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Abstract: The escalator is one of the most popular travel methods in public places, and the safe
working of the escalator is significant. Accurately predicting the escalator failure time can provide
scientific guidance for maintenance to avoid accidents. However, failure data have features of short
length, non-uniform sampling, and random interference, which makes the data modeling difficult.
Therefore, a strategy that combines data quality enhancement with deep neural networks is proposed
for escalator failure time prediction in this paper. First, a comprehensive selection indicator (CSI)
that can describe the stationarity and complexity of time series is established to select inherently
excellent failure sequences. According to the CSI, failure sequences with high stationarity and low
complexity are selected as the referenced sequences to enhance the quality of other failure sequences
by using dynamic time warping preprocessing. Secondly, a deep neural network combining the
advantages of a convolutional neural network and long short-term memory is built to train and
predict quality-enhanced failure sequences. Finally, the failure-recall record of six escalators used
for 6 years is analyzed by using the proposed method as a case study, and the results show that the
proposed method can reduce the average prediction error of failure time to less than one month.

Keywords: failure time prediction; convolutional neural network; long-short term memory;
dynamic time warping; escalator

1. Introduction

The escalator is one of the most popular transportation vehicles in densely populated areas.
According to the data, almost 2 billion trips are taken using elevators and escalators every day.
Once escalator failure occurs, it may lead to a terrible accident [1]. In China, about 40 persons died
and thousands of people were injured in escalator accidents every year. According to data statistics
from Guangzhou Metro, about 67% of total injuries are escalator-related injuries [2]. Thus, the timely
prediction of escalator failure can help the manager and maintenance personnel develop maintenance
plans to effectively prevent accidents.

The escalator is a typical human–machine–environment system with many factors involved
in safety. One of the links and one personal mistake may cause a serious accident. As a research
field related to people’s transportation, safety issues have always been the focus of attention [3–5].
An escalator, as a complex system, can cause serious casualties in the event of malfunction. Therefore,
the safe operation of escalators deserves in-depth study. Failure and risk prediction are critical to
ensuring the safe operation of escalators. When the risk level exceeds a certain safety range, an accident
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will occur [6]. Thus, it is necessary to predict the failure time accurately and timely, and arrange
maintenance activities in advance, which can effectively reduce the failure rate and reduce accidents.
Failure time series modeling analysis can describe the law of failure occurrence by establishing a
corresponding mathematical model of related failure data.

Many scholars have done in-depth research on time series analysis in safety research, such as
failure maintenance time based on the Weibull distribution [7], shipyard occupational risk assessment
based on multivariate regression and genetic algorithm [8], and the Akaike Information Criterion (AIC)
based steel mill alarm mechanism [9]. These methods have achieved good effects in the case of large
amounts of data. However, for accident-related failure data, it has special features of short samples,
non-uniform sampling, and random interference. Traditional data modeling based on statistical
laws or deterministic mathematical models requires more labelled data, while data related to safety
accidents have typical characteristics as aforementioned, making data modeling problems much more
difficult. Neural network technology, as one of the most popular data analysis methods, can build a
model containing complex nonlinear relationships without deliberate attention to the mathematical
characteristics of the data itself, and has good generalization ability to map the relationship between
input and output quickly and effectively, which has been widely used in many fields.

In recent years, with the development of neural network (NN) technology, neural networks have
been used in various fields [10–12]. The data modeling by NNs does not deliberately focus on the
mathematical characteristics of the data itself but learns to construct the complex relationship between
input and output with neurons. Thus, neural networks have good generalization capacity. However,
the accuracy of neural networks is sensitive to disturbance in data. In addition, some neural networks
only pay attention to the relationship between input and output, ignoring the hidden information of
the input themselves, which is unreasonable for time series modeling and prediction. Long short-term
memory (LSTM), as one of the recurrent neural networks (RNNs), was proposed to solve the problem
of time series prediction [13]. LSTM can analyze and process time series with unknown duration
delay. LSTM can improve the memory module of traditional RNNs and avoid the problem where
effective historical information cannot be stored for a long time, because of the constant input data [14].
LSTM has also been utilized in time series prediction [15], remaining useful for life prediction [16] and
safety analysis [17,18]. However, LSTM does not learn well the characteristics of the data itself for
short time series with too few samples. Therefore, this paper considers the short-sequence feature
extraction ability of a convolutional neural network (CNN) to extract high-dimensional features,
which can help the LSTM unit to understand the data better. In addition, the combination of CNNs
and LSTMs in a unified framework has already offered state-of-the-art results in the speech recognition
domain [19], health care [20], and power load prediction [21]. In addition, the quality of the data
itself makes a big difference to the accuracy of neural network modeling. Meanwhile, considering
the short length and random interference in the failure data, it is meaningful to enhance the data
quality to improve the prediction accuracy of the neural network before data modeling. Dynamic
time warping (DTW) [22], with characteristics of oversampling and similarity matching, is much more
suitable for data preprocessing before data modeling, especially for short and interfering failure data.
DTW has also been used in many fields [23,24]. For this reason, considering the above-mentioned
issues, a new failure time series prediction method for the escalator based on a convolutional long
short-term memory neural network combined with dynamic time warping preprocessing (DCLNN)
was proposed in this paper.

The remainder of this paper is organized as follows: In Section 2, a time series with high stationarity
and low complexity is elected by a comprehensive selection indicator, the main principles of the
DCLNN are given, and the diagram of the proposed method for failure time prediction is described.
In Section 3, case studies of six escalators are applied with the proposed method and the results are
given. Finally, a summary and conclusion are drawn in Section 4.
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2. The Proposed DCLNN Method for Failure Time Prediction

The complex working environment and numerous components of the escalator make the failure
time data have typical nonlinearity and randomness, which increases the difficulty of data modeling
of the escalator failure time series. In this section, an escalator failure time prediction model based
on a deep neural network under dynamic time warping preprocessing (DCLNN) will be specifically
explained. The DCLNN combined the strategy of DTW pre-processing and CNNLSTM post-learning,
and some basic principles about the method are given in the following section.

2.1. The DCLNN Strategy for Failure Time Prediction of Escalator

The accuracy of time series prediction is not only related to the sequence model, but the quality
of the time series itself also has a great influence on the prediction result. In this paper, a strategy to
combine data quality enhancement with deep neural networks is proposed for time series prediction,
which is shown in Figure 1. First, the data sequences are divided into good data and bad data according
to a selection indicator; secondly, the bad time series data can be transformed to good data with high
quality; finally, the built neural network is used to train and predict the time series.
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Based on the principles of DTW and CNNLSTM, a time series prediction method combining
DTW pre-processing and CNNLSTM post-learning is proposed in this paper for escalator failure time
prediction, which is called DCLNN.

2.2. Comprehensive Selection Indicator before Data Modeling

In general, data sequences with high stationarity and low complexity can be modeled accurately by
the behavior of mathematical modeling. The failure time has certain statistical rules, but with various
reasons for failure, different escalators have different failure times. Those regular escalators whose
failure time series are stationary and have lower complexity can be selected as a reference. For the same
batch of equipment, other escalators have similar failure occurrence rules. In this paper, two stationary
indicators (SIs) and two complexity indicators (CIs) are combined to form a comprehensive selection
indicator to select excellent referenced time series. Here are details about four indicators:

(1) Stationary indicator
(a) Standard deviation

STD =

√√√
1
N

N∑
i=1

(xi − µ)
2 (1)

In statistics, the standard deviation is a measure that is used to quantify the amount of variation
or dispersion of a set of data values. A low standard deviation indicates that the time series tends to be
more stationary.

(b) p-value
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The p-value is the probability value in the statistical significance test, that is, the probability that the
hypothesis test occurs. It is generally assumed that if a small probability event occurs, the assumption
is true. In this paper, the data sequence is used as the hypothesis test for the stationary data, and the
P-value can be calculated as the probability of the unit root test to judge whether the failure time series
is stationary or not. A low P-value indicates that the time series tends to be stationary.

P_value = P
(
x is a non− stationary sequence

∣∣∣ x is a stationary sequence
)

(2)

(2) Complexity indicator
(a) Lempel-ziv
The Lempel-ziv indicator is used to characterize the rate at which new patterns appear in a time

series. The higher the Lempel-Ziv complexity of the sequence, the greater the degree to which the
signal sequence is near-random. The lower the Lempel-ziv indicator, the lower the complexity of the
time series.

CLempel−ziv =
CN(N)

lim
N→∞

CN(N)
≈

CN(N) × logk(N)

N
(3)

CN(N) is the Lempel-ziv complexity of the time series, and CLempel−ziv is the normalized complexity.
Details about the Lempel-ziv algorithm can be found in Ref. [25].

(b) Sample entropy
The Sample Entropy (SampEn) measures the complexity of the time series by measuring the

probability of generating a new pattern in the signal. The greater the probability of the new pattern,
the greater the complexity of the sequence. The lower the sample entropy indicator, the lower the
complexity of the time series.

SampEn = − ln
{
Ak(r)/Bm(r)

}
(4)

where Ak(r) and Bm(r) are the number of subsets of the original time series that satisfies the requirement
within the similar distance r (usually m = 2; k = m + 1; r = 0.1 ∼ 0.25).

(3) Comprehensive selection indicator
In order to describe the inherent characteristics of a data sequence, a comprehensive selection

indication (CSI) that can describe both stationarity and complexity is constructed in this part to select
an inherently excellent data sequence before data modeling. In addition, CSI can be given by the
following equation:

CSI = STD× P_value×CLempel−ziv × SampEn (5)

CSI can be used to compare the regularity itself between data sequences; the smaller the CSI,
the better the data sequence itself and the more accurate the data modeling will be.

2.3. Dynamic Time Warping

The failure time series of escalators are different, and the raw data always have defects (such
as disturbances), which are less effective when used directly in the prediction of neural networks.
Considering the time delay and local similarity of the failure time series of different escalators, dynamic
time warping (DTW) is introduced to pre-process before data modeling [22], and the over-sampling
characteristics of data under the space defined by DTW can effectively reduce the impact of the mutated
data on the accuracy of the model while increasing the data capacity and finally improve the prediction
accuracy of the NN model. An intuitive example is given in Figure 2. The principles of DTW can be
further explained as follows:
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Figure 2. Potential searching directions.

Given two time series X and Y, whose lengths are, respectively, |X| and |Y|, the warping path can
be given,

W = w1, w2, . . . , wk, where max(|X|, |Y|) ≤ k ≤ |X|+ |Y| (6)

wk = (i, j), where i is the coordinate in X and j is the coordinate in Y (7)

The warping path W must start from w1 = (1, 1) and end with wk = (|X|, |Y|) to ensure every
coordinate in |X| and |Y| would be considered. Besides, the coordinate i and j in w(i, j) of the warping
path must be monotonically increasing, which can be constrained by the following equation

wk = (i, j), wk+1 = (i′, j′), i ≤ i′ ≤ i + 1, j ≤ j′ ≤ j + 1 (8)

The warping path needs to satisfy continuity and monotonicity. According to this, Equation (8)
represents the three directions that are in the next optimal path searching. This process can be shown
in Figure 3. DTW always searches forward for the closest distance in three directions: Horizontal,
vertical, and diagonal upward, to maintain the continuity and monotonicity.
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For the failure time of the escalator, such a warping path in DTW is physically meaningful. No new
values will be added to the original data after DTW with the reference time series.

Finally, the wanted warping path is the shortest path in all possible warping paths

D(i, j) = Dist(i, j) + min[D(i− 1, j), D(i, j− 1), D(i− 1, j− 1)] (9)

DTW is a typical optimization problem. It uses a time warping function that satisfies certain
conditions to describe the time correspondence between the test template and the reference template,
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and solves the warping function corresponding to the minimum cumulative distance when the two
templates match. In addition, the constraint here is the search direction shown in Figure 3 [26].
DTW always searches forward for its nearest distance from three directions: Horizontal direction,
vertical direction, and diagonal upward direction. These three directions are consistent with the basic
law of the failure time series: (i) The horizontal direction indicates the same failure time; (ii) the vertical
direction indicates sudden failure; (iii) the diagonal line indicates the stable development direction of
the failure time. It is this constraint that allows the warping time series to learn the inherent failure
development information of ‘good data’ while maintaining the original basic physical meaning of
itself. Meanwhile, for short time series prediction, DTW can increase the sample capacity for its
oversampling characteristics, especially to increase the sample capacity where the data are abrupt,
so that the modeling of the disturbance in the neural network can obtain more attention to reduce the
influence of disturbance to the whole data model.

2.4. Convolutional LSTM Neural Network

The significant characteristic of the failure time series in this paper is a few samples with
non-uniform sampling. When directly using LSTM for data modeling, the features in time series
are not obvious, which may lead to poor accuracy of the modeling and prediction. The deep neural
network used in this paper is a combination of CNN and LSTM. The main target of this paper is time
series prediction. With the help of the CNN’s feature extraction ability, high-dimensional features can
be trained to understand the failure time series more comprehensively. Then, these high-dimensional
features can be used for time series prediction in LSTM. Based on the advantages of CNN and LSTM,
a convolutional LSTM neural network (CLNN) is proposed to achieve the goal of failure time prediction
for an escalator.

2.4.1. Convolutional Neural Network

Convolutional neural networks are a type of deep neural network with the ability to act as feature
extractors. Such models are able to learn multiple layers of feature hierarchies automatically (also called
‘representation learning’). A typical CNN network structure is shown in Figure 4. This typical CNN
includes an input layer, a convolution layer (Conv), a maximum pooling layer (MP), a fully connected
layer (FC), and an output layer.
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Figure 4. Convolutional neural network (CNN) network structure.

The structure of the CNN network mainly has two characteristics: Sparse connection and shared
weights. As shown in Figure 5, unlikely a fully connected neural network, CNNs use the locally
connected mode. The neurons in the m layer are connected to the adjacent neurons in the m-1 layer.
The weights of every neuron in the m-1 layer are shared to the neurons in the m layer, which means the
weights with the same color in Figure 4 are the same. Due to these advantages, the CNN has the effect of
regularization, which can improve the stability and generalization ability of neural networks and avoid
over-fitting. At the same time, these two advantages reduce the total amount of weight parameters,
which is beneficial to the rapid learning of neural networks. CNNs have good representation learning
ability, which can learn excellent features through network training. It is very suitable for a learning
process lacking prior knowledge or clear features.
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In this paper, the failure time in the failure recall data is a typical time series, so a one-dimensional
(1D) convolution operation is used to extract the features of failure time sequences.

2.4.2. Long Short-Term Memory Neural Network

After data sequences have been preprocessed, a long short-term memory neural network (LSTM
NN) is applied in this paper for data modeling. To overcome the gradient vanish of traditional RNNs,
a LSTM NN was proposed. LSTM is one of the special structures of RNNs that can solve the memory
problem of neural networks. It can be applied to process and predict important events with long
intervals and delays in time series.

With a special gate and cell in the hidden layer, LSTM can effectively update and deliver critical
information in time series. Compared to traditional RNNs, LSTM has stronger capacities of information
selection and time series learning, which can solve the problem of long-term dependencies by using
remote context information for current prediction tasks. An LSTM is composed of one input layer,
one hidden layer, and one output layer. Unlike the traditional NN, the basic unit of the hidden layer is
a memory block, and LSTM adds a ‘processor’ in the algorithm to judge whether the information is
useful or not, which is called a cell [27].

The typical structure of an LSTM cell is shown in Figure 6. An LSTM cell is configured mainly
by three gates: Input gate, forget gate, and output gate. The basic idea of LSTM is that when
information enters the network, the information that meets the requirements is left by the input gate,
the non-compliant information is discarded by the forget gate, and finally new information is generated
by the output gate.
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Given x(t) is the input time series, the output is denoted as h(t) and the memory of the cell is
denoted as s(t). Three gates of the LSTM NN can be given as follows:

(1) Forget gate
This unit is decided by considering the current input, the previous output, and the previous

memory. It will produce a new output and change its memory. σ determines how much information
can be left.

f (t) = σ
(
W f · [h(t− 1), x(t)] + b f

)
(10)

(2) Input gate
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The input of this unit is the same with the forget gate, but the input gate determines the extent to
which new memories should affect old memories. Meanwhile, this unit determines how much new
information should be delivered to the next cell. Finally, the cell state is updated through discarding
the information that needs to be discarded and adding new information.

i(t) = σ(Wi · [h(t− 1), x(t)] + bi) (11)

g(t) = tanh(WC · [h(t− 1), x(t)] + bC) (12)

s(t) = f (t) ∗ s(t− 1) + i(t) ∗ g(t) (13)

(3) Output gate
Based on the new cell state, some information of the new state should be added to the output and

the output information of the cell will finally be determined by deterministic information that needs to
be output.

o(t) = σ(Wo[h(t− 1), x(t)] + bo) (14)

h(t) = o(t) ∗ tanh(s(t)) (15)

where σ denotes the sigmoid function defined in the equation and the tanh function is defined in
the equation:

σ(x) =
1

1 + e−x (16)

tanh(x) =
sinh(x)
cosh(x)

=
ex
− e−x

ex + e−x (17)

The learning process of LSTM mainly includes the error backpropagation process and optimization
algorithm. The backpropagation through time (BPTT) algorithm is applied in the error backpropagation
process of LSTM [28].

2.4.3. CLNN: Combination of CNN and LSTM

The architecture of an CLNN is shown in Figure 7. In addition, the network structure of an CLNN
consists of a convolutional layer, a pooling layer, LSTM units, and two fully connected layers.
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3. Application for Failure-Recall Data with DCLNN Method

3.1. Description of Failure-Recall Data

The current maintenance activities of an escalator are mainly based on two modes: Periodical
maintenance and failure-recall maintenance. The maintenance of different components in periodical
maintenance is carried out in different cycles (for example, the four types of maintenance items for
the escalator with a cycle of 4, 12, 24, and 52 weeks). The failure-recall maintenance aims at the
problems discovered by the operator to perform inspection and repair. The failure-recall record can
directly reflect the operational safety of the escalator to a certain extent. The failure-recall records of six
escalators during 2012.10–2018.10 are investigated. The statistics of failure-recall reasons is shown in
Figure 8. There are five main situations in which the failure is recorded, and the cause of component
failure accounts for the most.
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The failure of the escalator is related to the failure of the components, the time of use, and
the inherent performance degradation of the system. The collection and analysis of relevant data
can provide scientific predictions for escalator failure. In addition, predicting the possible time of
escalator failure and implementing maintenance in advance can reduce the chance of escalator failure
and reduce casualties. The failure-recall record can reflect the failure occurrence rule and safety
condition of an escalator. However, data in the failure-record have the characteristics of short samples,
non-uniform samplings, and random interference, which brings difficulty in predicting the failure time
of an escalator.

In this paper, failure-recall records of six escalators with the same brand are collected. In the
records, some details about every failure time are recorded and shown in Appendix A. Then, the
failure time is processed into the corresponding failure interval days, and the failure time curves of
the escalators are calculated by the accumulation idea. The processed failure time curve is shown in
Figure 9.
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3.2. Dynamic Time Warping Pre-Processing Before Data Modeling

In this part, failure time datasets of different escalators are distinguished by the abovementioned
indicators to find those excellent data sequences with inherent advantages (high stationarity and low
complexity) before data modeling. In addition, other data sequences are matched similarly with the
selected excellent data using DTW. The above process can be seen as a pre-processing for more accurate
data modeling. Table 1 summarizes the stationary indicators and complexity indicators of the original
failure time series.

Table 1. Comprehensive selection indicator before dynamic time warping (DTW).

Indicator E #1 E #2 E #3 E #4 E #5 E #6

SI
std 144.5452 134.5956 80.0760 192.6437 136.8093 111.0329

p-value 0.0245 0.1096 0.0046 0.0150 0.0672 0.0921

CI
Lempel-ziv 0.4472 0.5209 0.3616 0.5000 0.5209 0.5209
SampEn 0.5108 1.3863 0.2076 0.4418 1.0986 0.6931

CSI 0.8090 10.6525 0.0277 0.6383 5.2611 3.6920

According to the comprehensive judgment from stationarity and complexity, the non-stationarity
and complexity of escalator #3 is the smallest. The CSI of Escalator #3 is almost fifty times smaller than
those of the others. In order to achieve the purpose of accurate prediction, it is necessary to reduce the
influence of the other data disturbances during data modeling. The over-sampling characteristics of
DTW can increase the number of time series while weakening the disturbances. Thus, DTW is used to
warp other failure time curves with the data of the third escalator as a reference. The specific warping
path and warped time series can be found in Figure 10.

The white lines in the left of Figure 10 are the warping path and the grayscale maps show the
warping distance between the two time series. Figures on the right show the original time series and
warped time series. It is easy to see that the new data after DTW have the same physical meaning as
original data for the special warping path. Here, a specific analysis of the warped failure time series of
Escalator #1 is given. As can be seen from Figure 10, whether it is the red reference sequence #3 or the
blue warped sequence #1, no new failure time is generated on the y-axis, but only extended on the
x-axis, where the x-axis represents the order or number of failures. Although some new samples were
increased on the x-axis, the occurrence time of failure is the same as before. It can still be regarded as
the same failure. This is unambiguous in objective meaning. Meanwhile, it can be seen that due to
the oversampling characteristics of DTW, the length of the time series after being warped has been
increased. Although the increased samples do not affect the physical meaning of the failure time series,
it is possible to increase training samples and increase the network’s understanding of the failure time
series, which can further improve the training effect and prediction effect of the network.

In order to show the function of DTW, above-mentioned stationary indicators and complexity
indicators are calculated after DTW with escalator #3 as referenced. Table 2 shows the result after
DTW pre-processing.

Table 2. Comprehensive selection indicator after DTW.

Indicator D-M1 D-M2 D-M3 D-M4 D-M5 D-M6

SI
STD 127.73 125.34 80.79 157.41 126.12 114.32

p-value 0.001 0.001 0.0032 0.001 0.001 0.001

CI
Lempel-ziv 0.3196 0.3522 0.3616 0.3434 0.3522 0.3616
SampEn 0.3042 0.7419 0.2076 0.4520 0.4187 0.4055

CSI 0.0124 0.0308 0.0194 0.0244 0.0186 0.0168
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As shown in Tables 2 and 3, the CSI is reduced to below 0.1 after DTW with the failure time
series as the referenced sequence. A specific comparison of CSI before and after DTW preprocessing
is summarized in Figure 9 for a clear description. As shown in Figure 11, the CSI of the other five
escalators are reduced after DTW preprocessing with Escalator #3 referenced. They become more
stationary and lower-complexity after matching with the failure time series of Escalator #3.

Table 3. Root-mean-square error (RMSE) in training process.

Training
# Of Escalator #1 #2 #3 #4 #5 #6

RMSE
Before DTW 63.64 122.02 73.8 77.69 127.72 93.1
After DTW 119.75 117.83 73.8 150.8 123.46 107.45
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Figure 11. Comparison of comprehensive selection indicator (CSI) before and after DTW pre-processing.

Besides, for the convenience of engineering applications, six sigma was applied to the analysis of
the CSI of the failure time series after DTW to try to give a possible threshold of the CSI. In addition,
the threshold can be used to distinguish whether the data sequences need to be warped before data
modeling. The distribution interval of CSI can be given by [µ− 3σ,µ+ 3σ], where µ is the mean value of
CSI and σ is the variance. For above-mentioned data sequences after DTW, CSImean = 0.0204, σ= 0.0064.
Thus, the CSI value can be considered in the interval [0.0012 0.0396], and the upper limit of the interval
is used as the judgment threshold considering the fault tolerance. That is, CSIthreshold = 0.0396. For data
sequences in this paper, if the CSI is less than CSIthreshold, DTW preprocessing is unnecessary before data
modeling, otherwise, it is recommended to be warped with a sequence with a CSI less than CSIthreshold.

3.3. Results of LSTM and DCLNN

It is easy to see that no straightforward rules can be found directly from the failure time curve in
Figure 10. The LSTM is used directly to train and predict the data in Figure 10. During the training
process, the prediction goal is the failure time of the last day. Among them, about 90% of the time
series data are used to train the LSTM NN, and the last 10% of the data are used to test the model
and predict the failure time. The specific architecture and hyperparameters of CLNN can be found in
Figure 12. Tensorflow was used to build the above neural networks. A related repository was stored in
the link (the same name with paper) on github.
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Taking into account the time cost and prediction accuracy of network training, the recommended
training epochs is around 200. Before data training and testing using a neural network, data normalization
using Equation (18) is necessary.

xn(i) =
x(i) − xmin

xmax − xmin
(18)

Then, the original failure time series of six escalators are first trained by the CLNN. The training
process and prediction result are shown in Figure 13. Training loss and testing loss are also given in
Figure 14.
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Figure 14. Loss of 6 escalators using CLNN for training and prediction. Figure 14. Loss of 6 escalators using CLNN for training and prediction. (a) Escalator #1. (b) Escalator
#2. (c) Escalator #3. (d) Escalator #4. (e) Escalator #5. (f) Escalator #6.

Black lines are the true value of the failure time curve, green lines indicate the training process,
and the red point shows the prediction result. All escalators except the third one have poor predictions
that can be seen from Figure 13 directly. The results are consistent with the result of CSI. The reason for
the poor prediction of other escalators are: 1) The length of the data sequence is short, and the number
of data used for CLNN model training and testing are also small; 2) the trend of the third escalator is
stable with no obvious disturbance, while there are more or less disturbances in the time series data of
the other five escalators. In addition, those disturbances make a big difference on modeling accuracy
of the CLNN. Then, DTW is used to warp other failure time curves with the data of the third escalator
as a reference. Using new data for training and prediction of the DCLNN, the results are shown in
Figure 15. Training loss and testing loss are also given in Figure 16.

The prediction accuracy after pre-processing is significantly improved compared to the direct use
of the original data. Here, the root-mean-square error (RMSE) is chosen to assess the prediction accuracy
of escalators. The RMSE can measure the difference between two time series. The mathematical
formula is:

RMSE =

√√√
1
n

n−1∑
i=0

(y− y′ )2 (19)
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The comparison results are summarized in Tables 3 and 4. Table 3 shows the RMSE of the training
process between the original data and warping data. Table 4 shows the RMSE of the prediction process
between the original data and warping data. Although the RMSE in the training process changes
a little, the RMSE has been reduced a lot in the prediction process. After pre-processing by DTW,
the accuracy of the DCLNN is improved.
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# Of Escalator #1 #2 #3 #4 #5 #6 

RMSE 
Before DTW 384.87 112.78 3.9 397.12 25.3 53.18 
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Figure 16. Loss of 6 escalators using DCLNN for training and prediction. (a) Escalator #1. (b) Escalator
#2. (c) Escalator #3. (d) Escalator #4. (e) Escalator #5. (f) Escalator #6.

Table 4. RMSE in prediction process.

Prediction

# Of Escalator #1 #2 #3 #4 #5 #6

RMSE
Before DTW 384.87 112.78 3.9 397.12 25.3 53.18
After DTW 25.12 16.81 3.9 30.37 9.3 7.66

RMSE reduction (%) 93.50 85.09 0 92.35 63.24 85.60

Average MSE reduction percentage: 83.96%

With DCLNN, the RMSE of the escalator can be reduced by an average of 83.96%. From Figure 15,
the accuracy of the prediction result can be reduced from a few hundred days to less than one month,
in order to compare the accuracy of the proposed DCLNN model for failure time prediction of escalators.
For a better explanation about the effectiveness of the DCLNN, the other three classical time series
prediction methods (Kalman Filter, Nonlinear Auto Regressive Neural Network, Elman RNN, LSTM)
are applied for data analysis of the third escalator. The results of these methods are shown in Figure 17.
The results intuitively show huge errors from the true value compared to results from the DCLNN.
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3.4. Function of DTW

The use of DTW to warping time series can improve the prediction accuracy and reduce the mean
square error. If the prediction effect of two time series is poor when using the neural network for
the first time, the result is not obviously improved after using DTW. However, the result will have
a significant improvement after DTW preprocessing if one of the time series is relatively good for
prediction. Table 5 concludes all RMSE values when using different time series as referenced data for
DTW pre-processing and warping data for prediction using DCLNN.

Table 5. Statistics of RMSE.

# 1 # 2 # 3 # 4 # 5 # 6

RMSE 384.87 112.78 3.9 397.12 25.3 53.18
#1 referenced 384.87 18.43 6.81 442.35 25.91 52.26
#2 referenced 225.41 112.78 6.85 125.17 12.40 52.48
#3 referenced 25.12 16.81 3.9 30.37 9.3 7.66
#4 referenced 117.56 32.26 10.65 397.12 11.23 43.24
#5 referenced 48.43 13.78 5.86 241.17 25.3 47.77
#6 referenced 119.11 117.85 2.95 61.46 25.44 53.18

Figure 18a is obtained from each column in Table 5. It is clear to see that the MSE is smallest when
choosing the third escalator as the reference time series in DTW preprocessing. Figure 18b shows the
RMSE improvement of DCLNN prediction after using different escalator data as the reference time
series in DTW pre-processing. Similarly, the RMSE improvement of the third escalator is best compared
to others. Meanwhile, the result in Figure 18b shows that almost all MSE of the data sequences with
different data sequences as referenced can be improved after DTW preprocessing. However, for the
third escalator, the RMSE variation is negative. The main reason is that the data quality of the third
escalator is best according to the CSI indicator. After DTW is preprocessed with other data as referenced
data, the data quality is not as excellent as the third data itself. Therefore, for data with high quality,
it is not recommended to use DTW for data preprocessing, otherwise it will reduce the data quality
and increase the prediction error.



Appl. Sci. 2020, 10, 5622 19 of 23

Appl. Sci. 2020, 10, x FOR PEER REVIEW 19 of 23 

other data as referenced data, the data quality is not as excellent as the third data itself. Therefore, for 
data with high quality, it is not recommended to use DTW for data preprocessing, otherwise it will 
reduce the data quality and increase the prediction error. 

  
(a) (b) 

Figure 18. Statistics of RMSE in prediction process. 

4. Conclusions 

Failure time, as an important factor for the safe operation of escalators, is used for prediction by 
the proposed DCLNN neural network in this paper. Due to the short length of the failure time series, 
and the characteristics of random interference and non-uniform sampling, the failure time prediction 
is much more difficult. Naturally, higher data quality and a suitable neural network can help solve 
this problem. Considering the oversampling characteristics and similarity-matching performance of 
DTW, some inferior data with low stationarity and high complexity can be warped by referring to 
excellent data while retaining its original physical meaning. Such DTW-based data pre-processing 
can not only increase the sample numbers of short time series but also reduce the impact of 
disturbance data on the neural network. After data preprocessing, the combination of CNN and 
LSTM is used to train and predict the failure time series. With the help of CNN’s feature extraction 
ability, high-dimensional features can be trained to understand the failure time series more 
comprehensively. Then, these high-dimensional features can be used for time series prediction in 
LSTM. Based on the advantages of DTW, CNN, and LSTM, a strategy to combine data quality 
enhancement with deep neural networks is proposed to achieve the goal of failure time prediction 
for an escalator. Failure-recall data of an escalator are analyzed using the proposed DCLNN method, 
and the result shows that the proposed method can effectively reduce the root-mean-square error 
between the predicted value and the real value in the prediction process. At the same time, compared 
to some classical time series prediction methods such as the Kalman Filter, Nonlinear Auto 
Regressive Neural Network, and Elman RNN, the prediction accuracy of the proposed method is 
obviously improved. Besides, the function of the DTW was further analyzed to show that enhancing 
data quality can effectively improve the accuracy of prediction. The proposed DCLNN method can 
reduce the prediction time error of escalator failure to less than one month, which can provide 
scientific guidance for smarter maintenance planning and economic improvement. 

However, due to the limited number of samples, the accuracy of the proposed method needs to 
be improved for better maintenance guiding, and a more reasonable threshold of CSI indicators needs 
further study before pre-processing in engineering application. Furthermore, the proposed method 
is currently applicable to the situation of two or more devices to improve the prediction accuracy. In 
the future, an in-depth study is necessary for the failure time series prediction problem of a single 
device under a small number of samples. 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

# of Escalators

0

50

100

150

200

250

300

350

400

450
R

M
SE

RMSE in prediction process of every escalator after DTW

#1 referenced
#2 referenced
#3 referenced
#4 referenced
#5 referenced
#6 referenced

RMSE changes statistics of every escalator after DTW

1 2 3 4 5 6

# of Escalators

-1.5

-1

-0.5

0

0.5

1

R
M

SE
 c

ha
ng

es

#1
#2
#3
#4
#5
#6

Figure 18. Statistics of RMSE in prediction process. (a) RMSE of every escalator after DTW. (b) RMSE
variation statistics after DTW.

4. Conclusions

Failure time, as an important factor for the safe operation of escalators, is used for prediction
by the proposed DCLNN neural network in this paper. Due to the short length of the failure time
series, and the characteristics of random interference and non-uniform sampling, the failure time
prediction is much more difficult. Naturally, higher data quality and a suitable neural network
can help solve this problem. Considering the oversampling characteristics and similarity-matching
performance of DTW, some inferior data with low stationarity and high complexity can be warped
by referring to excellent data while retaining its original physical meaning. Such DTW-based data
pre-processing can not only increase the sample numbers of short time series but also reduce the
impact of disturbance data on the neural network. After data preprocessing, the combination of
CNN and LSTM is used to train and predict the failure time series. With the help of CNN’s feature
extraction ability, high-dimensional features can be trained to understand the failure time series
more comprehensively. Then, these high-dimensional features can be used for time series prediction
in LSTM. Based on the advantages of DTW, CNN, and LSTM, a strategy to combine data quality
enhancement with deep neural networks is proposed to achieve the goal of failure time prediction
for an escalator. Failure-recall data of an escalator are analyzed using the proposed DCLNN method,
and the result shows that the proposed method can effectively reduce the root-mean-square error
between the predicted value and the real value in the prediction process. At the same time, compared
to some classical time series prediction methods such as the Kalman Filter, Nonlinear Auto Regressive
Neural Network, and Elman RNN, the prediction accuracy of the proposed method is obviously
improved. Besides, the function of the DTW was further analyzed to show that enhancing data quality
can effectively improve the accuracy of prediction. The proposed DCLNN method can reduce the
prediction time error of escalator failure to less than one month, which can provide scientific guidance
for smarter maintenance planning and economic improvement.

However, due to the limited number of samples, the accuracy of the proposed method needs to be
improved for better maintenance guiding, and a more reasonable threshold of CSI indicators needs
further study before pre-processing in engineering application. Furthermore, the proposed method is
currently applicable to the situation of two or more devices to improve the prediction accuracy. In the
future, an in-depth study is necessary for the failure time series prediction problem of a single device
under a small number of samples.
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Appendix A

The following table is a summary of the failure-record of six escalators in a shopping mall. In this
paper, the location and starting date are used for analysis for failure time prediction.

Location Starting Date Starting Time Arrival Date Arrival Time Recovery Date Recovery Time Maintenance Time (Min)

1U2N 2012/10/23 12:21:00 2012/10/23 12:42:00 2012/10/23 14:00:00 78

1U2N 2013/1/9 13:57:00 2013/1/9 14:20:00 2013/1/9 15:30:00 70

1U2N 2013/3/2 13:47:00 2013/3/2 15:01:00 2013/3/2 19:36:00 275

1U2N 2013/3/14 8:29:00 2013/3/14 8:56:00 2013/3/14 9:43:00 47

1U2N 2013/3/15 8:30:00 2013/3/15 8:50:00 2013/3/15 9:30:00 40

1U2N 2013/5/17 17:43:00 2013/5/17 18:27:00 2013/5/17 19:20:00 53

1U2N 2013/7/25 20:00:00 2013/7/25 20:20:00 2013/7/25 21:00:00 40

1U2N 2014/3/2 14:10:00 2014/3/2 14:30:00 2014/3/2 15:50:00 80

1U2N 2014/6/21 16:35:00 2014/6/21 17:15:00 2014/6/21 18:20:00 65

1U2N 2014/9/21 17:40:01 2014/9/21 18:00:01 2014/9/21 22:15:01 255

1U2N 2014/12/11 16:22:00 2014/12/11 16:37:00 2014/12/11 17:54:00 77

1U2N 2014/12/22 8:36:00 2014/12/22 14:00:00 2014/12/22 17:20:00 200

1U2N 2015/1/7 8:46:00 2015/1/7 9:06:00 2015/1/7 9:30:00 24

1U2N 2015/1/23 8:34:00 2015/1/23 11:40:00 2015/1/23 11:50:00 10

1U2N 2015/10/19 17:00:00 2015/10/19 17:25:00 2015/10/19 20:00:00 155

1U2N 2015/12/31 9:30:00 2015/12/31 9:46:00 2015/12/31 11:10:00 84

1U2N 2016/5/10 9:34:00 2016/5/10 9:50:00 2016/5/10 10:10:00 20

1U2N 2016/6/6 18:27:00 2016/6/6 18:40:00 2016/6/6 19:10:00 30

1U2N 2018/2/9 14:23:00 2018/2/9 14:41:00 2018/2/9 15:10:00 29

1U2N 2018/10/15 9:04:00 2018/10/15 10:00:00 2018/10/15 18:02:49 483

1U2E 2012/9/28 13:11:00 2012/9/28 13:21:00 2012/9/28 15:05:00 104

1U2E 2012/11/5 15:06:00 2012/11/5 15:19:00 2012/11/5 17:20:00 121

1U2E 2012/12/15 13:05:00 2012/12/15 13:23:00 2012/12/15 15:00:00 97

1U2E 2013/3/10 20:10:00 2013/3/10 20:25:00 2013/3/10 22:00:00 95

1U2E 2013/9/30 16:40:00 2013/9/30 17:05:00 2013/9/30 23:30:00 385

1U2E 2013/10/12 13:01:00 2013/10/12 13:24:00 2013/10/12 13:50:00 26

1U2E 2014/11/2 15:58:01 2014/11/2 16:20:01 2014/11/2 17:57:01 97

1U2E 2014/11/16 13:40:00 2014/11/16 14:00:00 2014/11/16 15:18:00 78

1U2E 2014/12/1 9:24:00 2014/12/1 10:00:00 2014/12/1 23:50:00 830

1U2E 2014/12/13 9:39:00 2014/12/13 10:00:00 2014/12/13 10:30:00 30

1U2E 2015/5/30 9:14:00 2015/5/30 9:40:00 2015/5/30 10:20:00 40

1U2E 2015/7/15 21:28:00 2015/7/15 22:05:00 2015/7/15 22:20:00 15

1U2E 2016/6/1 8:43:00 2016/6/1 9:00:00 2016/6/1 9:30:00 30

1U2E 2017/2/24 13:34:00 2017/2/24 14:55:00 2017/2/24 16:30:00 95

1U2E 2017/12/8 9:23:00 2017/12/8 19:42:00 2017/12/8 21:50:00 128

1U2E 2018/9/19 8:53:00 2018/9/19 9:24:00 2018/9/19 11:24:00 120

1U2S 2012/9/25 13:40:00 2012/9/25 14:19:00 2012/9/27 2:30:00 2171

1U2S 2012/10/14 19:07:00 2012/10/14 19:25:00 2012/10/14 20:30:00 65

1U2S 2012/11/5 9:30:00 2012/11/5 10:00:00 2012/11/5 11:20:00 80

1U2S 2013/3/22 15:30:00 2013/3/22 16:10:00 2013/3/22 20:30:00 260

1U2S 2013/5/6 10:00:00 2013/5/6 10:30:00 2013/5/6 12:30:00 120

1U2S 2013/5/27 14:27:00 2013/5/27 14:40:00 2013/5/27 16:00:00 80

1U2S 2013/6/27 9:30:00 2013/6/27 10:00:00 2013/6/27 11:40:00 100
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Location Starting Date Starting Time Arrival Date Arrival Time Recovery Date Recovery Time Maintenance Time (Min)

1U2S 2013/7/8 16:55:01 2013/7/8 17:13:01 2013/7/8 18:20:01 67

1U2S 2013/7/13 11:00:00 2013/7/13 11:30:00 2013/7/13 12:45:00 75

1U2S 2013/8/17 16:23:00 2013/8/17 16:44:00 2013/8/17 17:20:00 36

1U2S 2013/11/25 10:00:00 2013/11/25 10:30:00 2013/11/25 11:30:00 60

1U2S 2014/4/29 11:10:00 2014/4/29 11:30:00 2014/4/29 13:00:00 90

1U2S 2014/6/21 9:10:00 2014/6/21 9:50:00 2014/6/21 11:10:00 80

1U2S 2014/8/23 10:00:00 2014/8/23 10:30:00 2014/8/23 11:30:00 60

1U2S 2015/6/26 11:45:00 2015/6/26 12:20:00 2015/6/26 14:10:00 110

1U2S 2015/8/29 1:22:00 2015/8/29 1:25:00 2015/9/2 4:36:00 5951

1U2S 2016/1/19 13:59:00 2016/1/19 14:17:00 2016/1/19 15:50:00 93

1U2S 2016/5/13 14:22:00 2016/5/13 14:45:00 2016/5/13 16:00:00 75

1U2S 2016/7/26 14:07:00 2016/7/26 14:25:00 2016/7/26 14:30:00 5

1U2S 2016/8/21 15:01:00 2016/8/21 15:23:00 2016/8/21 15:40:00 17

1U2S 2017/2/10 10:12:00 2017/2/10 10:30:00 2017/2/10 10:50:00 20

1U2S 2017/2/22 8:55:00 2017/2/22 9:10:00 2017/2/22 9:30:00 20

1U2S 2017/11/22 9:08:00 2017/11/22 10:02:00 2017/11/22 10:29:46 28

1U2S 2017/12/8 19:25:00 2017/12/8 19:34:00 2017/12/8 19:39:05 5

1U2S 2018/5/13 17:01:00 2018/5/13 17:30:00 2018/5/13 18:03:00 33

1U2S 2018/9/13 15:36:00 2018/9/13 16:00:00 2018/9/13 17:00:00 60

1U2S 2018/10/19 9:40:00 2018/10/19 10:20:00 2018/10/19 10:32:00 12

1U2W 2012/8/7 11:00:00 2012/8/7 11:40:00 2012/8/7 14:30:00 170

1U2W 2012/8/16 14:10:00 2012/8/16 14:25:00 2012/8/16 20:45:00 380

1U2W 2012/9/19 18:15:00 2012/9/19 18:43:00 2012/9/19 20:30:00 107

1U2W 2013/1/18 21:18:00 2013/1/18 21:39:00 2013/1/18 23:57:00 138

1U2W 2013/2/27 12:05:00 2013/2/27 12:20:00 2013/2/27 13:20:00 60

1U2W 2013/3/3 16:03:00 2013/3/3 16:33:00 2013/3/3 22:20:00 347

1U2W 2013/3/3 11:01:00 2013/3/3 11:40:00 2013/3/3 12:00:00 20

1U2W 2013/9/6 18:30:00 2013/9/6 18:50:00 2013/9/6 22:40:00 230

1U2W 2013/9/15 17:28:00 2013/9/15 17:58:00 2013/9/15 18:30:00 32

1U2W 2013/10/1 8:10:00 2013/10/1 8:25:00 2013/10/1 19:10:00 645

1U2W 2013/10/13 16:40:00 2013/10/13 17:07:00 2013/10/13 19:30:00 143

1U2W 2014/1/14 9:33:00 2014/1/14 10:02:00 2014/1/14 10:45:00 43

1U2W 2014/2/4 13:33:00 2014/2/4 13:59:00 2014/2/4 14:30:00 31

1U2W 2014/10/29 8:05:00 2014/10/29 8:50:00 2014/10/29 9:40:00 50

1U2W 2014/11/17 8:10:00 2014/11/17 8:35:00 2014/11/17 10:00:00 85

1U2W 2016/12/11 22:24:00 2016/12/11 22:50:00 2016/12/11 23:30:00 40

1U2W 2017/8/23 9:39:00 2017/8/23 10:00:00 2017/8/23 11:30:00 90

2U3N 2012/8/30 15:10:00 2012/8/30 15:20:00 2012/8/30 18:20:00 180

2U3N 2012/10/20 18:50:00 2012/10/20 19:05:00 2012/10/20 21:10:00 125

2U3N 2012/11/4 16:15:00 2012/11/4 16:15:00 2012/11/4 17:20:00 65

2U3N 2013/1/13 17:45:00 2013/1/13 17:55:00 2013/1/13 19:00:00 65

2U3N 2013/4/8 11:30:00 2013/4/8 12:00:00 2013/4/8 12:40:00 40

2U3N 2014/5/28 15:30:00 2014/5/28 16:00:00 2014/5/28 16:30:00 30

2U3N 2014/10/25 8:45:00 2014/10/25 9:20:00 2014/10/25 12:10:00 170

2U3N 2015/1/13 8:50:01 2015/1/13 9:25:01 2015/1/13 11:40:01 135

2U3N 2015/2/23 13:21:00 2015/2/23 13:54:00 2015/2/23 17:00:00 186

2U3N 2015/10/12 15:00:00 2015/10/12 15:23:00 2015/10/12 17:15:00 112

2U3N 2015/10/30 11:50:00 2015/10/30 12:23:00 2015/10/30 14:20:00 117

2U3N 2015/11/29 17:00:01 2015/11/29 17:20:01 2015/11/29 20:18:01 178

2U3N 2016/10/2 9:09:00 2016/10/2 9:30:00 2016/10/2 10:00:00 30

2U3N 2017/11/11 9:19:00 2017/11/11 9:45:00 2017/11/11 11:30:00 105

2U3N 2018/1/13 9:25:00 2018/1/13 9:53:00 2018/1/13 10:30:00 37

2U3N 2018/7/16 9:15:00 2018/7/16 9:38:00 2018/7/16 11:38:00 120

2U3S 2012/8/3 20:00:00 2012/8/3 20:30:00 2012/8/3 22:30:00 120

2U3S 2012/8/28 9:20:00 2012/8/28 9:40:00 2012/8/28 10:20:00 40
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Location Starting Date Starting Time Arrival Date Arrival Time Recovery Date Recovery Time Maintenance Time (Min)

2U3S 2012/11/2 9:36:00 2012/11/2 10:05:00 2012/11/2 11:30:00 85

2U3S 2013/5/6 10:00:00 2013/5/6 10:30:00 2013/5/6 11:30:00 60

2U3S 2013/12/5 18:30:01 2013/12/5 18:50:01 2013/12/5 19:30:01 40

2U3S 2014/3/31 9:30:00 2014/3/31 10:00:00 2014/3/31 10:30:00 30

2U3S 2014/8/25 11:00:00 2014/8/25 11:30:00 2014/8/25 12:00:00 30

2U3S 2014/12/20 9:08:01 2014/12/20 9:17:01 2014/12/20 9:28:01 11

2U3S 2015/7/13 18:30:00 2015/7/13 19:12:00 2015/7/13 22:30:00 198

2U3S 2016/6/21 9:23:00 2016/6/21 9:40:00 2016/6/21 10:10:00 30

2U3S 2016/7/5 16:50:00 2016/7/5 17:10:00 2016/7/5 17:30:00 20

2U3S 2017/7/2 10:27:00 2017/7/2 10:50:00 2017/7/2 11:00:00 10

2U3S 2018/3/22 14:20:00 2018/3/22 20:55:00 2018/3/22 21:16:00 21

2U3S 2018/5/24 9:20:00 2018/5/24 20:33:00 2018/5/24 21:08:00 35

2U3S 2018/10/2 8:52:00 2018/10/2 10:20:00 2018/10/2 10:38:00 18

2U3S 2018/10/19 10:35:00 2018/10/19 10:36:00 2018/10/19 11:10:00 34
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