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Abstract: With the upcoming fifth Industrial Revolution, humans and collaborative robots will dance
together in production. They themselves act as an agent in a connected world, understood as a
multi-agent system, in which the Laplacian spectrum plays an important role since it can define
the connection of the complex networks as well as depict the robustness. In addition, the Laplacian
spectrum can locally check the controllability and observability of a dynamic controlled network, etc.
This paper presents a new method, which is based on the Augmented Lagrange based Alternating
Direction Inexact Newton (ALADIN) method, to faster the convergence rate of the Laplacian
Spectrum Estimation via factorization of the average consensus matrices, that are expressed as
Laplacian-based matrices problems. Herein, the non-zero distinct Laplacian eigenvalues are the
inverse of the stepsizes {αt, t = 1, 2, . . .} of those matrices. Therefore, the problem now is to carry
out the agreement on the stepsize values for all agents in the given network while ensuring the
factorization of average consensus matrices to be accomplished. Furthermore, in order to obtain
the entire Laplacian spectrum, it is necessary to estimate the relevant multiplicities of these distinct
eigenvalues. Consequently, a non-convex optimization problem is formed and solved using ALADIN
method. The effectiveness of the proposed method is evaluated through the simulation results and
the comparison with the Lagrange-based method in advance.

Keywords: multi-agent systems; laplacian eigenvalues; augmented Lagrange based Alternating
Direction Inexact Newton (ALADIN) method; consensus algorithms; Alternating Direction of
Multipliers Method (ADMM)

1. Introduction

Leaders around the world obviously prefer the present era of connectivity as the Fourth Industrial
Revolution [2]. Industry 4.0 has been significantly contributing to the transformation of many industries
such as transportation, manufacturing, health-care, agriculture, etc. via enabling data transmission and
integration between disciplines. Today, we are in the fourth one, a generation of connection between
our physical, digital, social, and biological worlds. In particular, data and information from these
different areas have been made available and have been connected in complex and dense networks.
For better integration and utilization, control aspect of these complex networks, researchers from
different communities have brought different contributions varying from topology inference to control
strategy, deputizing for interacting systems, which are modeled by graphs, whose vertices represent
the components of the system while edges stand for the interactions between these components.

In the last decade there has been dramatic increasing number of publications in the cooperative
control of multi-agent systems. In control of multi-agent systems, the performance of the whole system
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depends on both structure and the connections between individuals of the systems. Here, the total
connections can be defined by the graph Laplacian matrix, and its spectrum is involved in some
useful properties of the network system [3,4]. For instance, the second smallest graph Laplacian
eigenvalue, i.e., the so-called algebraic connectivity of the graph, has the main role in the convergence
time of various distributed algorithms as well as the performance and robustness of dynamical
systems [5]. Conceptually, agents share their information with each other to achieve common objectives,
relative position information, or common control algorithms. This is called consensus problem [6,7],
where a group of agents’ approaches average consensus in an undirected network under simple linear
iteration scheme.

It is well known that in a multi-agent system, consensus is achieved if and only if the network
is connected (the algebraic connectivity) being strictly greater than zero [8]. On the other hand,
the largest Laplacian eigenvalue is an important factor to decide the stability of the system. For example,
minimizing the spectral radius in [9] leads to maximize the robustness of the network to time delays
under a linear consensus protocol. Furthermore, to speed up consensus algorithms, the optimal
Laplacian-based consensus matrix is obtained with a stepsize which is the inverse of the sum of the
smallest and the largest non-zero graph Laplacian eigenvalue [10]. Moreover, the authors in [11,12]
have proved that the spectrum of the Laplacian matrix can be used to design consensus matrices to
obtain average consensus in finite number of steps.

In order to investigate network efficiency, structural robustness of a network which is related
to its performance despite changes in the network topology [13] has been also studied. The concept
of natural connectivity as a spectral measure of robustness was introduced in [14]. It is expressed
in mathematical form as the average eigenvalue of the adjacency matrix of the graph representing
the network topology. The Laplacian spectrum sp(L) = {λm1

1 , . . . , λi, . . .} can also be employed to
compute the robustness indices, for instance, the number of spanning trees and the effective graph
resistance (Kirchhoff index) [15]. The smaller (or greater) the Kirchhoff index (or the number of
spanning trees) is, the more robust the network becomes. In addition, it has been pointed out that
adding an edge strictly decreases the Kirchhoff index and hence increases the robustness. In [16],
the authors have proposed a method to monitor collaboratively the robustness of the networks
partitioned into sub-networks by Kirchhoff index RL = N ∑D+1

i=2
mi
λi

. Here, an Alternating Direction
of Multipliers Method (ADMM)-based algorithm was employed to perform the factorization of the
averaging matrix and to compute the average degree of the network concurrently. However, the main
point in this work was the reformulation into the convex optimization problem, which is convenient
to make use of the ADMM method to solve the problem. In addition to that, the impact of the
Laplacian spectrum into power systems is expressed through energy management in smart grids [17]
and the determination of the grid robustness against low frequency disturbance in [18]. In this work,
in the framework of spectral graph theory, the authors reveal that the decomposition of frequency
signal along scaled Laplacian spectrum when the damping-inertia ratios are uniform across buses
not only makes the system respond faster but also helps lower the system nadir after a disturbance.
In dynamic network systems, the spectrum of Laplacian matrix can also be utilized for locally checking
the controllability and the observability [19].

From a short literature survey above, it is obvious that the Laplacian spectrum plays an important
role in many fields. For instance, Laplacian spectrum can be used to design consensus matrices [11,12],
to compute these robustness indices [15–18], or to check the controllability and the observability [19].
Hence, it is desirable to have an efficient method for monitoring the Laplacian spectrum of a dynamics
network system.

One thing to remark here is that if the global network topology is known in a-priori, the Laplacian
matrix can be easily deduced. However, implementing a centralized structure is an expensive task
due to the high computational cost, the heavy communication infrastructure aspect and the problem
from large dimensionality. Additionally, if there is a failure problem from one point, it will affect
the whole network. Therefore, our study is restricted to the assumption that the network topology
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(represented by the Laplacian Matrix) is unknown at the first glance. A dominant contribution of this
paper is the possibility of implementing this monitoring scheme in a decentralized manner.

In this paper, we present an Augmented Lagrangian based Alternating Direction Inexact Newton
(ALADIN) method to estimate the Laplacian spectrum in decentralized scheme for dynamic controlled
networks. The key feature of this paper is the direct solution to non-convex optimization for
Laplacian spectrum estimation using ALADIN method. To simplify, the scope of this study is
restricted to networks performing noise-free as well as the number of the agents N in the network
in known in-priori by using random walk algorithm [20]. The network is modeled, then Laplacian
eigenvalues and average consensus are retrieved respectively. Since the Laplacian spectrum matrix
is not directly computable for undetermined network topology, the decentralized estimation of
the Laplacian spectrum has been introduced with three main approaches in the recent literature:
Fast Fourier Transform (FFT)-based methods [21,22], local eigenvalue decomposition of given
observability-based matrices [23], and distributed factorization of the averaging matrix JN = 1

N 11T [24].
FFT-based methods require a specific protocol. However, they do not make use of the available
measurements coming from the consensus protocol. On the other hand, the method in [23] allows
using the transient of the average consensus protocol but for several consecutive initial conditions.
The distributed factorization of the averaging matrix in [24] yields the inverses of non-zero Laplacian
eigenvalues and can be solved as a constrained consensus problem. The Laplacian eigenvalues can be
deduced as the inverse of the stepsizes in each estimating factor, where these factors are constrained
to be structured as Laplacian based consensus matrices. In [1], authors have applied a gradient
descent algorithm to solve this optimization problem in which only local minima was guarantees
accompany with slow convergence rate. In order to solve this annoying issue, in [16,24], the authors
have introduced an interesting way by reformulating a non-convex optimization problem in [1] into
convex one and solved by applying an ADMM-based method. However, this is an indirect approach
obtaining by an adequate re-parameterization. In this paper, we inherit the idea in [1] to form the
non-convex optimization for decentralized estimation of Laplacian spectrum and then directly solve it
using the ALADIN method that was proposed by [25]. The proposed approach is then evaluated with
two network structures for performance evaluation in comparison with gradient descent method [1].

In this paper, we firstly introduce the background of average consensus and state the problem in
Section 2, then present the distributed estimation of Laplacian spectrum in Section 3. The structure of
this section can be illustrated as in Figure 1. Before concluding the paper, the simulation results are
described in Section 4 to evaluate the efficiency of the proposed method.
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2. Background and Problem Statement

Consider a dynamic network, in which interconnection is represented by G(V, E), an undirected
graph with components’ set V and links’ set E, consisting of N = |V| nodes, let us denote by
Ni = {j ∈ V : (i, j) ∈ E} the set of neighbors of node i and di = |Ni| its degree. Interactions between
nodes can be captured by the Laplacian matrix L ∈ <N with entries lii = di, lij = −1 if j ∈ Ni
and lij = 0 elsewhere. Denote the Laplacian spectrum by sp(L) = {λm1

1 , λm2
2 , . . . , λ

mD+1
D+1 }, where the

different Laplacian eigenvalues are in increasing order 0 = λ1 < λ2 < . . . < λD+1 and superscripts
stand for multiplicities mi = m(λi), while S2 = {λ2, . . . , λD+1} stands for the set of the non-zero
distinct Laplacian eigenvalues.

2.1. Average Consensus

For each node i ∈ V, let xi(t) denotes the value of node i at timestep t. Define x(t) =

[x1(t), x2(t), ..., xN(t)]T , where N is the number of nodes in the network. Average consensus algorithms
can be achieved by using the following linear iteration scheme as follows:

x(t) = (IN − αL)x(t− 1), (1)

where α is an appropriately selecting stepsize [26], by which all nodes converge asymptotically to the
same value x̄ that is the average of the initial ones x̄1 = limt→∞ x(t) = 1

N 11Tx(0).
On the other hand, it has been shown in [11,12] that the average consensus matrix can be

factored as
1

∏
t=D

Wt =
1
N

11T , (2)

where Wt = ϑtIN + αtL, ϑt and αt being parameters to be designed. In [12], the solution was
given by ϑt = 1 and αt = − 1

λt+1
, λt being a non-zero Laplacian eigenvalue. Owing to the above

factorization, average consensus can then be reached in D steps, D being the number of distinct
non-zero Laplacian eigenvalues:

x̄ = x(D) =
1

∏
t=D

Wtx(0) =
1
N

11Tx(0) for all x(0) ∈ <N . (3)

2.2. Problem Statement

It can be noted that by factorizing the average consensus matrix, while constraining the factor
matrices to be in the form IN − αtL, the eigenvalues of the Laplacian matrix as the inverse of αt can be
deduced. The uniqueness has been proved in [1].

Lemma 1. [1] Let λ2, · · · , λD+1 6= 0 be the D distinct non-zero eigenvalues of the graph Laplacian matrix L,
then, up to permutation, the sequence {αi}i=1,··· ,D, with αi =

1
λi+1

, i = 1, 2, · · · , D, is the unique sequence

allows getting the minimal factorization of the average consensus matrix as 1
N 11T = ∏D

i=1(IN − αiL).

Therefore, in order to implement the proposed method, the knowledge of the network should
be known. Meaning that, the number of the components N of the given network should be
known by adding a learning mechanism as a configuration step. Practically, in most systems where
communications are involved, learning sequences are used for communication channel identification
or for synchronization. In [20], the authors have proposed a method using random walks to estimate
the global properties of large connected undirected graphs such as number of vertices, edges, etc.
However, it is not in the scope of this paper. Indeed, assuming that the number of agents N is known in
a-priori, a consensus protocol in [10] is to be uploaded to each agent to compute the average consensus
value x̄. The main task in our study is to estimate the whole Laplacian spectrum.
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3. Distributed Estimation of Laplacian Spectrum

Given an initial input-output pair {x(0), x̄}, with x̄ = 1
N 11Tx(0), the matrix factorization

problem (3) is equivalent to minimize the cost function E(W) = ‖x(D)− x̄‖2 that can also be rewritten
as follows:

E(W) =

∥∥∥∥∥ 1

∏
t=D

Wtx(0)− x̄

∥∥∥∥∥
2

, (4)

where D is the number of steps before reaching average consensus and Wt = IN − αααtL.
Note that there is no need for a central node to set the initial input-output pair. Indeed, such a pair

can be obtained after running a standard average consensus algorithm. Each node keeps in memory
its own initial value and the consensus value.

Solving this factorization problem consists in finding the sequence of stepsize {αααt}t=1,··· ,D. It is
obvious that αααt are global parameters. To relax these constraints, define the factor matrices as
Wt = IN −ΛΛΛtL, where ΛΛΛt = diag(αααt), αααt = [αt,1, αt,2, . . . , αt,N ], t = 1, 2, . . . , D. The problem above
can be reformulated as a constrained consensus problem, that is to compute the sequence of stepsize
{αααt} so that αt,1 = αt,2 = . . . = αt,N . Moreover, in Section 2.1, D is denoted as number of non-zero
distinct Laplacian eigenvalues. However, in this work, Laplacian matrix is assumed to be not-known
in-a-priori. Therefore, the authors have assigned D as h = N − 1 since N can be estimated in the
configuration step through the Random Walk Algorithm proposed in [20]. Furthermore, the Laplacian
Spectrum estimation procedure is divided in following stages:

• Stage 1: Distributed estimation of the set of non-zero Laplacian eigenvalues S1 = {λ1, λ2, . . . , λh},
composing of the set of D non-zero distinct Laplacian eigenvalues S2 = {λ1, λ2, . . . , λD}.

• Stage 2: Eliminating the wrong eigenvalues in the set S1 to obtain the set S2

• Stage 3: Estimating the multiplicities m corresponding to each eigenvalues in the set S2 to achieve
the whole Laplacian spectrum sp(L).

3.1. Distributed Estimation of Non-Zero Laplacian Eigenvalues

For distributively carrying out the factorization of the average consensus matrix as factors of
Laplacian based consensus matrices, the idea is to minimize the disagreement between neighbors on
the value of αααt while ensuring that the factorization of the average consensus matrix is achieved. Such a
factorization is assessed by constraining the values of the nodes after h iterations of the consensus
algorithm to be equal to the average of the initial values:

min
αααt∈RN×1,t=1,2,...,h

1
2

h

∑
t=1

∑
i∈V

∑
j∈Ni

(αt,j − αt,i)
2 (5)

subject to x(h) = x̄

or, it can be rewritten in the following form:

min
αααt∈RN×1

1
2

h

∑
t=1

αααT
t Lαααt. (6)

subject to x(h) = x̄

This optimization has been solved by applying Augmented Lagrange Method [1].
However, the disadvantage of this method is the slow convergence rate due to the fact that it
is a non-convex optimization problem. To overcome this unexpected issue, the authors have
suggested an interesting variant by converting the non-convex function into the convex one. By that,
the optimization can be easily and effectively solved by Alternating Direction of Multipliers Methods
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(ADMM) [16,27]. In this paper, we proposed a method that can solve a non-convex problem effectively
by employing ALADIN method, which is described as following:

(1) Step 1: ALADIN solves in parallel a sequence of equality-constrained non-linear problems
(NLP) by introducing an augmented variables y as follows:

min
αααt∈RN×1,t=1,2,...,h

1
2

αααT
t Lαααt +λλλT(αααt − yt) +

ρ

2
‖(αααt − yt)‖2

ΣΣΣt
(7)

subject to x(h)− x̄ = 0|βββ
yt,i = yt,j i = 1, . . . , N; j ∈ Ni (C)

where ρ, β are penalty parameter and multiplier of the equality constraint, respectively.
C = {yt : yt,i = yt,j, i = 1, . . . , N; j ∈ Ni}.

One thing to note here is that with the given initial information xi(0), i = 1, 2, . . . , N, running a
standard consensus algorithm can determine the average value x̄ = 1

N ∑N
i=1 xi(0). In addition

to that, the positive semi-definite scaling matrices Σt can be randomly initialized or even be
an identity matrix IN . In this optimization problem (7), augmented variables yt are introduced
with respect to the constraint C. However, this NLP is to be solved to define the variables αααt,
hence, the constraint C is going to be relaxed.

The solution αααt[k + 1], βββ[k + 1] obtained from (7) is then used to check the stopping criteria
the the next steps of the ALADIN-based algorithm procedure with k being an iteration of the
optimization process. Herein, if 1

2 ∑h
t=1 ∑i∈V ∑j∈Ni

(αt,j − αt,i)
2 < ε and ρ‖Σt(αααt − yt)‖1 ≤ ε,

then one can get ααα∗t as well as the Algorithm stops.
(2) Step 2: The Gradients, Jacobian matrices, and Hessian matrices are estimated for the next

quadratic programming (QP) subproblems the as follows:

gt =
∂

∂αααt
{1

2
αααT

t Lαααt + βββT
t (x(h)− x̄)} (8)

Ct =
∂

∂αααt
(x(h)− x̄)T (9)

Bt =
∂2

∂ααα2
t
(

1
2

αααT
t Lαααt). (10)

(3) Step 3: Analogically to inexact SQP method, the QP problem is solved to find the ∆αααt[k] and
the affine multiplier λQP[k] as follows:

min
∆ααα∈RN×h ,s∈RN×1,t=1,2,...,h

h

∑
t=1
{1

2
∆αααT

t Bt∆αααt + gT
t ∆αααt}+λλλTs +

µ

2
‖s‖2 (11)

subject to
h

∑
t=1

(αααt + ∆αααt − yt) = s|λλλQP

Ct∆αααt = 0, t = 1, 2, ..., h|η

where s is the slack variable, introduced into the QP sub-problem to attenuate the numerical
reasons when the penalty parameter µ becomes large.

(4) Step 4: The final step is to update λλλ[k + 1], yt[k + 1], Bt[k + 1]:

λλλ[k + 1] = λλλQP[k] (12)

ŷt[k] = αααt[k] + ∆αααt[k] (13)
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This update rule is relevant to the full-size step where a1 = a2 = a3 = 1 for the steplength
computation, which proposed in [25]. Then, projecting ŷ[k] on the constraint C to derive y[k + 1].

The steps are repeated until the stopping criteria is satisfied.
In order to derive the distributed algorithm, let us take a closer look at each step of the proposed

ALADIN-based method.

3.1.1. Implementation of Decoupled Nonlinear Problems

Firstly, in order to solve the decoupled NLP (7) for t = 1, . . . , h, the Augmented Lagrange method
is applied here. Hence, we introduce the Augmented Lagrange function with the Lagrange multiplier
βββ and penalty parameter c as below:

H1,t =
1
2

αααT
t Lαααt +λλλT(αααt − yt) +

ρ

2
‖(αααt − yt)‖2

ΣΣΣt
+ βT(x(h)− x̄) +

c
2
‖x(h)− x̄‖2

2 (14)

The solution of this problem can be obtained by applying a gradient descent method iteratively:

αααt[k + 1] = αααt[k]− b
∂H1,t

∂αααt
(15)

βββ[k + 1] = βββ[k] + c(x(h)− x̄) (16)

where b stands for stepsizes of the gradient descent method, which can be chosen by fix constants or be
determined by deploying a line-search algorithms such as Wolfe Condition, Back-stracking, or Armijo
ones in [28], while c dedicates for the penalty parameter of the Augmented Lagrange method.

Lemma 2. The derivatives of this Lagrange function (14) is obtained as follows:

∂H1,t

∂αααt
= Lαααt +λλλ + ρΣΣΣt(αααt − yt)− diag−1(αααt)diag(xt−1 − xt)δδδt − diag−1(αααt)diag(xt−1 − xt)et (17)

where δδδh = β, and δδδt = Wt+1δδδt+1, while eh = x(h)− x̄ and et = Wt+1et+1.

The proof is showed in the Appendix A.

3.1.2. Implementation of the Coupling Quadratic Programming (QP)

Now, we apply the Karush–Kuhn–Tucker (KKT) conditions for solving the quadratic
programming (QP) (11). The Augmented Lagrange Function is described as follows:

H2 =
h

∑
t=1

{
1
2

∆αααT
t Bt∆αααt + gT

t ∆αααt +λλλT
QP∆αααt

}
+ (λλλT −λλλT

QP)s +
µ

2
‖s‖2

+λλλT
QP

h

∑
t=1

(αααt − yt) +
h

∑
t=1

ηT
t Ct∆αααt (18)

The KKT conditions, which are showed in the Appendix B yields a system of equations as follows:

{ Bt∆αt −λλλQP + CT
t ηt = −gt, t = 1, 2, . . . , h

∑h
t=1 ∆αααt − 1

µλλλQP = − 1
µλλλ−∑h

t=1(αααt − yt)

Ct∆αααt = 0

Solutions of this system of equations are ∆α∗t , λλλ∗QP, η∗t respectively in the equivalent matrix form
as follows:
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

B1 0 . . . 0 I CT
1 0 . . . 0

0 B2 . . . 0 I 0 CT
2 . . . 0

...
...

. . .
...

...
...

...
. . .

...
0 0 . . . Bh I 0 0 . . . CT

h
I I . . . I − 1

µ I 0 0 . . . 0
C1 0 . . . 0 0 0 0 . . . 0
0 C2 . . . 0 0 0 0 . . . 0
...

...
. . .

...
...

...
...

. . .
...

0 0 . . . Ch 0 0 0 . . . 0





∆α∗1
∆α∗2

...
∆α∗h
λλλ∗QP
η∗1
η∗2
...

η∗h


=



−g1
−g2

...
−gh

−λλλ
µ −∑h

t=1(αααt − yt)

0
0
...
0


(19)

This linear system can be solved by any linear solver. One thing to note here is the adaptive
parameter µ. We can start with a quite small µ and adapt it during the optimization progress to
relax the coupling conditions.

3.1.3. Implementation of an ADMM-Based Algorithm

Now, the update steps (12) and (13) are executed. Since the achieved ŷt,i have to agree with the
constraint (C), we solve the following optimization problem:

min
yi∈<h×1

1
2

N

∑
i=1
‖yi − ŷi‖2

subject to yj = yi i = 1, . . . , N; j ∈ Ni (C)

To solve this optimization problem, an Alternating Direction Method of Multipliers (ADMM) in [16,27]
can be employed by introducing an augmented parameters zij. Hence, the optimization can be
rewritten as follows:

min
yt

1
2

N

∑
i=1
‖yi − ŷi‖2

subject to yi = zij i = 1, . . . , N; j ∈ Ni (20)

zji = zij

The Augmented Lagrange Function is defined as follows:

H3(y, z, τττ) =
1
2

N

∑
i=1
‖yi − ŷi‖2 + ∑

j∈Ni

τττT
ij(yi − zij) +

ν

2

N

∑
i=1
‖yi − zij‖.

The ADMM solution acts in three steps repetitively until the tolerance achieves:

• Compute yi:
yi[p + 1] = (1 + νdi)

−1{ŷi[k] + ν ∑
j∈Ni

zij[p]− ∑
j∈Ni

τττij[p]}. (21)

• Compute zij:

zij[p + 1] =
yi[p + 1] + yj[p + 1]

2
+

τττij[p] + τττ ji[p]
2ν

. (22)

• Lagrange multiplier update:

τττij[p + 1] = τττij[p] + ν(yi[p + 1]− zij[p + 1]) (23)
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Herein, p is a iteration of the ADMM optimization process, then this output of this process is
yi[k + 1] = y∗i [p + 1].

The distributed algorithm is illustrated in Algorithm 1.
The convergence analysis of the ALADIN method has been studied clearly for both non-convex

and convex optimization problem in [25]. Lemma 3 in [25] has been proven that with the cost
function f (ααα) = 1

2 ∑h
t=1 ∑i∈V ∑j∈Ni

(αt,j − αt,i)
2 being twice continuously differentiable and letting

(ααα∗t , λλλ∗) for t = 1, . . . , h of problem (5) be a regular KKT point. On the other hand, the Hessian
Bt =

∂2

∂ααα2
t
( 1

2αααT
t Lαααt) + ρΣt � 0 obviously, since Σt � 0. There exists constants χ1, χ2 such that for every

point αααt, λ satisfying the condition convergence of the decoupled minimization problem (7) have
unique locally minimizers {yt, t = 1, . . . , h} that satisfy ‖yt − αααt‖ ≤ χ1‖αααt − ααα∗t ‖+ χ2‖λλλ−λλλ∗‖.

Moreover, if 1
µ < 0(‖yt−αααt‖) when solving the QP (11), with the ((ααα∗t , λλλ∗)) is a regular KKT point,

then χ1‖αααt − ααα∗t ‖+ χ2‖λλλ− λλλ∗‖ ≤ (χ1+χ2)ω
2 (χ1‖αααt − ααα∗t ‖+ χ2‖λλλ− λλλ∗‖)2. This is sufficient to prove

local quadratic convergence of the algorithm as χ1, χ2 are strictly positive constants. As a result, it is
effectively applied to our proposed method since it is obviously an equality constrained non-convex
optimization problem.

One thing to remark here is that in our study, the penalty parameters ρ, µ can be updated using
the following rules:

ρ[k + 1] =

{
ιρρ[k] if ρ[k] < ρmax

ρ[k] elsewhere

µ[k + 1] =

{
ιµµ[k] if µ[k] < µmax

µ[k] elsewhere

where ιρ, ιµ > 1 and ρmax = 50, µmax = 30 obtained by experience to avoid the numerical problem.
Moreover, we can use the blockwise and damped Broyden–Fletcher–Goldfarb–Shanno (BFGS) update,
which ensures positive definiteness of the Bt[k] to preserve the convergence properties of ALADIN
proposed in [25].

3.2. Retrieving the Non-Zero Laplacian Eigenvalues

As stated before, the set of eigenvalues deriving from the Algorithm 1, denoted S1, composing of
the set of non-zero distinct Laplacian eigenvalues S2.

Let ˆ̄xi be the final consensus value reconstructed by ˆ̄xi = x̂i(h) = 1
N ∑N

i=1 xi(0) and the iteration
scheme of the finite-time average consensus is implemented as in (1). Following the idea of the
Proposition 3 in [27], we step-by-step assume to leave one element of the S1, then, the remaining
elements of this set are used to reconstruct x̂i(h). If ˆ̄xi = x̂i(h) is satisfied, then the left element is not
the expected Laplacian eigenvalue. Hence, we can eliminate it out of the set S1. Otherwise, the left
element is one of non-zero distinct eigenvalues. We restore it in the set S1 and marked as an element
in the set S2. Now, the procedure is continued with another element to the end.

The distributed non-zero Laplacian eigenvalues are described in Algorithm 2.
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Algorithm 1 ALADIN-based Laplacian eigenvalues estimation

1. Initialization:

• Number of nodes N, tolerance ε, initial input-output pairs {xi(0), x̄i, i = 1, 2, . . . , N},
where x̄ = 1

N ∑N
i=1 xi(0) is retrieved from a standard average consensus algorithm.

• Each node i, i = 1, . . . , N initializes:

(a) random stepsizes αt,i(0) for t = 1, . . . , h = N − 1.
(b) random Lagrange multipliers βt,i, ηt,i, for t = 1, . . . , h and λi, λQP,i.
(c) Semi-positive definite matrices Σt ∈ <N , learning rates b, penalty parameters ρ, c, µ.

• Set k = 0;

2. Repeat:

• Set k := k + 1,
• Solving decouple NLP problem (7) for t = 1, . . . , h = N − 1:

– Propagate Lagrange multipliers βt,i[k] for t = h, . . . , 2 and i = 1, . . . , N:

(a) Set δh,i[k] = βt,i[k].
(b) δt−1,i[k] = δt,i[k] + αt,i[k]∑j∈Ni

(δt,j[k]− δt,i[k]).
– Finite-time average Consensus steps:

xt,i[k] = xt−1,i[k] + αt,i[k] ∑
j∈Ni

(xt−1,j[k]− xt−1,i[k]).

– Propagate the error et,i[k] by setting eh,i[k] = xh,i[k]− x̄i[k]:

et−1,i[k] = et,i[k] + αt,i ∑
j∈Ni

(et,j[k]− et,i[k]).

– Update αt,i for t = 1, . . . , h:

αt,i[k + 1] = αt,i[k + 1]− b ∑
j∈Ni

(αt,j[k]− αt,i[k])

− bλi − bρ[k]
N

∑
j=1

Σt(i, j)(αt,j[k]− yt,j[k])

+ b ∑
j∈Ni

(xt−1,j[k]− xt−1,i[k])δt,i[k]

+ b ∑
j∈Ni

(xt−1,j[k]− xt−1,i[k])et,i[k]

– Update NLP Lagrange multipliers βt,i for t = 1, . . . , h by (16).

• Stopping criteria: if ‖∑h
t=1(αααt − yt)‖ ≤ ε and ‖∑h

t=1 αααT
t Lαααt‖ ≤ ε are simultaneously satisfied, then

stop the optimization procedure.
• Compute Gradient, Jacobian matrices, and Hessian matrices as in (8)–(10), respectively.
• Solving the coupling QP problem (11) via solving the linear Equation (19) to define ∆α∗t,i[k], λ∗QP,i[k].
• Update λ, ŷt,i:

(a) λi[k + 1] = λ∗QP,i[k]
(b) ŷt,i[k] = αt,i[k + 1] + ∆α∗t,i[k]
(c) Projecting ŷt,i[k] onto the constraint C by solving an ADMM-based optimization subproblem

(20) to derive yt,i[k + 1]
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Algorithm 2 Non-zero eigenvalues Estimation

1. Input: set of stepsizes, obtaining form Algorithm 1 S1, the input-output pairs {xi(0), x̄i},
i = 1, . . . , N, the threshold ε.

2. Set S2 = ∅, S = S1.
3. Repeat: While S 6= ∅, pick an element αt out of S , hence S \ {αt}.

• Construct average consensus iteration scheme from the remain stepsizes to determine
x̂i(h), i = 1, . . . , N as follows:

xt,i = xt−1,i + αt,i ∑
j∈Ni

(xt−1,j − xt−1,i), t = 1, . . . , h

• If x̄i − ˆ̄ix ≤ ε, then S = S \ αt and return to (3)
• If x̄i − ˆ̄ix > ε, then αt is included in S2 and S = S ∪ αt and return to (3)

4. Output: If S is empty, then the non-zero distinct Laplacian eigenvalues can be derived by taking
the inverse of the set S2’s elements.

3.3. Multiplicities Estimation

Now, turning to the last stage, which is the corresponding Laplacian eigenvalues multiplicities
estimation. In [16], the authors have proposed a linear integer programming optimization problem to
figure out the multiplicities:

Proposition 1 ([16]). Consider a connected undirected graph of N vertices with degree sequence {di} and
Laplacian matrix L, having D = |S2| distinct non-zero Laplacian eigenvalues S2. Let m ∈ Z+D×1 be the vector
of the corresponding multiplicities and be obtained by solving the integer programming below:

min
m∈Z+D×1

ST
2 m (24)

subject to ST
2 m = ∑D

i=1 di

1Tm = N − 1

m ∈ Z+D×1

The proof was given in [16]. Since all the multiplicities m are positive integers,
then Brand-and-Bound method has been deployed to derive m. Therefore, the problem (24) can
be rewritten equivalently in linear integer programming form as follows:

min
m∈Z+D×1

ST
2 m−∑D

i=1 di

subject to 1Tm = N − 1 (25)

m ∈ Z+D×1

The Algorithm for this problem has been described clearly in [16]. At this step, the whole Laplacian
spectrum sp(L) has been obtained.

In fact, the estimation problem can be converted into a convex form and can be solved
effectively by using ADMM-based method proposed in [16]. However, the purpose of this study
is extremely appropriate for non-convex optimization problem through deploying the promising
ALADIN-based method.
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4. Simulation Results

In this section, the efficiency of the proposed ALADIN-based method to estimate the Laplacian
spectrum is evaluated by considering the two following case studies.

Firstly, it can be said that the Laplacian spectrum can decide the performance of the network
since it reveals the connection of the network. For example, the robustness of the network can be
estimated before starting the operations to avoid the interruption during these operations and, as a
result, enhance the benefits technically and economically.

On the purpose of monitoring the connection of a large network G∗(V∗, E∗), one may face with
the numerical issue in step 3 of the ALADIN-based method to solve the linear system (19) due to the
huge dimension of the obtained matrix that leads to the common ill-conditioning problem with the
inverse matrix calculation.

In [16], the authors have suggested to partition the large network into M disjoint sub-networks
U`, ` = 1, 2, · · · , M, [29]. Let us defineN ∗i = {j ∈ V∗ : (i, j) ∈ E∗} and its cardinality |N ∗i | as the set of
neighbors of node i and its degree in G∗, respectively. Each sub-network is monitored by a super-node
i which knows the number N` of agents in the sub-network and the associated average information
state x`. Node i ∈ U` is a super-node if it has at least one neighbor in a different subset, i.e., ∃`∗ 6= `

s.t. Ni
⋂

U`∗ 6= ∅. Let us consider that two sub-networks are connected if there exist edges linking
at least two agents of these sub-networks. If two sub-networks are connected then their super-nodes
are linked as showed in Figure 2. Here, the network can be social network, power system network,
molecular network, etc.

Let G = (V, E) be the undirected graph representing a network with N = |V| super-nodes,
which are black nodes in Figure 2. G captures the interaction between sub-networks of G∗.
Therefore, the large network is to be robust if the partitions are strongly linked to each other and
if the critical threshold is high enough in [16]. Then, the Laplacian spectrum of network of super-nodes
G can monitor the connection of the large network G∗ via the robustness index.

U1

U2

U3

U4

Figure 2. Network partitioned in 4 subsets. Super-nodes are depicted in black.

4.1. Case Study 1

Let us consider a large network partitioning into 4 disjoint sub-networks. Each sub-network has
only one super-node. These super-nodes interact with each other by the graph G = (V, E), depicted in
Figure 3.

1 2

34

Figure 3. A network constituted by 4 nodes.
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This network does have the Laplacian eigenvalues sp(L) = {0, 4, 4, 4}. With the parameter of each
super-node, denoted as x(0) = {0.7417, 0.7699, 0.3216, 0.5466}, after deploying Algorithm 1, the set of
αααt, t = 1, . . . , 3 is obtained. The nodes trajectories are described as in Figure 4.

As can be seen, all αααt execute the consensus problem at the beginning of the procedure, and then
dig into satisfying the constraint.

Figure 5 illustrate the convergence of the cost function 1
2 ∑N−1

t=1 αααT
t Lαααt in according to the constraint

x(N − 1) = x̄1.
Furthermore, the Algorithm 2 is applied to eliminate the unexpected eigenvalues. As a result,

we receive only one eigenvalue λ = 1
0.25 = 4. In order to accomplish the Laplacian spectrum

estimation’s procedure, we make use the Proposition 1 to pick out m = 3. Now, the entire Laplacian
spectrum is achieved.

100 102

Iterations

0

0.2
0.25

0.4

0.6

1

100 102

Iterations

0

0.5
0.5919

1

2

100 102

Iterations

0.2

0.4

0.5543

0.8

1

3

Figure 4. Trajectories convergence of αααt.

0 20 40 60 80 100 120 140

Iterations

10-8

10-6

10-4

10-2

100

cost
constraint

Figure 5. Convergence of the cost function according to its constraint.

At this step, the robustness index such as Kirchhoff index or the number of spanning trees can
be calculated.

RL = N
D+1

∑
i=2

mi
λi

= 4
3
4
= 3.
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Now, let us see how the proposed procedure works via the table below.
Table 1 is obtained after executing the proposed procedure.
As can be seen in Figure 4, at the iteration of around 90 the procedure can be stopped. In order

to access the robustness of the whole large network, it is necessary to define the critical threshold,
introduced in [16].

Next, we implement a comparison with the Lagrange method described in [1] by considering
Case study 2.

Table 1. The achievement of the proposed procedure in the sense of 4-node topology.

SSS1 {0.25, 0.5919, 0.5543}
SSS2 {0.25}
m 3
Iterations 130
RL 3

4.2. Case Study 2

Let us consider a 6-node network described in Figure 6.

1 3

2 4

5

6

Figure 6. A new network constituted by 6 nodes.

It is known that for this topology, the Laplacian spectrum is sp(L) = {0, 1, 2, 3, 3, 5}.
Let us define the same initial information state of each node at time t = 0: x(0) =

{0.5832, 0.74, 0.2348, 0.7350, 0.9706, 0.8669} for both methods. By using a standard consensus
algorithm [26], the consensus value x̄ = 0.6884 can be easily inferred.

It can be seen in Figure 7 that the Lagrange-based method in [1] takes a long time to achieve the
consensus first and then track the constraint to obtain the stepsizes αt, t = 1, ..., N − 1.

Now, with the same initial αααt(0), t = 1, . . . , 5, for the iterative procedure of the proposed method,
the αααt after using the Algorithm 1 with the convergence trajectories of the αααt are illustrated in Figure 8.

Figures 7 and 8 express the significant pros of our proposed method since the number of iterations
is much less than that of Lagrange-based method. The consensus term is executed in advance from the
start of the procedure and then try to reach the constraint term to figure out the expected values of the
stepsizes αααt = {1, 0.5, 0.1027, 0.2, 0.3333}. Obviously, since the authors operate the proposed algorithm
with the number of αααt being N − 1 = 5, it is needed to run the next stage to eliminate the residual
values. As can be seen clearly, the executive time for ALADIN-based method is significantly faster
than the proposed method as showed in Figure 9.

Figure 9 shows that the ALADIN-based method approaches the destined values earlier than
Lagrange-based method. Furthermore, in order to get the non-zero Laplacian eigenvalues of the given
network, the Algorithm 2 is carried out to obtain vector of stepsizes αααt = {1, 0.5, 0.2, 0.3333}.

Finally, by constructing the Brand-and-Bound based method to solve the Problem 1, which has
been proposed in [16], we achieve the vector of multiplicities m = {1, 1, 1, 2}, hence deduce the
Laplacian spectrum sp(L) = {1, 2, 3, 3, 5}.
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Figure 7. αααt convergence trajectories implemented by Lagrange-based method.
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Figure 8. αααt convergence trajectories implemented by the proposed method.
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Now, let us see how the proposed procedure works via the table below.
Table 2 is obtained after executing the proposed procedure and the Lagrange-based method.

Table 2. The achievement of two methods in the sense of 6-node topology.

ALADIN-Based Method Lagrange-Based Method

SSS1 {1, 0.5, 0.1027, 0.2, 0.3333} {0.9992, 0.2, 0.5001, 0.0895, 0.3333}
SSS2 {1, 0.5, 0.2, 0.3333} {0.9992, 0.2, 0.5001, 0.3333}
m 1, 1, 1, 2

Iterations 33950 372800
RL 14.2

Notice that the proposed method gives results much better than the Lagrange-based method. Let
us see that at the iteration of 33,950, the Lagrange-based method gives the set of SSS1 that has still not
satisfied the constraint.

Recently, besides the Laplacian spectrum estimation basing on the optimization approaches,
there are also some works that approximate the Laplacian spectrum via iterative dynamics
process (taking random walk for an example). However, from our point of view, the dominant
contribution of our proposed method is the possibility of implementation in a decentralized manner.
Moreover, another method to faster the convergence rate of the Laplacian spectrum estimation
procedure is the ADMM-based method, proposed in [16]. The important step in this work is to
re-parameterize adequately the non-convex formulation into convex one. It is hard to compare the
efficiency between ADMM-based method and the proposed method. Since, our study focuses on the
non-convex formulation.

100 101 102 103 104 105 106

Iterations

10-10

10-8

10-6

10-4

10-2

100

102

M
S

E

Aladin-based method
Lagrange-based method

Figure 9. Convergence of the cost function according to its constraint.

5. Conclusions

In this paper, the authors have proposed a promising ALADIN-based method to find out the
Laplacian spectrum of a given dynamic network in a distributed way. First and foremost, the study
has assumed that the number of agents N in the network can be accumulated by random walk
algorithm constructed in the configuration step. Briefly speaking, the proposed procedure is divided
into 3 stages. The first stage is to determine the N − 1 Laplacian eigenvalues. Then, retrieve the
non-zero distinct Laplacian eigenvalues in stage 2 before estimating the corresponding multiplicities
in stage 3. The ALADIN-based method is appropriate for carrying out the factorization of the average
consensus matrix as factors of the Laplacian-based consensus matrices to minimize the disagreement
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between neighbors on the values of αt,i. Then, the Laplacian eigenvalues can be defined by taking
the inverse of these αααt. Herein, the authors are obviously interested in dealing with the non-convex
optimization problems. From the simulation evaluation, it can be concluded that the proposed method
converges much faster in comparison with the gradient descent method in [1] for the estimation of
Laplacian spectrum.
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Appendix A. Proof of Lemma 2

From now on, in order to avoid misunderstanding between the iterative step of the consensus
algorithm x(h) and the iterative step of the optimization procedure k, let us denote x(h) by xh.
From Section 2.1, we have:

x(h)− x̄ =
t+1

∏
i=h

WiWtxt−1 − x̄

=
t+1

∏
i=h

Wi(I− diag(αααt)L)xt−1 − x̄

=
t+1

∏
i=h

Wixt−1 − x̄−
t+1

∏
i=h

Widiag(αααt)Lxt−1

=
t+1

∏
i=h

Wixt−1 − x̄− (xT
t−1LT �

t+1

∏
i=h

Wi)αααt

with � being the Khaitri–Rao product. By employing the property of the Khatri–Rao product
(Given matrix A ∈ RI×F, and two vectors b ∈ RJ×1, d ∈ RF×1, then Adieg(d)b = (bT � A)d)
in [1], the derivative of the Lagrange function is described as follows:

∂H1,t

∂αααt
= Lαααt +λλλ + ρΣΣΣt(αααt − yt)− diag(Lxt−1)

h

∏
i=t+1

Wiβββt − c.diag(Lxt−1)
h

∏
i=t+1

Wi(x(h)− x̄)

Since δδδh = βββt and δδδh−1 = Whδδδh then ∏h
i=t+1 Wiβββt = δδδt.

Analogically, eh = x(h)− x̄ and et = Wt+1et+1.
On the other hand, xt−1 − xt = diag(αααt)Lxt−1 then Lxt−1 = diag−1(αααt)(xt−1 − xt)

Therefore, ∂H1,t
∂αααt

= Lαααt +λλλ+ ρΣΣΣt(αααt−yt)− diag−1(αααt)diag(xt−1− xt)δδδt− diag−1(αααt)diag(xt−1− xt)et.

Appendix B. KKT Conditions of QP (11)

δH2
∆αααt

= Bt∆αt + gt +λλλQP + CT
t ηt = 0

δH2
s = λλλ−λλλQP + µs = 0

δH2
ηt

= Ct∆αααt = 0

δH2
λλλQP

= ∑h
t=1 ∆αααt + ∑h

t=1(αααt − yt)− s = 0
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