succeeding sub-sections will discuss these in detail.
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Figure 2. Methodology for implementing the geocoding system using machine learning.
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3.1. Address Parsing

Parsing is the analysis of a sequence of characters and, in particular, breaks given texts into
meaningful pieces. In this paper, we used Korean addresses, based on the road name address system
implemented in 2014. This system follows a hierarchy of administrative units, optionally beginning
with a province name (suffixed by “do”), city (“si”), district (“gu”), that precedes the road name (ending
with “daero”, “ro”, or “gil”, depending on the number of lanes) and building number [30]. In the
developed algorithm, the parsing (left side of Figure 2 and Algorithm 1) divides the input address into
the city, district, road, and building number so that each piece can work adequately in the matching or
locating process. Then, the building number goes through the query building number to decide the
road segment used to compute the geocoded location. The rest of parsed city, ward, and road goes to
the matching component and we match them with the records in the Alias DB.

Regular expressions, or simply Regex, is a programming tool used in many languages such as
Python, Java, Perl, and PHP [31]. Regexes allow expression of patterns and repetitions in texts [32],
so they perform well in detecting parts of an address input. In the case of Korean addresses, they may
be used to identify address elements more flexibly, compared to purely whitespaces as delimiters
(since each element may contain a whitespace in between). Based on the character suffixes used in
Korean Addresses, we constructed a regex to detect characters or numerals for each element from the
raw input of the user.

Algorithm 1 Parsing process

: Input: AddressText

: Output: City, District, Road, Building Number

: Algorithm

: Initialize the parameters of the City, District, Road, Building Number, keys, and match
: define regex_dictionary keys:

city = [province suffix][space] <alphanum.city>[city suffix]

district = [city suffix][space] <alphanum.district>[district suffix]

road = [district suffix][space] <alphanum.road>[maj. rd. suffix][numi[min. rd. suffix]
bldgno = [any alphanum][space] <num.bldgno>[whitespace]

10: for every key in regex_dictionary:

11:  match = Search (AddressText)

12: for every match:

13:  if key == ‘city’”:

14: City = match

15:  else if key == “district’:

16: District = match

17:  else if key == ‘road’:

18: Road = match

19:  else if key == ‘bldgno”:

20: BldgNo = match

3.2. Address Matching Using Machine Learning

The parsed city, district, and road names undergo the address matching using machine learning,
resulting in a set of road segments through the matching process. The address matching process helps
to select a set of road segments to be sent to the address locating process. The city, district, and road
names are matched one or two times in the matching process to find the records in the Alias DB for
geocoding correctly (Algorithm 2 and in the middle of Figure 2).
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Algorithm 2 Address matching process

1: Input: City, District, Road, Traindata

2: Output: MatchedName

3: Algorithm

4: Initialize the parameters of the S = 0, SearchName, Result, SearchResult, Test, OfficialName, and
5: Probs

6: MLT = MachineLearningTrain(Traindata)

7: while (S < 2)

8 ifS=0

9 SearchName = City, District, or Road

10:  elseif S=1

11: SearchName = input(“Input city, dictrict, or road name once again”)
12:  Result = MatchOfficialName(SearchName)

13:  if length(Result) > 0

14: SearchResult = Result

15: §=2

16: else

17: for i = 0 to number of official names

18: Test[i] = GenerateSimMetrics(SearchName, OfficialNamel[i])
19: Probs[i] = MLT.PredictProbability(Test[i])

20: if there is a matched official name having the highest probability in Probs
21: SearchResult = the matched official name

22: else

23: SearchResult =

24: if the matched result is correct

25: S$=2

26: else

27: S=1

28: end while

In the first matching, the city, district, and road names undergo simple matching with their official
names. If there is no identical official name found for the city, district, or road name, the second
matching is subsequently involved using machine learning to supplement the first simple matching.
Before matching using machine learning, we generate training data from the Alias DB, and select the
best machine learning model through the evaluation of 17 text similarity metrics (Table 1) and three
machine learning models. Each record of Alias DB has an official name and the aliases, while the
training data consist of matching pairs and non-matching pairs. The matching pairs refer to the pairs
of one official name and one alias of the official name. On the other hand, the non-matching pairs ae
defined by the aliases and other unmatched official names in the Alias DB. In this study, we tested
different combinations of matching and non-matching pairs for the training data since the accuracy of
matching results may vary depending on the ratio of matching and non-matching pairs consisting
of training data. For matching and non-matching pairs, we used variables calculated using 17 text
similarity metrics to train machine learning models.

Previous studies have widely used similarity metrics for word matching [16,18,33,34].
This methodology uses edit-based and token-based similarity metrics. Edit-based similarity is
more applicable for short phrases and compares only the characters. Hence, it is simple, yet it is
inefficient for long phrases and computationally expensive. On the other hand, token-based similarity
explores text as a set of tokens (words) and is more applicable for long texts.
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Table 1. Seventeen kinds of similarity metrics.

Edit-Based Similarity Metric Token-Based Similarity Metric
Jaro [35] Cosine [36]
Jaro-Winkler [37] Tversky [38]
Jaro-Winkler Reversed [29] Overlap [34]
Jaro-Winkler Sorted [28] Bag [39]
Hamming [40] Jaccard [41]
Mlipns [42] Sorensen_Dice [43]
Stremp95 [37] Monge_elkan [33]
Needleman-Wunsch [44]
Gotoh [45]

Smith_Waterman [46]

Three different kinds of machine learning methods—support vector machine (SVM), random
forest (RF), extreme gradient boosting (XGB)—were tested to find the best method. SVM is a supervised
machine learning method. The goal of SVM is to find a hyperplane in an N-dimensional space that best
separates data points. A hyperplane that has the maximum margin between data points is selected as
the best decision boundary to classify the data points. Given some training data D:

D = {(x;, yi)|x; € R™, yi € {-1,1)}_, 1)

where x; is an m-dimensional real vector, y; is either 1 or —1, indicating the class of input vector x;.
Two parallel hyperplanes (Figure 3) are defined such that w” x + b =1 and w” x + b = —1. Maximizing
the distance between these two hyperplanes defines the maximum-margin hyperplane.

<.

¥

S wex+b=1
wxx+b=0

wxx+b=-1

X
Figure 3. Support vector machine algorithm.

RF is also a supervised machine learning method and built upon decision trees on data points
(Figure 4). It makes predictions from each of the trees with different features and selects the best
solution with majority voting. By majority voting, RF can reduce the over-fitting.

XGB, as a supervised machine learning method, is an implementation of gradient boosted decision
trees for more efficient computation and the increase of performance. In the gradient boosted trees,
each tree in boosting is a weak learner and tries to minimize the errors of the previous tree to make a
strong learner.
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X dataset
N, features N, features N; features
Tree-1 Tree-2 Tree-3
Class B Class A Class B

Majority voting
l

Final class

Figure 4. Random forest algorithm.

We performed a 10-fold cross-validation to evaluate the performance of the matching process.
This method splits the entire data set into 10 sets with equal size, and selects one single set as a test set.
Remaining sets become training sets, and the cross-validation is repeated 10 times by using each test
set only once. The performance of three machine learning models was compared with each similarity
metric to see whether the machine learning models outperform conventional methods.

To understand the minimum number of similarity metrics needed and choose the best model,
we tested different numbers of similarity metrics. To do this, first, different similarity metrics were
arranged in descending order by their accuracy and grouped into 2-17 based on the order. Second,
the least number of similarity metrics showing higher accuracy of machine learning models than all
the 17 similarity metrics was determined (Figure 10). Last, we chose the best model with the minimum
number of similarity metrics that shows the highest accuracy among the three machine learning models.
We measured accuracy for each similarity metric and the three different machine learning models.
Especially, for each similarity metric, a threshold value needs to be set, determining whether a given
pair of texts matches or not. Therefore, to find the optimal threshold, different thresholds need to be
tested (Algorithm 3). This methodology tests different threshold values ranging from 0.00 to 1.00 by the
increment 0.05 for each similarity metric and sets the optimal threshold that has the highest accuracy.

Algorithm 3 Choosing optimal thresholds for similarity metrics

: Input: Traindata, Threshold
: Output: OptimalThreshold
: Algorithm
: Initialize the parameters of the Predicted, Label, Acc, Alpha, and OptimalThreshold
: for j = 0 to number of similarity metrics
for k = 0 to length(Threshold)
for i = 0 to length(Traindata)
if Traindata[i][j] >= Threshold[k]
Predicted[i] = 1
10: else
11: Predicted[i] = 0
12: Acclk] = AccuracyScore(Label, Predicted)
13: Alphalk] = Threshold[k]
14:  MaxIndex = Argmax(Acc)
15:  OptimalThreshold[j] = Alpha[MaxIndex]
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When the first and second matching do not find a matched official name, the city, district, or road
name is input manually and then the matching is undertaken once again. A set of road segments results
from the end of the address matching process. As a result of the matching, candidates of road segments
are selected and sent to the locating process with the parsed building number. The combination of
road segments and the building number can help to narrow down to a final road segment necessary
in locating.

3.3. Address Locating

The U.S. Census Bureau performs address locating with address ranges [47]. As illustrated in
Figure 5, each record in the address database includes two address ranges for the left and right sides of
the road. The left side has odd-numbered addresses, and the right side has even-numbered addresses.
For example, geocoding the address with the building number ‘105" means we must first identify how
this building number was assigned. In some territories, such as in the United States, the Bureau assigns
this number from the address number range of the start and end nodes located at the centerline of
the roads intersecting the concerned road segment. The building number arises from interpolation.
Since the numbering begins at the centerlines, not within the segment itself, the widths of these
perpendicular roads containing the start node, or start width, and the end node, or end width, must be
taken into consideration. Therefore, to geocode this building’s address, its location is approximated
on the left side (odd-numbered addresses) of the road ‘Park Avenue’ using a linear interpolation
method. In order to adjust the aforementioned road’s length, the road types of the adjacent roads
(i.e., road containing the start node and the one containing the end node) are taken into consideration.
Figure 5 (Left) illustrates this case.

End offsat End offsst

. 101 - 108 107
103 107 109
Side offset
i et o M ghoi : : LEFT iHE)
= -
50 Park Avene RIGHT 013 F 100 Main Street  RIGHT 1068
3 & “ »
102 104 106 108 100 102 104 106
Actress 08 Address Range Address DB Address Range
LEFT RIGHT
LEFT RIGHT
Start Fnd Start End
ID .. RoadName FROMR TOR  FROML TO.L Start fnd Start_£nd
1 . Park Avenue 101 It 100 110 ID ... ReadName FROM R TOR FROM L TOL
1 .. Main Street 101 107 100 106

Figure 5. Address locating that assigns building numbers proportionally along roads (Left) or
considering end offsets (Right).

In some cases, such as in Korea, the start and end nodes are aligned with two end sides of a road
segment instead of intersection points (right side of Figure 5). With this, it is apparent that the segment
is cut off by half of the length of connected roads on both sides, shortening the total actual segment
distance by twice of this end_offset value. Since 10 m shows the highest accuracy of geocoding among
5,10, and 15 m (not presented here), this study used this value for the end_offset. From the address
database, the values for the X and Y coordinates for the start and end of the road segments, Xfroms
Yfroms Xto, Yto, WeTE obtained, and these values were used for the bearing angle 8o. Using the end offset
value and 0o, we calculated the X and Y coordinates, Xsart, Ystart, Xend, Yend, Of the shortened segment,
after cut-off. Since the segment cut-off only signifies the width of the road perpendicular to the road
segment in concern, the Xstgrr and yssa+ corresponding to the beginning of the shortened segment, is still
not in the middle of the sub-segment corresponding to the first building number, for example, ‘101’ in
Figure 5 on the right side. Hence, after interpolating for the location of building number ‘103’ along
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the segment, the midpoint was calculated using the quantity mid_offset. This midpoint is the position
on the segment directly in front of the building’s center.

In both types of addresses, the geocoded point’s final location (x, y) is inside a building or a
parcel. This final point is calculated along a pre-defined perpendicular offset, perp offset in Algorithm 4,
away from the road. The offset can be a fixed value, like 5 m, 10 m, or a combination of different
values considering road types, having an azimuth Az with a value 90° away from 6o clockwise, if the
building is on the right, or counterclockwise if the building is on the left. In this study, the offset is a
combination of different values considering road types. Since the width of the road can vary according
to different road types, we expect the combination offset to work well to move addresses on a building
or a parcel correctly. Within the context of roads in Korea, the wide road type has a width of 30 m.
Similarly, we assigned a width of the narrow roads with less than four lanes to 6 m, and the others to
20 m. Figure 6 illustrates this process and the procedure that follows details this.

\ Interpolated distance

Figure 6. Locating the coordinates of the geocoded address.

Algorithm 4 Choosing optimal thresholds for similarity metrics

: Input: num, addressDB, perp_offset, mid_offset, end_offset,

: Output: x, y

: Algorithm

: Initialize the parameters of the direc, 6 interpolate and Az

: if num is ODD

from addressDB get left side MinRange, MaxRange

direc =1

: else

from addressDB get right side MinRange, MaxRange

10:  direc=0

11: from addressDB get Xio, Xfom, Ytor Y from

12: 8¢ = calculateSouth Azimuth (Xto, Xfrom, Yeo, Yfrom)

13: Xstart = Xprom — end_offset*sin(Bp)

14: Ysiart = Yfmm — end_offset*cos(8)

15: interpolate = (num-MinRange)/(MaxRange-MinRange)

16: Az =0y - 90

17: x = Xstart + (0)*(Xeng - Xstart) — mid_offset*sin(Az) — direc*perp_offset*sin(Az)
18: y = Ystart + ()*(Yeng - Ystart) — mid_offset*cos(Az) — direc*perp_offset*cos(Az)

© 0N U A WN e
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4. Experimental Evaluation

This section presents three different kinds of experiments, as illustrated in Figure 7, to compare
the performance of geocoding using machine learning with simple matching and similarity metrics.
The input address data commonly go through the address parsing, matching, and locating processes.
Experimental case 1 presents address matching with simple matching. This case does not use similarity
metrics or machine learning for the address matching, but only simple matching described in Section 3.2.
Experimental case 2 uses a similarity metric for the address matching. This case tests one similarity
metric with the highest accuracy and another with the lowest accuracy in edit-based and token-based
similarity metrics, respectively, to explore the ranges of performance. The Experiment case 3 uses the
address matching with machine learning. For machine learning, we generated training data from the
Alias DB.

1

1 _ . : = 1

i Training using |, Training 1 -

} wiserine leaming :Experlmental case 3
I

1
1
Similarity metric || Experimental case 2
I
d

L

Input
’ data ‘ Address parsing Address matching Address locating
1,2, or3

Figure 7. Three different kinds of experiments in this study.

For the input data, 1524 input addresses were selected and used as test data. In the input data,
we assumed that city and district names were correctly input, but the road names were input with
spelling errors and mistakes. In most cases, there are 25%—75% of perfect matches in input data [8],
and this study generates and tests three kinds of input data with different percentages of perfect
matches. Input data 1 has 30% of correct matches, Input data 2 has 50% of correct matches, and Input
data 3 has 70% of correct matches. For the correct matches, we used the standard addresses obtained
on the official address website and made Input data 1, 2, and 3 by changing the number of the correct
addresses. To make incorrect matches in Input data 1, 2, and 3, we made wrong addresses by randomly
inserting a space, special character, number, or typo, or removing a character(s) in addresses.

Figure 8 illustrates the road network data (address database in Figure 2) and its schema. It consists
of road segments in Gyeonggi Province, Suwon City, Paldal District, Korea. The database schema for
the road network contains the road name (roadname) and building numbers for address ranges. From R
is a start building number, and To R is an end building number for the right side of the road. From L is
also a start building number, and To L is an end building number for the left side of the road. From X,
FromY, To X, and To Y are coordinates of both ends of the road segment.
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@ Node

— RoadCenterline

1
1 Kilometers

class Node{ class Edge{
Int Node_ID, Int Edge_ID;
Double x Double fength,

} Node start node

Node end node,

class Network{ String roadname,
Int Network 1D, Int From_R,
Node ArrayNode = new Nodel[], Int To_R
Edge Arrayfdge = new Edgel); Int From_L;

} Int 7o_4;

Double From_ X
Double From V¥
Double 7o X
Double 7o_¥

}

Figure 8. Road network data and its schema.

4.1. Experimental Case 1: Address Matching without Any Similarity Metrics

The input data go through the address parsing process first. The parsing process divides the input
address data into city, district, road, and building number. Since we assume that there are no errors or
mistakes in the city and district names and building numbers, this methodology simply matches them
without a similarity metric for further processes.

The address matching without any similarity metrics shows 71.78% of accuracy when Input data 3
with 70% of correct matches are used (Table 2). As the percentage of correct matches in the input data
increases, the accuracy also rises as expected. Mismatched addresses are addresses matched with
incorrect addresses, whereas no addresses have matched with the unmatched addresses. Since matching
for aliases with official names in the simple matching is impossible without any similarity metrics,
there is no mismatched input address. Instead, there is 28.22% of unmatched input addresses in Input
data 3. After that, the address locating process geocodes all the 1524 input addresses, as illustrated in
Figure 9. A total of 32.74% of input addresses are geocoded on corresponding parcels using Input
data 3. The same process geocoded the rest of the addresses outside the corresponding parcels.

In order to understand positional accuracy, the distances between all input addresses and
corresponding parcels were also calculated and explored, excluding mismatched addresses, which may
have considerable distances. On average, the geocoded points are 4.43 m further away from their
corresponding parcels using Input data 3. As the percentage of correct matches increases from Input
data 1 to Input data 3, the mean distance decreases because the number of addresses geocoded on
corresponding parcels, which has 0 m distance, rises.
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Table 2. Performance of address matching process without any similarity metrics, percentage of
geocoded input addresses on corresponding parcels, and distances between geocoded addresses and
the corresponding parcels.

Matched Input Address Mismatched Input Address  Unmatched Input Address

Input data 1 * 34.12% 65.88%
Input data 2 * 52.82% 0% 47.18%
Input data 3 * 71.78% 28.22%
Geocoded on Geocoded Outside Mean Distance + Standard
Corresponding Parcels Corresponding Parcels Deviation
Input data 1* 15.09% 84.91% 453 +7.12m
Input data 2 * 25.20% 74.80% 445+7.73m
Input data 3 * 32.74% 67.26% 443 +743m

* Input data 1: 30% of correct matches; Input data 2: 50% of correct matches; Input data 3: 70% of correct matches.

Geocoded
® address

Parcel

—Road

Figure 9. Geocoded 1524 input addresses in Gyeonggi Province, Suwon City, Paldal District, Korea.

4.2. Experimental Case 2: Address Matching with a Similarity Metric

In the address matching with a similarity metric, we tested Jaro-Winkler Sorted and Mlipns
in edit-based similarity metrics, and Tversky and Monge-Elkan in token-based similarity metrics.
Among the four metrics, Jaro-Winkler Sorted and Tversky, which have the highest accuracy when
training data are used (Table 5), also achieve higher accuracy over 89% using Input data 3 than the
other two metrics. Mlipns and Monge-Elkan have approximately 14% lower accuracy and 4-5 times
more mismatches than Jaro-Winkler Sorted and Tversky, as shown in Table 3. The accuracy of Mlipns
and Monge-Elkan becomes much lower than Jaro-Winkler Sorted and Tversky in Input data 1 and 2
than Input data 3. Regarding the quality of matches, Monge-Elkan has higher mismatched addresses
than Mlipns, which means that it tries to match similar incorrect names more times. In total, 38.71% of
all the input addresses are present on the corresponding parcels with the side offset in Jaro-Winkler
Sorted with 70% of correct matches in input addresses, and the rest of addresses (61.29%) are outside
corresponding parcels.
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Table 3. Performance of address matching process with a similarity metric, percentage of geocoded
input addresses on corresponding parcels, and distances between geocoded addresses and the
corresponding parcels.

Matched Input Address Mismatched Input Address  Unmatched Input Address

Jaro-Winkler Sorted 81.23% 8.66% 10.11%
Mlipns 40.55% 39.50% 19.95%
I t data 1*
Tversky nput data 80.84% 8.53% 10.63%
Monge-Elkan 42.71% 45.41% 11.88%
Jaro-Winkler Sorted 85.30% 6.76% 7.94%
Mlipns 57.48% 27.17% 15.35%
I t data 2*
Tversky nputdata 84.91% 6.63% 8.46%
Monge-Elkan 58.86% 33.60% 7.55%
Jaro-Winkler Sorted 89.76% 4.27% 5.97%
Mlipns 74.74% 15.09% 10.17%
Input data 3*
Tversky put data 89.37% 413% 6.50%
Monge-Elkan 75.79% 21.26% 2.95%
Geocoded on Geocoded Outside Mean Distance +
Corresponding Parcels Corresponding Parcels Standard Deviation
Jaro-Winkler Sorted 34.51% 65.49% 4.40 +7.06 m
Mlipns Input data 1* 17.65% 82.35% 450 £ 6.95m
Tversky P 34.32% 65.68% 4.39+7.02m
Monge-Elkan 18.11% 81.89% 5.12+8.03m
Jaro-Winkler Sorted 37.01% 62.99% 442 +725m
Mlipns Input data 2* 26.71% 73.29% 449 +7.63m
Tversky P 36.81% 63.19% 441+720m
Monge-Elkan 26.71% 73.29% 4.84 £ 8.07m
Jaro-Winkler Sorted 38.71% 61.29% 445 +7.26m
Mlipns Input data 3* 33.46% 66.54% 447 £740m
Tversky 38.52% 61.48% 444+722m
Monge-Elkan 33.46% 66.54% 4.62+7.57m

* Input data 1: 30% of correct matches; Input data 2: 50% of correct matches; Input data 3: 70% of correct matches.

The mean distances of Jaro-Winkler Sorted and Tversky are around 4.40 m, which is lower
than Mlipns and Monge-Elkan when using Input data 1. Tversky has the lowest mean distance,
whereas Monge-Elkan shows the highest mean distance in all the three kinds of input data.

4.3. Experimental Case 3: Address Matching Using Machine Learning

For the address matching using machine learning, the Alias DB and training data derived from
the Alias DB are needed. The Alias DB has one official name and its four aliases. We established
four aliases systematically based on the rules of making alias attributes [18], as shown in Table 4. For
instance, in Alias 1, a space is inserted after the first two characters. For Alias 2, a similar character
replaces the first or second character. The Alias DB has 352 records for the set of official road names
and their four aliases.

Table 4. Four attributes of address aliases.

Attribute
Aliasl Case using one space in official name
Alias2 Case where the official name has only one character removed
Alias3 Case where the official name has two characters removed
Alias4 Case where the official name has only one misspelling

Training data consisted of matching pairs and non-matching pairs, as described in Section 3.2
and had 1750 records. For matching pairs, each official name is paired with itself and each alias to
calculate similarity values using seventeen similarity metrics. Additionally, we paired an official name
and its four aliases with another similar official name, to make non-matching pairs. The reason why
we chose similar names for non-matching pairs is to increase the performance of machine learning
models when distinguishing a name against its similar form. One example of the non-matching
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pairs is <Hyowon 94th street, Hyowon 9th street>. We generated and tested three kinds of training
data consisting of 20% of matching pairs and 80% of non-matching pairs (Training data 1), 50% of
matching pairs and 50% of non-matching pairs (Training data 2), or 80% of matching pairs and 20% of
non-matching pairs (Training data 3). The training data have a column ‘Matching’ used as a label for
training, which provides information on whether the records are the matching pairs (Matching: 1) or
non-matching pairs (Matching: 0).

In the address matching, to choose the best machine learning model, the performance of three
machine learning models was compared with the matching without any similarity metrics and
17 similarity metrics using training data through the model evaluation and selection. Without any
similarity metrics, matching shows 85% of accuracy using Training data 1 and 37% of accuracy using
Training data 3 (Table 5). As the ratio of matching pairs is becoming more substantial, the matching
accuracy without similarity metrics becomes smaller too because the matching only identifies the same
word pairs, and this method cannot regard similar words as identical. Among different similarity
metrics, Overlap shows the highest accuracy using Training data 1 (95%), whereas Jaro-Winkler Sorted,
Tversky, and Jaccard show the best accuracy using Training data 3 (96%). Most of similarity metrics
show the highest accuracy in Training data 3 when compared to Training data 1 and 2, which is opposite
to the matching without similarity metrics, possibly because the similarity metrics can match similar
words, and the Training data 3 has the highest percentage of matching pairs with aliases. However,
when the training data are 50% + 50% pairs and are not biased to the matching or non-matching
pairs, many similarity metrics have the lowest accuracy. It indicates that it is difficult for similarity
metrics to successfully identify both matching and non-matching pairs well when the matching and
non-matching pairs are of equal parts in the training data.

Table 5. Performance of address matching without any similarity metrics, 17 similarity metrics, and
three machine learning methods.

Method Training Data 1 * Training Data 2 * Training Data 3 *
Matching without similarity metrics 85 61 37
Jaro 89 92 95
Jaro-Winkler 89 85 92
Jaro-Winkler Reversed 92 90 95
Jaro-Winkler Sorted 91 91 96
Hamming 85 67 80
Mlipns 58 59 80
StrCmp95 89 87 94
Needleman_Wunsch 85 68 84
Gotoh 85 81 90
Smith_Waterman 85 76 87
Cosine 89 89 94
Tversky 90 91 96
Overlap 95 89 92
Bag 85 80 90
Jaccard 90 91 96
Sorensen_Dice 89 89 94
Monge-Elkan 87 63 80
SVM 100 99 97
RF 100 99 98
XGB 100 100 98

* Training data 1: 20% of matching pairs and 80% of non-matching pairs; Training data 2: 50% of matching pairs and
50% of non-matching pairs; Training data 3: 80% of matching pairs and 20% of non-matching pairs.

Three machine learning models have higher accuracy than all the 17 similarity metrics in the
three kinds of training data with different pair combinations. All the three methods are tuned with
optimal hyper-parameters to achieve the best performance. We performed hyper-parameter tuning
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using a grid search. This method sets a list of parameters, and the range of values for each parameter.
For each classifier, the algorithm attempts every combination of parameters. Then, the best set of
hyper-parameter values was chosen based on accuracy. SVM, RE and XGB have the highest accuracy
using Training data 1 (100%), and it gets a bit lower as the ratio of matching pairs increases. SVM and
RF show 99% of accuracy using Training data 2, while XGB achieves 100%. Using Training data 3,
SVM has 97% of accuracy, whereas RF and XGB show 98%. XGB shows the highest accuracy (100%) in
Training data 2, tuned with 0.05 for learning rate, 400 gradient boosted trees, and 0.7 for subsample
ratio of columns.

Among the three kinds of training data, Training data 3, which shows the lowest accuracy of
machine learning models, was used to test different numbers of similarity metrics and select the best
machine learning model. We chose 97% as the minimum accuracy that all the three machine learning
models need to exceed, which is 1% higher than the highest accuracy of similarity metrics in Training
data 3. We determined different kinds of similarity metrics tested by descending order of their accuracy.
As shown in Figure 10, all the trained models exceed 97% using nine similarity metrics (Jaro-Winkler
Sorted, Tversky, Jaccard, Jaro, Jaro-Winkler Reversed, Hamming, Cosine, Sorensen_Dice, Jaro-Winkler).
Among them, XGB shows the highest accuracy (98.29%) and is the best model with nine similarity
metrics for the evaluation of geocoding.

Accuracy of three machine learning models
depending on the number of similarity metrics (%)

9 93 94 95 96 97 98 99 100

o)

12

Number of similarity metrics

15

18

B S5VM mRF 7 XGB

Figure 10. Accuracy of three machine learning models depending on the number of similarity metrics.

With the trained XGB model, as a result, 96.39% of input addresses are correctly matched through
the address matching process using machine learning (Table 6) in Input data 3. Since some input
addresses include random spelling errors and mistakes that do not abide by the systematic rules,
the accuracy becomes lower than the results in Table 5. Regarding the quality of address matching,
there is 1.25% of mismatched addresses and 2.36% of unmatched addresses in Input data 3. Results show
that 40.94% of all the input addresses are geocoded on the corresponding parcels with the side offset,
and the rest of the addresses (59.06%) are outside corresponding parcels. The percentage of the
addresses geocoded on corresponding parcels is not very different in three kinds of input data with
different ratios of correct matches.
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Table 6. Performance of address matching process with a similarity metric, percentage of geocoded
input addresses on corresponding parcels, and distances between geocoded addresses and the
corresponding parcels.

Matched Input Address Mismatched Input Address  Unmatched Input Address

Input data 1 * 95.74% 1.90% 2.36%
Input data 2 * 96.33% 1.31% 2.36%
Input data 3 * 96.39% 1.25% 2.36%
Geocoded on Geocoded Outside Mean Distance +
Corresponding Parcels Corresponding Parcels Standard Deviation
Input data 1* 40.62% 59.38% 444 +7.09m
Input data 2 * 40.94% 59.06% 448 +£721m
Input data 3 * 40.94% 59.06% 447 £721m

* Input data 1: 30% of correct matches; Input data 2: 50% of correct matches; Input data 3: 70% of correct matches.

On average, the geocoded points are 4.44 m further away from their corresponding parcels in
Input data 1. The mean distance of Input data 1 is lower than the other two kinds of input data
because a few addresses geocoded with long distances are unmatched, so the evaluation excludes
the distances of these addresses. The 4 m distance on average with 7 m standard deviation is similar
to GPS positional accuracy. GPS positional accuracy ranges from 4.4 to 10.3 m under an urban
environment [48], so considering this, the developed geocoding system is applicable in some domains,
like GPS-equipped car navigation.

4.4. Comparison of the Results of Three Experimental Cases

Table 7 and Figure 11 show the results of all the three experimental cases. The accuracy of the
address matching with or without similarity metrics and machine learning increases along with
the ratio of correct matches, which increases from Input data 1 to Input data 3. Results show that
address matching using machine learning outperforms the matching with or without similarity metrics.
Notably, the address matching using XGB is 7% higher than Jaro-Winkler Sorted and Tversky and
21% higher than Mlipns and Monge-Elkan when using input data with 70% of correct matches.
When input data have 30% of correct matches (Input data 1), the difference of accuracy between XGB
and Jaro-Winkler Sorted and Tversky becomes 14%, which is two times more than input data with 70%
of correct matches. Further, the difference of accuracy between XGB and Mlipns and Monge-Elkan
becomes 53-55%, which is 2.5 times more than input data having 70% of correct matches. It indicates
that the performance of Mlipns and Monge-Elkan drops more than Jaro-Winkler Sorted and Tversky
as the percentage of correct matches in the input data decreases.

Table 7. Accuracy of address matching in three experimental cases.

Experimental Case Input Datal*  InputData2*  InputData3*
Experimental case 1 34.12% 52.82% 71.78%
Jaro-Winkler 81.23% 85.30% 89.76%

Sorted

Experimental case 2 Mlipns 40.55% 57.48% 74.74%
Tversky 80.84% 84.91% 89.37%
Monge-Elkan 42.71% 58.86% 75.79%
Experimental case 3 XGB 95.74% 96.33% 96.39%

* Input data 1: 30% of correct matches; Input data 2: 50% of correct matches; Input data 3: 70% of correct matches.
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Figure 11. Accuracy of address matching in three experimental cases.

The performance of XGB is consistently high when compared to address matching with or without
similarity metrics. The accuracy of XGB is 95-96% across input data with different percentages of correct
matches, whereas the accuracy of address matching with or without similarity metrics is relatively low
and varies more. Especially, Jaro-Winkler Sorted and Tversky vary from around 80% in input data
with 30% of correct matches, to 89% in input data with 70% of correct matches. When XGB gains 1%,
Jaro-Winkler Sorted and Tversky change 9%. As a result, the address matching using machine learning
is more stable and accurate to use for geocoding than simple matching or matching with a similarity
metric. Combining the capabilities of various similarity metrics using machine learning is better than
using each similarity metric for geocoding.

Further, among the four kinds of similarity metrics, Jaro-Winkler Sorted and Tversky are more
consistent across input data with different ratios of correct matches than Mlipns and Monge-Elkan.
When Jaro-Winkler Sorted and Tversky vary 9%, Mlipns and Monge-Elkan change approximately
34%. Jaro-Winkler Sorted and Tversky, which have the highest accuracy when using training data,
also achieve high accuracy in input data and are found to be less sensitive to the proportion of
correct matches in address matching. On the other hand, Mlipns and Monge-Elkan in edit-based and
token-based similarity metrics, which have the lowest accuracy when using training data, also show low
accuracy and are found to be more sensitive to the proportion of correct matches. Thus, using Mlipns
and Monge-Elkan is not expected to show consistent performance and not appropriate for accurate
address matching when there are input addresses with different percentages of correct matches.

5. Conclusions

This study suggested an algorithm for accurate and stable geocoding. Address parsing helped to
obtain meaningful units of addresses to send them to the matching process. We introduced machine
learning techniques in order to achieve high accuracy in the address matching process. It was proved
that XGB with the optimal hyper-parameters was the best machine learning method with the highest
accuracy in the address matching process, and the accuracy of XGB outperformed similarity metrics
when using training data or input data. The performance of XGB was also consistent across different
kinds of input data. The address matching process using machine learning was able to deal with
human errors, including spelling errors, in input addresses to match addresses accurately. As a module
in the suggested geocoding system, it can be applied to any other geocoding system to precisely convert
addresses into geographic coordinates for relevant research and applications. The address locating
allowed to narrow down to a road segment from the candidate road segments selected in the address
matching and convert addresses into one geocoded point on a map.
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This study, however, has some limitations. First, the performance of the matching process was
dependent on the quality of the Alias DB. Training data only had 1750 records for matching and
non-matching pairs, which is an insufficient number to make a robust machine learning method.
For each official name, we only made four different kinds of aliases. There may be some excluded
aliases in the Alias DB and training process. Thus, for future work, more matching cases with more
aliases need to be considered in machine learning methods to enhance the robustness of the trained
methods. Second, the proposed algorithm was only applicable for street-based addresses. Apart from
the street-based addresses, there are area-based addressing systems and hybrid addressing systems [5],
and the proposed algorithm did not consider those two addressing systems. Hierarchical area-based
addressing systems are used in Eastern Asia, while China has a hybrid addressing system. In order to
apply to various countries, we suggest the expansion of the proposed algorithm to embody the two
different addressing systems for future research.

Moreover, we need to put some efforts on decreasing mismatched addresses. Mismatched
addresses ended up being geocoded in other locations far away from correct places and decreased the
positional accuracy of geocoding. Therefore, by finding a way to complement the machine learning
(e.g., adding additional rules), we need to avoid making mismatching. Lastly, this study did not
consider unstructured addresses in the parsing step of the geocoding. This study assumed that the
input addresses are structured and normalized, and no error occurred in the parsing process. Although
machine learning techniques in the matching process can handle abbreviations, misspellings, and
misplacements, to achieve high performance of the geocoding, the normalization, like removing
punctuation and standardization is necessary to some extent [49]. Therefore, future work needs to
strengthen the parsing process.

Author Contributions: Conceptualization, J.L. and K.L.; methodology, K.L. and A.R.C.C.; software, K.L. and
A.R.C.C,; validation, K.L., A.R.C.C. and ].L.; formal analysis, K.L. and A.R.C.C.; investigation, K.L.; resources, K.L.;
data curation, K.L.; writing—original draft preparation, K.L. and A.R.C.C.; writing—review and editing, A.R.C.C.
and J.L.; visualization, K.L.; supervision, J.L.; project administration, J.L.; funding acquisition, J.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (No. 2017R1D1A1B03028890).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Eichelberger, P. The Importance of Addresses-The Locus of GIS. In Proceedings of the 1993 Conference of the
Urban Regional Information Systems Association, Atlanta, GA, USA, 25-29 July 1993; URISA: Washington,
DC, USA, 1993; Volume 4, pp. 212-222.

2. Chow, E.; Dede-Bamfo, N.; Dahal, K.R. Geographic disparity of positional errors and matching rate of
residential addresses among geocoding solutions. Ann. GIS 2015, 22, 1-14. [CrossRef]

3. Davis, J.C.A,; Fonseca, F.T. Assessing the certainty of locations produced by an address geocoding system.
Geolnformatica 2007, 11, 103-129. [CrossRef] [PubMed]

4. Edwards, S.E; Strauss, B.; Miranda, M.L. Geocoding large population-level administrative datasets at highly
resolved spatial scales. Trans. GIS 2013, 18, 586—603. [CrossRef] [PubMed]

5. Lee, J. GIS-based geocoding methods for area-based addresses and 3D addresses in urban areas.
Environ. Plan. B Plan. Des. 2009, 36, 86—106. [CrossRef]

6. Yao, X, Li, X,; Peng, L.; Chi, T. A novel fuzzy chinese address matching engine based on full-text search
technology. In Proceedings of the 5th International Conference on Computer Engineering and Networks,
Shanghai, China, 12-13 September 2015; Sissa Medialab: Trieste, Italy, 2015; Volume 259, p. 086.

7. Zimmerman, D.L.; Fang, X.; Mazumdar, S.; Rushton, G. Modeling the probability distribution of positional
errors incurred by residential address geocoding. Int. |. Heal. Geogr. 2007, 6, 1. [CrossRef]

8. Drummond, W]. Address matching: GIS technology for mapping human activity patterns. J. Am. Plan. Assoc.
1995, 61, 240-251. [CrossRef]


http://dx.doi.org/10.1080/19475683.2015.1085437
http://dx.doi.org/10.1007/s10707-006-0015-7
http://www.ncbi.nlm.nih.gov/pubmed/32214874
http://dx.doi.org/10.1111/tgis.12052
http://www.ncbi.nlm.nih.gov/pubmed/25383017
http://dx.doi.org/10.1068/b31169
http://dx.doi.org/10.1186/1476-072X-6-1
http://dx.doi.org/10.1080/01944369508975636

Appl. Sci. 2020, 10, 5628 20 of 21

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Ward, M.H.; Nuckols, J.R.; Giglierano, J.; Bonner, M.R.; Wolter, C.; Airola, M.; Mix, W.; Colt, ].S.; Hartge, P.
Positional accuracy of two methods of geocoding. Epidemiology 2005, 16, 542-547. [CrossRef]

Chatterjee, A.; Anjaria, ].; Roy, S.; Ganguli, A.; Seal, K. SAGEL: Smart address geocoding engine for
supply-chain logistics. In Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems—GIS "16, San Francisco Bay Area, CA, USA, 31 October—-3 November 2016;
ACM Press: Burlingame, CA, USA, 2016; pp. 1-10.

Fry, R.; E Rodgers, S.; Morgan, J.; Orford, S.; Fone, D.L. Using routinely collected administrative data in
public health research: Geocoding alcohol outlet data. Appl. Spat. Anal. Policy 2016, 10, 301-315. [CrossRef]
Qin, X,; Parker, S.; Liu, Y.; Graettinger, A.].; Forde, S. Intelligent geocoding system to locate traffic crashes.
Accid. Anal. Prev. 2013, 50, 1034-1041. [CrossRef]

Lin, Y;; Kang, M.; Wu, Y; Du, Q.; Liu, T. A deep learning architecture for semantic address matching. Int. J.
Geogr. Inf. Sci. 2019, 34, 559-576. [CrossRef]

Matcy, D.K,; Avdan, U. Address standardization using the natural language process for improving geocoding
results. Comput. Environ. Urban Syst. 2018, 70, 1-8. [CrossRef]

Gilboa, S.M.; Mendola, P,; Olshan, A.E,; Harness, C.; Loomis, D.P.,; Langlois, PH.; Savitz, D.A.; Herring, A.H.
Comparison of residential geocoding methods in population-based study of air quality and birth defects.
Environ. Res. 2006, 101, 256-262. [CrossRef] [PubMed]

Charif, O.; Omrani, H.; Klein, O.; Schneider, M.; Trigano, P. A method and a tool for geocoding and record
linkage. In Proceedings of the 2010 Second IITA International Conference on Geoscience and Remote Sensing,
Qingdao, China, 28-31 August 2010; IEEE: New York City, NY, USA, 2010; Volume 1, pp. 356-359.

Davis, C.A., Jr.; De Salles, E. Approximate string matching for geographic names and personal names.
In Proceedings of the IX Brazilian Symposium on Geolnformatics, Campos do Jordao, Sao Paulo, Brazil,
25-28 November 2007; INPE: Campos do Jordao, Brazil, 2007; pp. 49-60.

Choi, J.; Lee, ]. Developing an alias management method based on word similarity measurement for POI
application. J. Korean Soc. Surv. Geodesy Photogramm. Cartogr. 2019, 37, 81-89. [CrossRef]

Levine, N.; Kim, K. The location of motor vehicle crashes in Honolulu: A methodology for geocoding
intersections. Comput. Environ. Urban Syst. 1998, 22, 557-576. [CrossRef]

Tian, Q.; Ren, E; Hu, T.; Liu, J.; Li, R;; Du, Q. Using an optimized chinese address matching method to
develop a geocoding service: A case study of Shenzhen, China. ISPRS Int. ]. Geo-Information 2016, 5, 65.
[CrossRef]

Steiner, R.; Bejleri, I; Yang, X.; Kim, D.-H. Improving geocoding of traffic crashes using a custom ArcGIS
address matching application. In Proceedings of the 22nd Environmental Systems Research Institute
International User Conference, San Diego, CA, USA, 7-11 July 2003.

Yang, D.-H.; Bilaver, L.M.; Hayes, O.; Goerge, R. Improving geocoding practices: Evaluation of geocoding
tools. J. Med Syst. 2004, 28, 361-370. [CrossRef]

McElroy, J.A.; Remington, P.L.; Trentham-Dietz, A.; Robert, S.A.; Newcomb, P.A. Geocoding addresses from
a large population-based study: Lessons learned. Epidemiology 2003, 14, 399-407. [CrossRef]

A Whitsel, E.; Rose, KM.; Wood, J.L.; Henley, A.C.; Liao, D.; Heiss, G. Accuracy and repeatability of
commercial geocoding. Am. . Epidemiology 2004, 160, 1023-1029. [CrossRef]

Zandbergen, P. A comparison of address point, parcel and street geocoding techniques. Comput. Environ.
Urban Syst. 2008, 32, 214-232. [CrossRef]

Lee, J. 3D GIS for geo-coding human activity in micro-scale urban environments. In Geographic Information
Science; Lecture Notes in Computer Science; Egenhofer, M.]., Freksa, C., Miller, H.]., Eds.; Springer:
Berlin/Heidelberg, Germany, 2004; Volume 3234, pp. 162-178. ISBN 978-3-540-23558-3.

Lee, K,; Lee, J.; Kwan, M. Location-based service using ontology-based semantic queries: A study with a
focus on indoor activities in a university context. Comput. Environ. Urban Syst. 2017, 62, 41-52. [CrossRef]
Christen, P. A comparison of personal name matching: Techniques and practical issues. In Proceedings of
the Sixth IEEE International Conference on Data Mining—Workshops (ICDMW’06), Hong Kong, China,
18-22 December 2006; IEEE: New York City, NY, USA, 2006; pp. 290-294.

Santos, R.; Murrieta-Flores, P.; Martins, B. Learning to combine multiple string similarity metrics for effective
toponym matching. Int. J. Digit. Earth 2017, 11, 913-938. [CrossRef]

Choi, J.; Lee, J. Redefining Korean road name address system to implement the street-based address system.
J. Korean Soc. Surv. Geodesy Photogramm. Cartogr. 2018, 36, 381-394. [CrossRef]


http://dx.doi.org/10.1097/01.ede.0000165364.54925.f3
http://dx.doi.org/10.1007/s12061-016-9184-4
http://dx.doi.org/10.1016/j.aap.2012.08.007
http://dx.doi.org/10.1080/13658816.2019.1681431
http://dx.doi.org/10.1016/j.compenvurbsys.2018.01.009
http://dx.doi.org/10.1016/j.envres.2006.01.004
http://www.ncbi.nlm.nih.gov/pubmed/16483563
http://dx.doi.org/10.7848/KSGPC.2019.37.2.81
http://dx.doi.org/10.1016/S0198-9715(98)00034-9
http://dx.doi.org/10.3390/ijgi5050065
http://dx.doi.org/10.1023/B:JOMS.0000032851.76239.e3
http://dx.doi.org/10.1097/01.EDE.0000073160.79633.c1
http://dx.doi.org/10.1093/aje/kwh310
http://dx.doi.org/10.1016/j.compenvurbsys.2007.11.006
http://dx.doi.org/10.1016/j.compenvurbsys.2016.10.009
http://dx.doi.org/10.1080/17538947.2017.1371253
http://dx.doi.org/10.7848/KSGPC.2018.36.5.381

Appl. Sci. 2020, 10, 5628 21 of 21

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.
41.
42.

43.

44.

45.

46.

47.

48.

49.

Campeanu, C.; Santean, N. On the intersection of regex languages with regular languages. Theor. Comput. Sci.
2009, 410, 2336-2344. [CrossRef]

Medeiros, S.; Mascarenhas, F,; Ierusalimschy, R. From regexes to parsing expression grammars. Sci. Comput.
Program. 2014, 93, 3-18. [CrossRef]

Jiménez, S.; Becerra, C.; Gelbukh, A.; Gonzalez, F.A. Generalized Mongue-Elkan method for approximate
text string comparison. In Computational Linguistics and Intelligent Text Processing; Lecture Notes in Computer
Science; Gelbukh, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5449, pp. 559-570.
ISBN 978-3-642-00381-3.

Vijaymeena, M.K.; Kavitha, K. A survey on similarity measures in text mining. Mach. Learn. Appl. Int. ].
2016, 3, 19-28. [CrossRef]

Jaro, M.A. Advances in record-linkage methodology as applied to matching the 1985 Census of Tampa,
Florida. J. Am. Stat. Assoc. 1989, 84, 414—420. [CrossRef]

Singhal, A. Modern information retrieval: A brief overview. Bull. IEEE Comput. Soc. Tech. Comm. Data Eng.
2001, 24, 35-43.

Winkler, W.E. Bootstrap evaluation of calibration procedures used for decision rules in the Fellegi-Sunter model
of record linkage. In Computing Science and Statistics; Page, C., LePage, R., Eds.; Springer: New York, NY, USA,
1992; pp. 561-565. ISBN 978-0-387-97719-5.

Tversky, A. Features of similarity. Psychol. Rev. 1977, 84, 327-352. [CrossRef]

Bartolini, I.; Ciaccia, P.; Patella, M. String matching with metric trees using an approximate distance. In String
Processing and Information Retrieval; Lecture Notes in Computer Science; Laender, A H.F, Oliveira, A.L., Eds.;
Springer: Berlin/Heidelberg, Germany, 2002; Volume 2476, pp. 271-283. ISBN 978-3-540-44158-8.
Hamming, R.W. Error detecting and error correcting codes. Bell Syst. Tech. ]. 1950, 29, 147-160. [CrossRef]
Jaccard, P. The distribution of the flora in the Alpine Zone. N. Phytol. 1912, 11, 37-50. [CrossRef]

Shannagq, B.A.; Alexandrov, V.V. Using product similarity for adding business value and returning customers.
Glob. |. Comput. Sci. Technol. 2010, 10, 2-8.

Serensen, T.J. A method of establishing groups of equal amplitude in plant sociology based on similarity of
species content and its application to analyses of the vegetation on danish commons. Det K. Dan. Vidensk.
Selsk. Biol. Skr. 1948, 5, 1-34.

Needleman, S.B.; Wunsch, C.D. A general method applicable to the search for similarities in the amino acid
sequence of two proteins. J. Mol. Boil. 1970, 48, 443-453. [CrossRef]

Gotoh, O. An improved algorithm for matching biological sequences. ]. Mol. Boil. 1982, 162, 705-708.
[CrossRef]

Smith, T.; Waterman, M. Identification of common molecular subsequences. . Mol. Boil. 1981, 147, 195-197.
[CrossRef]

U.S. Census Bureau. TIGER/Line Files Technical Documentation; U.S. Census Bureau: Washington, DC, USA, 1999.
Vazquez-Prokopec, G.M.; Stoddard, S.T.; Paz-Soldédn, V.A.; Morrison, A.C.; Elder, J.P; Kochel, T.J.; Scott, TW.;
Kitron, U.D. Usefulness of commercially available GPS data-loggers for tracking human movement and
exposure to dengue virus. Int. . Heal. Geogr. 2009, 8, 68. [CrossRef] [PubMed]

Goldberg, D.W.; Wilson, J.P.; Knoblock, C.A. From text to geographic coordinates: The current state of
geocoding. URISA-Wash. DC 2007, 19, 33.

® © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.tcs.2009.02.022
http://dx.doi.org/10.1016/j.scico.2012.11.006
http://dx.doi.org/10.5121/mlaij.2016.3103
http://dx.doi.org/10.1080/01621459.1989.10478785
http://dx.doi.org/10.1037/0033-295X.84.4.327
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://dx.doi.org/10.1111/j.1469-8137.1912.tb05611.x
http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://dx.doi.org/10.1016/0022-2836(82)90398-9
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1186/1476-072X-8-68
http://www.ncbi.nlm.nih.gov/pubmed/19948034
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Overview of Geocoding and Its Advancement 
	General Steps for Geocoding 
	Existing Studies on the Advancement of Geocoding and Word Matching Using Machine Learning 

	Geocoding Algorithm Using Machine Learning Techniques 
	Address Parsing 
	Address Matching Using Machine Learning 
	Address Locating 

	Experimental Evaluation 
	Experimental Case 1: Address Matching without Any Similarity Metrics 
	Experimental Case 2: Address Matching with a Similarity Metric 
	Experimental Case 3: Address Matching Using Machine Learning 
	Comparison of the Results of Three Experimental Cases 

	Conclusions 
	References

