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Abstract: Facilitated by rapid development of the data-intensive techniques together with
communication and sensing technology, we can take advantage of smart card data collected through
Automatic Fare Collection (AFC) systems to establish connections between public transit and urban
spatial structure. In this paper, with a case study on Shenzhen metro system in China, we investigate
the agglomeration pattern of passenger flow among subway stations. Specifically, leveraging inbound
and outbound passenger flows at subway stations, we propose a clustering refinement approach based
on cluster member stability among multiple clusterings produced by isomorphic or heterogeneous
clusterers. Furthermore, we validate and elaborate five clusters of subway stations in terms of
regional functionality and urban planning by comparing station clusters with reference to government
planning policies and regulations of Shenzhen city. Additionally, outlier stations with ambiguous
functionalities are detected using proposed clustering refinement framework.

Keywords: clustering; cluster ensemble; smart card data; AFC data; passenger flow; urban spatial structure

1. Introduction

With the rapid development of urban economy and continuous agglomeration of population,
urban rail transit such as subway has been a significant option for alleviating traffic congestion as well
as improving public transportation and urban construction. On account of transit network layout and
passenger flow benefits, the spatial-temporal concepts have been reshaped, thus leading to the change
of people’s lifestyle and redistribution of urban spatial structure.

In this work, we study revealing urban spatial structure through station-oriented clustering using
public transit smart card data with a case study on Shenzhen metro system in China. Indeed the
application motivation could be facilitating urban regional planning and public infrastructure deployment
guided by Transit-Oriented Development (TOD) [1] strategies. For example, typical administrative
division is a relatively constant geographical setting developed for regional governance and functional
management; nevertheless, distinguished from global administrative division, finer grained functional
areas depend on multiple factors and could be reflected by urban mobility. The intuition behind is
that public transit behavior reflects geographical agglomeration in terms of passenger riderships among
stations, and thus contributes to regional functions and urban spatial structure.

Along this line, the most common practice is to leverage clustering technique for identifying
agglomeration pattern hidden in public transit behavior. Significantly, we observe that given a specific
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data set, there could be multiple good (i.e., stable clustering in terms of algorithm itself [2]) clustering
solutions with different initial settings or clustering algorithms. Besides, on account of various methods
for determining optimal number of clusters and evaluating clustering results, there might not exist
a single clusterer (a clustering instance of particular algorithm with parameter settings specified and
clustering results produced [3]) that is optimal in every respect. Therefore, in order to produce stable,
accurate and explanatory clusters, we propose a clustering refinement approach with cluster ensemble
using inbound and outbound passenger flow at subway stations.

The contributions of this study can be highlighted as follows:

• We propose a clustering refinement approach with cluster ensemble for discovering stable,
reliable and rational partitions of subway stations, and meanwhile capable of outlier detection.
Specifically, suppose there exists an optimal or suboptimal initialization, and each clusterer
produces stable clustering results respectively, clustering refinement procedure is further
performed through member based stability across instead of within isomorphic or heterogeneous
clusterers.

• We formulate the concept of cluster member based stability. Typically, clustering stability indicates
that a “good” clusterer is supposed to produce same clustering results on the same data set despite
of different parameter settings among repeatedly executions. By contrast, we investigate stability
across multiple good clusterers by exploring member shifting pattern between clusterings.

• Through a case study on Shenzhen city, China, we emphasize on interpretability of clustering
results upon subway stations considering administrative division together with urban
construction and land utilization. In this way, we validate regional functions of subway stations
from the perspectives of urban planning as well as daily commuting behavior.

The remainder of this paper is organized as follows. Related work is summarized in Section 2, and
problem statement, data description and preliminary analysis are presented in Section 3. Next, Section 4
introduces cluster member based stability and clustering refinement framework. Clustering results are
discussed in Section 5, together with comprehensive interpretation of station clusters. Finally, Section 6
concludes the paper.

2. Related Work

From the perspective of urban development, the interaction effects between urban rail transit
and urban spatial structure could be supported by urban planning. It is generally believed that rail
transit implements urban spatial structure in terms of urban master planning, land use planning and
transportation planning, and meanwhile guides the overall planning of urban city and optimization of
urban spatial structure. For example, a concept that integrates transport and land use together is called
Transit-Oriented Development (TOD) [1], which refers to urban development that enables efficient
and mixed land use oriented by public transit and public transit stations; it has been recognized that
planning, construction and adjustment of stations and surrounding land use is conducive to urban
development [4]. To this end, we therefore introduce government policies and regulations on urban
development planning for regional functionality validation of public transit stations.

Existing research efforts on the interactive effects between urban rail transit and urban spatial
structure typically lie in transport accessibility [5–8], traveling behavior transformation [9–11], land use
functions [12], land value and housing price [13–15], etc. It has been acknowledged that urban
rail transit can effectively enhance transport accessibility in urban cities [8], and thus produces
favorable impacts on land use and commercial development. For example, Zhao et al. [12] proposed
a consolidated multinomial logit and land use allocation model to quantify the impacts of urban
rail transit on land use through a case study on Wuhan in China. Xiaohui et al. [15] examined the
close relationship between rail transit and land parcel price, which includes information on price,
parcel location, land use type and transaction mode, by calculating distances from each parcel to its
nearest metro station, and verified that metro investment has a great impact on land price and thus
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helps shape the urban structure. However in this work, taking Shenzhen metro as a specific example
of urban rail transit, we attempt to enrich existing literature by exploring agglomeration pattern of
subway stations through clustering technique and interpreting the urban spatial structure represented
by station clusters with references to urban development planning policies and regulations.

From a data-driven perspective, urban rail transit could be digitalized as smart card data
collected through Automatic Fare Collection (AFC) systems. Specifically, public transit smart card
data concerning passenger ridership transactions could provide better insights on understanding
urban travel behavior through interconnection between people, vehicles and public transit
network. Literature reviews on smart card data in public transit could be found in [16,17].
Generally, urban research based on public transit smart card data include data processing and
Origin-Destination (OD) estimation [18–20], transportation system operation and management [21–24],
travel behavior analysis [25–29], as well as urban spatial structure analysis [30–32]. Specifically in terms
of urban spatial structure, academic efforts attempt to reveal urban spatial structure by investigating
passenger commuting patterns [33] and leveraging travel survey data [34–36], Point of Interest (POI)
data [32] and social media check-in data [37], etc. Yet, there are relatively few studies establishing
linkage between public transit smart card data and urban planning, which is indeed achieved by
incorporating clustering results with government policies and regulations on urban development
planning in this paper.

From the clustering perspective, there exist many clustering efforts upon smart card data.
Comprehensive literature reviews on clustering could be found in [38,39]. Besides, considering
the high-dimensional characteristics of public transit smart card transactions with massive matrices
about stations and passengers, there are three broad categories of high-dimensional clustering
algorithms [40]: (1) subspace (or axis-parallel) clustering; (2) correlation clustering; and (3) model-based
high-dimensional clustering. Specifically we propose a clustering refinement approach with cluster
ensemble to produce stable, accurate and explanatory clusters. Indeed, there have been many efforts on
cluster ensemble [41]. For example, Fern et al. [42] utilized random projection on high dimensional data
to improve clustering results; Yang et al. [43] explored the clustering diversity with random sampling
and random projection; Topchy et al. [44] attempted to present formal arguments on consensus solution;
Alizadeh et al. [45] established cluster ensemble based on clustering stability measure; etc. In this
work, we propose a multi-faceted clustering ensemble with isomorphic or heterogeneous clusterers by
introducing the concept of cluster member based stability. Unlike traditional clustering stability [2],
we investigate the shifting pattern of cluster members across multiple good clusterers.

Interestingly, one of the most related works could be [32], in which the authors intended to
discover regions of different functions based on public transit smart card data, POI and Traffic Analysis
Zones (TAZ) through a case study of bus platform in Beijing. Specifically, model based clustering using
Expectation Maximization (EM) algorithm was applied, and consequently six clusters of bus stops were
identified. However our work could be distinguished in the following aspects. First, we investigate
subway smart card data, which includes more accurate passenger ridership transactions compared
with bus transit. Second, both [32] and our work are motivated by urban planning; however, [32]
tried to discover sophisticated functional zones at TAZ scale by introducing POI data, combined with
public transit smart card data, which indicates that urban spatial structure could be explained through
not only public transit but also location based services. In addition, administrative functions of
TAZs were introduced for clustering bus stops, and further employed to explain clustering results,
which constitutes a circular argument to some extent. By contrast, in this work we use smart card
data alone for clustering subway stations, demonstrating that public transit relates to urban spatial
structure without being affected by other factors; besides, the functionality of station clusters is further
validated with references to urban development. Third, [32] employed single clustering algorithm
without consideration of clustering stability issue, i.e., the reproducibility and variability among
different clustering methods. However in this study, we focus on solving clustering stability through



Appl. Sci. 2020, 10, 5606 4 of 21

a cluster ensemble method, and experimentally elaborate the connection between public transit and
urban structure.

3. Problem Statement and Preliminary Analysis

3.1. Problem Statement

Cluster analysis could be formalized as follows. Given dataset D with n objects,
i.e., D = {xi}, i = 1, 2, . . . , n. A clustering is a finite partition π = {C1, C2, . . . , CK} on D, which assigns
label L = {l} to each data object, that is, π : ∀xi ∈ D → L. Here K is the number of clusters,
and L = {l|l(xi) ∈ {1, 2, . . . , K}, xi ∈ D} is called cluster vector, where l(xi) denotes the cluster label
of xi. One partition Ck = {xi|l(xi) = k, xi ∈ D}, k = 1, 2, . . . , K, Ck ∈ π 6= ∅ composed of members
xi ∈ Ck is termed as a cluster. The center of cluster Ck is called centroid, notated as c(k), k = 1, 2, . . . , K.
A clusterer is an instance procedure of clustering algorithm which takes D as input, and produces π as
output. Notations and explanations are listed in Table 1. The objective of cluster analysis is to find an
optimal clustering π(∗) which best reveals the internal structure of D.

Table 1. List of notations.

Notation Explanation

D Dataset
n Number of objects in D
K Number of clusters
π = {C1, C2, . . . , CK} Clustering (or partition)
Ck, k = 1, 2, . . . , K Cluster with label k
c(k) Centroid of cluster Ck
l(xi) Cluster label of xi
L = {l(xi)}, ∀xi ∈ D Cluster vector of members

3.2. Data Description

Smart card data stores original transactions about metro ridership, where a transaction refers
to either tap-in or tap-out of stations. Data was extracted from the AFC system of Shenzhen Metro
Cooperation (Shenzhen Metro Cooperation: http://www.szmc.net/) from August to November in
2013, consisting of over 330 millions transactions in total with more than 2 million passengers per day.
In 2013, there were five metro lines and 118 stations in Shenzhen. Table 2 lists the attributes of AFC
transaction data used in this paper.

Table 2. List of AFC data fields.

Field Description

trans_id Identifies a transaction
card_id Identifies a passenger
line_id Identifies a metro line
line_name Name of metro line
station_name Name of metro station
trans_type Indicates either in or out of station
trans_timestamp Datetime Timestamp of transaction

As shown in Figure 1a, there are 7 days of incomplete data as highlighted in red: data for August
9th (Fri) are totally missing, transactions on Aug 1th (Thu), Sept 2nd (Mon), Sept 3rd (Tue), Sept 5th
(Thu) and Sept 9th (Mon) are incomplete, and the number of transactions falls off drastically on Nov 12
(Tue) out of a sudden because of Typhoon Haiyan (https://en.wikipedia.org/wiki/Typhoon_Haiyan).
Note that it is reasonable to assume that the reduction of passenger flow at the beginning of September
and October is due to the school season and the National Day holiday respectively. In order to eliminate

http://www.szmc.net/
https://en.wikipedia.org/wiki/Typhoon_Haiyan
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influences of extreme values, we use the average volume over days of week respectively to deal with
inaccuracy data issue, as shown in Figure 1b. Specifically, we preprocess incomplete data during given
time window at given station using the average passenger flow volume over the same days of week
during the same time window. For example, the volume at the station Huizhanzhongxin at 8:00 a.m.
on 12 November (Tue) would be corrected by the average in-station volume at Huizhanzhongxin at
8:00 a.m. over all Tuesdays.

In order to understand the passenger flow at metro stations, we construct Station Flow Data
(SFD) from Shenzhen metro smart card data, which reflects streaming tap-in or tap-out passenger
flow at stations. We denote hourly tap-in passenger flow data as SFD-in and hourly tap-out flow as
SFD-out. Both SFD-in and SFD-out have 118 rows (stations) and 2928 columns (122 days*24 h). For each
xj ∈ SFD-in or SFD-out, j = 1, 2, . . . , n, n = 118, the assignment of xj is denoted as l(xj), meaning which
cluster xj belongs to. Therefore, the objective is to discover accurate partitions for stations.

Each data point in SFD matrix is normalized as

x′s,h =
xs,h −min < x >

max < x > −min < x >
, (1)

where xs,h denotes the passenger volume at h-th time slot of station s, < x > means the vector of
stations, and x′s,h is the normalized value within range [0, 1].

(a) Original transactions with incomplete data

(b) Preprocessed daily transactions

Figure 1. Aggregated daily transactions in Shenzhen metro smart card data of all transactions over
4-month period, where the black line represents in-station volume, and the dashed blue line denotes
out-station volume.
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3.3. Multiple Clusterings Issue

In this section, taking K-means algorithm [46] for example, we illustrate multiple clusterings issue
through two observations as follows.

Observation 1. The optimal number of clusters K might not be unique due to different methods.

For example in Figure 2, when different methods are considered to determine optimal K for
SFD-out data, we might have multiple optimal Ks as 2, 3 or 4. Thus, we have three different clusterings
as shown in Figure 3.
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Figure 2. Determine optimal K with different methods for SFD-out data, which shows that optimal
number of clusters depends on the clustering algorithms and metrics. (a) Elbow method [46]: K = 4;
(b) Silhouette method [47]: K = 2; (c) Gap statistic method [48]: K = 4; (d) Calinski criterion [49]:
K = 3.

Observation 2. Evaluation of best clustering π(∗) depends on what measures are considered.

Generally, there are three categories of measures to validate clustering results: (1) internal
measures evaluate compactness, connectedness and separation among partitions within each clusterer,
such as silhouette coefficient [50] and Dunn index [51]; (2) external measures compute similarity
between different clusterings (when alternative clustering is provided), such as Rand index [52],
FowlkesâMallows index [53], Jaccard index [54] and variation of information [55]; and (3) stability
measures evaluate the consistency of clustering by comparing clusterings based on full data set and
removal of specific column [56,57].

Table 3 demonstrates clustering performance validation with optimal K = 2, 3, 4 using SFD-out
data, where ↑ denotes larger is better while ↓ means smaller is better, and better clusterings are
highlighted by stars. Specifically packages clValid [58], fpc [59] and NbClust [60] in R are employed
for computing each measure. We observe that for Silhouette and DI, K = 2 clusterer performs best;
for ARI, FM and Jaccard index, K = 3 clusterer outperforms others; for VI measure, K = 4 clusterer
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stands out; in addition, depending on which stability measure is considered, any one of the three
clusterers could be the best.

Table 3. Clustering validation of K-means with K = 2, 3, 4 using SFD-out data.

Category Measure K = 2 K = 3 K = 4

Internal
Cluster average silhouette widths (↑) 0.3780, 0.4971 0.0646, 0.4154, 0.4909 0.4519, 0.1362, 0.1123, 0.3826

Average silhouette width (↑) 0.3962 ∗ 0.2604 0.2536
DI (↑) 0.2603 ∗ 0.1527 0.1845

External

ARI (↑) N/A 0.3209 ∗ 0.2105
FM (↑) N/A 0.6995 ∗ 0.5897

Jaccard (↑) N/A 0.4960 ∗ 0.3526
VI (↓) N/A 1.0440 0.7318 ∗

Stability

APN (↓) 0.0000 ∗ 0.0000 ∗ 0.0014
AD (↓) 11.7993 10.1856 9.9983 ∗

ADM (↓) 0.0000 ∗ 0.0000 ∗ 0.0149
FOM (↓) 0.1655 0.1451 0.1424 ∗

4. Clustering Refinement Framework

To this end, we propose a clustering refinement framework to ensemble isomorphic or
heterogeneous clusterers. The intuitions behind are: (1) despite optimal K and parameter settings,
it is not guaranteed that current clusterer is the best solution owing to various validation measures;
and accordingly (2) clustering refinement—integrating clusterings from multiple clusterers with
optimal K by some means— produces better solution. A proposed refinement approach is conducted
through ensembling clusterers produced by optimal or near-optimal K settings and stable clustering
algorithms, which thus effectively identifies more separative and cohesive partitions of data,
and meanwhile is capable of outlier detection.

As a preliminary to our solution, we introduce the concept of cluster member based stability to
illustrate instability issue across multiple clustering solutions.

4.1. Cluster Member Based Stability

As discussed in [2], the quality of clustering results can be evaluated through stability;
and clustering instability comes from two kinds of random components: (1) different perturbations of
data, such as data set sampling; and (2) different initialization and parameter settings of the algorithm.

However, consider exactly the same D with no data perturbations (i.e., data randomness excluded),
stable clustering solutions are not yet unique when: (1) multiple Ks are produced when different criteria
are used to determine optimal number of clusters; or (2) various measures are evaluated as indicators
during clustering algorithm execution. Therefore, we define unstable members as individuals with
inconsistent cluster labels across multiple clusterings.

Definition 1 (Unstable member). Suppose there exist two distinct clusterings π1, π2 (π1 6= π2),
individual xi satisfying l1(xi) 6= l2(xi) is called an unstable member.

As discussed before, instability issue across multiple clusterings remains due to: (1) non-unique
optimal K, and (2) difficult-to-determine parameters. Take Figure 3 for example. Since our dataset is
high-dimensional, cluster plots are drawn by first two principle components after Principal Component
Analysis (PCA) for visualization purpose. For each individual optimal K, in order to eliminate
the unstability caused by initialization conditions, we use set.seed() to ensure the repeatability of
results, and nstart=50 to generate multiple initial configurations, and thus the best and stable results
are reported by each clusterer. We can observe that cluster members in Cluster 1 remain stable in
Figure 3a–c; however, when we increase K, members in Cluster 2 in Figure 3a partially shift to Cluster
3 in Figure 3b and later Cluster 4 in Figure 3c. Individuals with multiple cluster labels across different
clusterings are unstable members, caused by non-unique optimal K in this scenario.
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Figure 3. K-means clustering on SFD-out data, when K takes different optimal values. Cluster plot is
visualized using the factoextra package in R, where X-axis and Y-axis represent principal axes and their
variable contributions.

Another cause of instability issue is input parameters, which is hard to choose because of lack of
established argumentation or too expensive computation, especially for some clustering algorithms
especially high-dimensional algorithms. Take projected subspace clustering algorithm ProClus [61]
for example. Here we use PCA to heuristically determine average cluster dimensionality L. As in
Figure 4, L = 3 is selected by the elbow point in the percentage of variances explained by each principal
component; and L = 7, 11, 22 are considered according to 85%, 90%, 95% cumulative percentage of
variances explained by principal components.
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Figure 4. Illustration of difficult-to-determine parameters. Heuristically choose L by:
(a) elbow point L = 3 in the percentage of variances explained by each principal component;
(b) 85%, 90%, 95% cumulative percentage of variances explained by principal components, i.e.,
L = 7, 11, 22.

Figure 5 demonstrates member based stability with ProClus clustering with different L using the
subspace (https://cran.r-project.org/web/packages/subspace) package. For the sake of visualization
and understanding, we define station IDs as follows: (1) non-transfer stations are composed of three
digits, where the first digit denotes the line number, and the other two digits denote the sequential
number of station; (2) transfer stations begin with t followed by three digits, where the first two digits
denote intersected two lines, and the last digit means the sequential number of intersections between
them. For example, 317 means the 17th station of Line 3, and t122 means the transfer station is the
second intersection of Lines 1 and 2.

As suggested in Figure 5, owing to difficult-to-determine parameters, which might be determined
by some heuristic methods, member relationship between individuals (i.e., stations) and clusters could
be unstable. For example, stations 317, 318, 319 are within the same cluster in Figure 5a,b,d, except that
317 shifts to another cluster in Figure 5c. That is, 318 and 319 are of the same group among four

https://cran.r-project.org/web/packages/subspace
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ProClus clusterers, while 317 is an unstable member. Note that ProClus detects outliers, which are not
classified as objects in clustering results, and thus not shown in the figures accordingly.

However, members with different cluster labels could be still organized within the same cluster,
while l1(xi) 6= l2(xi) is the result of unaligned clustering vectors generated by different clusterers.
Therefore, we introduce corrected unstable member to illustrate clustering alignment issue.
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(d) ProClus: L = 22, VI= 2.3434

Figure 5. ProClus clustering on SFD-out data when K = 4, where cluster notations are consistent
with Figure 3, non-overlapping labels denote station IDs, and VI is measured by comparison with
alternative clustering produced by K-means (K = 4) clusterer. Cluster plot is visualized using the
factoextra package in R.

Definition 2 (Corrected unstable member). Suppose there exist two distinct stable clusterings π1, π2

(π1 6= π2). Given individual xi, its cluster labels in two clusterings are l1(xi) and l2(xi), and the corresponding
cluster centroids are c(l1(xi)), c(l2(xi)) respectively. If l1(c(l1(xi))) 6= l2(c(l2(xi))), then xi is corrected
unstable member.

Take model-based high-dimensional clustering algorithm HDDC [62] for example. As illustrated
in Figure 6, Expectation-Maximisation (EM), Classification E-M (CEM) and Stochastic E-M
(SEM) algorithms for model selection with BIC (Bayesian Information Criterion) or ICL
(Integrated Complete-data Likelihood) criteria are employed respectively for HDDC clustering [63]
using the HDclassif (https://cran.r-project.org/web/packages/HDclassif) package. All three
clusterers report five clusters with various cluster labels, reflected as annotation of points in figures.
However, it could be easily observed that the clusterings are identical except for notations, and therefore
these three clusterings are regarded as the same solution. In fact, cluster labels are already aligned for
previous visualization in Figures 3 and 5. From now on, we refer to unstable members as Definition 2.

https://cran.r-project.org/web/packages/HDclassif
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Figure 6. Illustration of clustering alignment issue: HDDC clusterings on SFD-out data with EM,
CEM or SEM models using either ICL or BIC report identical K = 5 clusters. Cluster plot is visualized
using the factoextra package in R.

4.2. Clustering Refinement with Member Based Stability

As discussed before, isomorphic or heterogeneous clusterers could generate multiple stable
clusterings, and it is difficult to confirm the best clustering due to various validation measures.
In addition, some individuals keep the same membership among multiple clusterings, while unstable
members shift across clusters during multiple clusterers. To this end, we propose a clustering
refinement procedure based on unstable members to integrate multiple stable clusterings produced by
isomorphic or heterogeneous clusterers.

The proposed clustering refinement is illustrated in Algorithm 1. As mentioned before, input clusterer
M is supposed to be relatively stable in its own nature. That is, input parameters are carefully selected
using existing effective or heuristic methods. The intuition is that in most circumstances there are multiple
good clustering solutions available, and each of them could be outstanding from different perspectives.
Thus, we ensemble multiple sufficiently good clusterings for refinement.

Suppose we have a set of models with proper parameter settings to ensemble, and a candidate
list of potential optimal K determined by various methods (Figure 2). Basically, there are three steps in
clustering refinement framework.

Step 1. Initialization clusters by running qualified clusterer with min{K(0)}. Since we would
align cluster labels as 1, 2, . . . sequentially, minimum K clusterer is first executed to produce minimum
number of clusters for the purpose of clustering vector alignment later.

Step 2. Run other clusterers with remaining candidate K, and relabel members by clustering
vector alignment. Parameter settings should be carefully chosen to reduce running time; however,
details about how to choose parameters for specific clustering algorithm are not considered in the
framework. Moreover, clustering vector alignment guarantees cluster labels produced by all clusterers
are consistent.

Figure 7 illustrates the principle of clustering vector alignment. Suppose initially we have two
clusters as in Figure 7a, centroids are c1 and c2 respectively, and object p1 belongs to Cluster 1, while p2

belongs to Cluster 2. Later, clusterings Figure 7b,c are produced when using alternative K, and all
subsequent clusterings are relabeled according to Figure 7a by nearest centroid. For example, suppose
originally p1 belongs to Cluster 2 in upper Figure 7b. Among three centroids, p1 is closest to c1,
so the cluster in which p1 is located (Cluster 2) is relabeled as 1 (Cluster 1) and thus p1 has label
1. Similarly, if originally p2 belongs to Cluster 1 in upper Figure 7b, compared to existing c1, c2

in Figure 7a, p2 is more close to c3, and thus a new label (Cluster 3) is assigned to the cluster in
which p2 is located (Cluster 1), as illustrated in lower Figure 7b. Later on, when a larger K is applied,
members closest to newly generated centroid are assigned to greater label. For instance, in clustering
Figure 7c, the cluster in which p2 is located is relabeled as Cluster 4 because c4 is the nearest centroid.
In this way, we reconstruct clustering vectors by consistently labeling 1, 2, . . . , max{K(0)} without
changing clustering partitions.
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Algorithm 1: Clustering refinement procedure.

Input : Dateset D = {xi}, i = 1, 2, . . . , n;
Clusterers {M0, M1, M2, . . .} with proper parameter settings;
Sorted potential optimal number of clusters {K(0)

0 , K(0)
1 , K(0)

2 , . . .};
Maximum number of iterations.

Output : Clustering vector L∗ = {l∗(x1), l∗(x2) . . . , l∗(xn)}.

1 Let π(0),L(0) be initial clustering result of M0 with K(0)
0 and a well-established parameter

setting; do
2 for cluster number K(0) ∈ {K(0)

0 , K(0)
1 , K(0)

2 , . . .} do
3 for model M ∈ {M0, M1, M2, . . .} do
4 Run M with alternative parameter setting, and denote current and previous

iteration clusterings as π(cur), π(pre), and K(0)(cur) ≥ K(0)(pre);
5 for xi ∈ D, i = 1, 2, . . . , n do
6 Denote cluster label of xi in π(cur) as l(cur)(xi);
7 if dist(xi, c(k)) ≤ dist(xi, c(l(cur)(xi))), for all cluster centroids

c(k) ∈ π(pre), k = 1, 2, . . . , K(0)(pre) then
8 Denote cluster label of nearest centroid as k∗ = min(dist(c(l(cur)(xi)), c(k)));
9 Relabel xi in π(cur) as l(cur)(xi) = k∗;

10 else
11 Relabel cluster label by K(0)(pre) + 1 until K(0)(cur) maximum;
12 end
13 end
14 Update aligned clustering vector as L(ali) = {l(ali)(x1), l(ali)(x2), . . . , l(ali)(xn)};
15 end
16 end
17 while maximum number of iterations;
18 for xi ∈ D, i = 1, 2, . . . , n do
19 Let the set of produced clustering vectors be L; for each clustering L ∈ L do
20 Count vote of xi with label j as VOTE(xi, j) = count{l(xi) == j};
21 end
22 Let majority label of xi be j∗i = arg maxj{VOTE(xi, j)};
23 if VOTE(xi, j∗i ) >

1
3 ∑j VOTE(xi, j) and j∗i is unique then

24 The final decision is l∗(xi) = arg maxj{VOTE(xi, j)};
25 else if VOTE(xi, j∗i ) >

1
3 ∑j VOTE(xi, j) and j∗i is not unique then

26 Mark down those clusters represented by j∗i ;
27 Assign new labels for unstable members shifting back and forth between two clusters;
28 else
29 Assign new labels for unstable members randomly shown in different clusters;
30 end
31 end
32 return L∗ = {l∗(x1), l∗(x2) . . . , l∗(xn)}.
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Figure 7. Illustration of clustering vector alignment process, where C1, C2, . . . denote centroids of
clusters with different point annotations, p1, p2 are two example objects, and dashed lines denote
distances between pi and Cj. The upper figures are original clustering labels of (a) K = 2, (b) K = 3,
and (c) K = 4, while the lower figures are relabeled clusterings.

Step 3. Make decisions about final cluster labels for all members. We use voting strategies for
clustering integration.

• Majority rule: if there is a single label with more than a third of the votes, regard it as the final
label directly. Here we use 1/3 instead of 1/2 to eliminate the randomness error in clustering
vector alignment. For instance, some clusterers assign NA for detected outliers.

• If there exist multiple majority labels, that means objects are shifting back and forth between
clusters, and therefore those packaged unstable members are assigned to a new cluster, determined
by their shifting range.

• Otherwise, object occurrences in clusters are random. That is, each time we apply an alternative
clusterer, its assignment changes correspondingly. Indeed, random assignment among all
clusterers is probably outliers.

For example, suppose K(0) = {2, 3, 4}, |D| = 10, |M| = 6, and the clustering vectors are:

x1, x2, x3, x4, x5, x6, x7, x8, x9, x10

M1 : 1, 1, 1, 1, 1, 1, 2, 2, 2, 2

M2 : 1, 1, 2, 3, 1, 2, 2, 2, 2, 2

M3 : 1, 2, 2, 1, 1, 1, 2, 2, 2, 2

M4 : 1, 2, 1, 1, 1, 2, 3, 2, 2, 2

M5 : 1, 1, 2, 4, 1, 4, 4, 2, 2, 2

M6 : 1, 2, 1, 1, 1, 4, 4, 2, 2, 2
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For each individual xi, count the vote of each label among all clusterers in the format of cluster :
vote as following:

x1 : 1 : 6→ 1

x2 : 1 : 3, 2 : 3→ frequent shifting between 1, 2

x3 : 1 : 3, 2 : 3→ frequent shifting between 1, 2

x4 : 1 : 4, 3 : 1, 4 : 1→ 1

x5 : 1 : 6→ 1

x6 : 1 : 2, 2 : 2, 4 : 2→ no majority, outlier

x7 : 2 : 3, 3 : 1, 4 : 2→ 2

x8 : 2 : 6→ 2

x9 : 2 : 6→ 2

x10 : 2 : 6→ 2

If vote > 6/3 = 2, majority rule is applied. However, for x2, x3, the majorities are not unique,
and they frequently shift between Clusters 1 and 2. The reason behind could be that the role of x2, x3 is
fuzzy between Clusters 1 and 2, and in order to differentiate them from explicit stable members,
we assign new labels. Otherwise, if no majority exists, such as x6, an outlier is detected since it does
not belong to any clusters explicitly. Therefore, the final clustering vector is 1, 3, 3, 1, 1, 4, 2, 2, 2, 2.
In this way, clustering results are refined by integrating good enough results from multiple established
clusterers.

5. Clustering Results

In this section, we conduct experiments using proposed clustering refinement framework on
SFD data. The input settings of Algorithm 1 are described as follows: (1) SFD-out and SFD-in
data; (2) K-means, ProClus and HDDC clustering algorithms; (3) Optimal Ks for SFD-out data are
K = 2, 3, 4, 5, as suggested in Figures 2 and 6; similarly, optimal K for SFD-in data is determined as
K = 2, 3, 9, 3, 3 by WSS, Silhouette, Gap statistics, Calinski criterion respectively; (4) Maximum number
of iterations as 100.

The agglomeration property drawn from out-station passenger flow reflects human mobility
destination, and the clustering in the light of in-station passenger flow reveals where people come
from. According to execution results of Algorithm 1, Figure 8 shows final clustering results over
both out-station and in-station passenger flows, from which five clusters of stations are detected.
Basically, the final cluster labels are generated by consolidating the overlaps between in-station and
out-station clusterings, while the inconsistent parts contribute to outliers. For the convenience of
narration, we highlight each cluster from Figure 8a–e.

Now we explore the implications of clustering results in Figure 8 with reference to
government policy and regulatory documents (http://www.sz.gov.cn/cn/xxgk/zfxxgj/ghjh/),
such as “Shenzhen City Master Plan”, “Shenzhen City Land Utilization Master Plan” and “Urban
Construction and Land Use in Shenzhen for the Thirteenth Five-year Plan”.

Cluster 1: Strategic development core area—highlighted as blue in Figure 8a. Specifically, stations in
Cluster 1 are located in: (1) Baoan central area for high-tech industry operations, research and development
headquarters, business services, and cultural and creative industries, such as Baohua (Baohua Station) and
Xingdong (Xingdong Station); (2) high-tech zone north district for emerging and future industries, such
as Shenda (Shenzhen University Station) and Gaoxinyuan (Hi-Tech Park Station); (3) city government
resident areas, such as Shiminzhongxin (Civic Center Station) and Huizhanzhongxin (Convention &
Exhibition Center Station).

http://www.sz.gov.cn/cn/xxgk/zfxxgj/ghjh/
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(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

(e) Cluster 5

Figure 8. Map-based visualization of station clusters. The marks are labeled by station names, shape
shows details about administrative region, and color of stations shows final cluster labels produced by
proposed method. The maps are plotted using Tableau Desktop.

Cluster 2: Suburb area and transportation junctions—highlighted as orange in Figure 8b.
Generally, Cluster 2 is distributed in suburb area, such as teleneurons of each line, and interfaces to
other transit modes (i.e., airport, train and checkpoint), such as Shenzhenbeizhan (Shenzhen North
Station), Luohu (Luohu Station) and Futiankouan (Futian Checkpoint Station). However, exceptions
include: (1) Metro Airport Area, i.e., Jichangdong (Airport East Station), Houri (Hourui Station) and
Gushu (Gushu Station); (2) Qianhai Shekou Free Trade Zone, including Chiwan (Chiwan Station),
Shekougang (Shekou Port Station) and Haishangshijie (Sea World Station); (3) Ban Xue Gang Tech
area, such as Longhua (Longhua Station) and Longsheng (Longsheng Station); (4) Shenzhen airport
Longgang terminal, i.e., Ailian (Ailian Station).

Cluster 3: Technology and industrial development area—highlighted as green in Figure 8c.
Specifically, regions around Cluster 3 are: (1) Ban Xue Gang Tech area for new generation of information
industry such as high-end software and intelligent terminal, such as Longsheng (Longsheng Station)
and Shangtang (Shangtang Station); (2) Shenzhen North Station business center area for commercial
business, e-commerce and service industry, such as Minzhi (Minzhi Station) and Baishilong (Baishilong
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Station); (3) Luohu Sungang-Qingshuihe district, primarily for commercial commerce, cultural and
creative industries, such as Caopu (Caopu Station).

Cluster 4: Futian-Luohu economic center—highlighted as red in Figure 8d, serving as the axis of
the urban economy, such as Guomao (Guomao Station) and Chegongmiao (Chegongmiao Station).
Note that Chegongmiao was a non-transfer station in 2013; however, as the center at Futian-Luohu
economic center as well as one of the key development areas in Thirteenth Five-year Plan of Shenzhen,
Chegongmiao becomes the first transfer hub of four lines in Shenzhen afterwards.

Cluster 5: Ambiguous functional stations—highlighted as purple in Figure 8e. To be specific, they are:
(1) suburb but key development area, such as exceptions mentioned in Type II; (2) Meilin-Caitian district, a
key area within Meilin industrial zone in the north of Futian, which is a newly qualified key development
area in the Thirteenth Five-Year Plan of Shenzhen, i.e., Shangmeilin (Shangmeilin Station); (3) intermediate
region nearby or between development areas, such as Honglangbei (Honglang North Station) nearby
high-tech zone north district. Indeed, this type of stations are generated by unstable members randomly
shifting among multiple clusterings for both SFD-out and SFD-in. We have 19 outlier stations detected as
listed in Table 4.

Table 4. Outlier stations of Cluster 5.

Station Name Line Name Line id Station id Region

jichangdong Luobao Line 1 101 Bao’an
hourui Luobao Line 1 102 Bao’an
gushu Luobao Line 1 103 Bao’an
gouwugongyuan Luobao Line 1 t131 Futian
shekougang Shekou Line 2 202 Nanshan
shuiwan Shekou Line 2 204 Nanshan
wanxia Shekou Line 2 206 Nanshan
dengliang Shekou Line 2 208 Nanshan
yitian Longgang Line 3 301 Futian
gouwugongyuan Longgang Line 3 t131 Futian
cuizhu Longgang Line 3 312 Luohu
liuyue Longgang Line 3 320 Longgang
ailian Longgang Line 3 326 Longgang
shangmeilin Longhua Line 4 407 Futian
longhua Longhua Line 4 414 Longhua
huangbeiling Huanzhong Line 5 t251 Luohu
fanshen Huanzhong Line 5 505 Bao’an
honglangbei Huanzhong Line 5 507 Bao’an
taian Huanzhong Line 5 525 Luohu

Moreover, Figure 9 demonstrates temporal patterns in terms of in-station and out-station
passenger volume for each type of stations using typical examples. From the perspective of commuting
behavior, temporal pattern of passengers can be explained in the following.

• Cluster 1 in Figure 9a,b: morning peak only shows in out-station flow around 08:00, while evening
peak only appears in in-station flow around 18:00, indicating Xingdong station might be workplace
and people commute regularly to and from work. That is, people traveling at Cluster 1 stations
are likely to be commuters.

• Cluster 2 in Figure 9c,d: no significant peak appears during the whole day period.
Therefore, passengers at Cluster 2 stations probably exhibit random behavior.

• Cluster 3 in Figure 9e,f: morning peak only shows in in-station flow around 07:00, while evening
peak only appears in out-station flow around 19:00, indicating Longsheng might be place of
residence. Corresponding to Figure 9a,b, people travel from residence at 07:00 to workplace
at 08:00, and return from work at 18:00 to home at 19:00. Therefore, we infer that passengers
at residential stations are exactly the same with those appear at workplace stations. That is,
passengers at Cluster 3 stations are also regular commuters.
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• Cluster 4 in Figure 9g,h: both in-station and out-station have morning peaks and evening peaks.
Specifically, the in-station morning peak is lower than in-station evening peak, and out-station
shows the opposite pattern. Besides, the peak volumes are lower compared to Clusters 1 and 3.
Hence, we speculate the function of Cluster 4 stations falls in between labor-intensive and densely
settled area. However, the significant peak characteristics indicate commuters as well despite
land use functionality.

• Cluster 5 in Figure 9i–l: temporal pattern of Cluster 5 is not that random as Cluster 2, as shown
in Figure 9i,j; and meanwhile does not significantly follow the morning and evening peak laws
as Clusters 1,3,4, as shown in Figure 9k,l. Therefore, passengers at Cluster 5 stations are neither
random nor typical commuters; nevertheless, the traffic pattern basically follows the law of
morning-evening traveling in daily life.

In order to further understand spatial aggregation of subway stations, we additionally introduce
external environmental factors by collecting population size and POI counts from Baidu Map service
(http://lbsyun.baidu.com) for each individual subway station. POI based variables include the number
of hospitals, restaurants, residential units, working units, hotels, shopping centers, schools, banks and
bus stops. Note that each variable is obtained by the number of POIs within 500-meter area [64] around
each station.

Moran’s I [65] is a widely used statistic indicator for measuring spatial autocorrelation. In Table 5,
Moran’s I Index value and associated z-value and p-value are calculated to evaluate the significance
of spatial autocorrelation, and all statistics are computed in GeoDa [66]. In general, Moran’s I ranges
from −1 to +1; positive Moran’s I close to +1 indicates clustering and negative Moran’s I value near
−1 indicates dispersion. Z-value measures standard deviation, and p-value represents significant level.
Basically when performing Moran’s I test, small p-value and a very high (or a very low, negative)
z-value indicate observed pattern is unlikely to exhibit theoretical randomness pattern represented by
null hypothesis.

In Table 5, Moran’s I is calculated as global univariate indicator, and adjusted Moran’s I is
calculated as Anselin’s local Moran’s I test with Empirical Bayesian (EB) rate [67] when clustering
pattern of subway stations is considered. The significance test is computed by 999 permutations.
We observe that Moran’s I values of all variables are positive and could be up to 0.7638 (population),
which means that environmental factors are spatially autocorrelated with highly significant confidence
level (>99%). Moreover, adjusted Moran’s I turns to be close to global Moran’s I, which suggests the
clustering pattern of subway stations is consistent with spatial autocorrelation of environmental factors
of urban city.

Besides, regression analysis is performed to reconfirm the spatial dependence. As shown in
Table 6, after classical Ordinary Least Square (OLS) regression, Moran’s I is highly significant (0.00002),
indicating strong spatial autocorrelation of the residuals. The significant test results for spatial
dependence in linear models are: LM-error (0.00775) � Robust LM-error (0.01966) � LM-lag (0.03238)
� Robust LM-lag (0.08694). Thus, regression with spatial error LM-error model is employed to deduce
the correlation coefficients of all variables, as listed in the lower section in Table 5. Due to data
integrity issues and the inconsistency in timespan (passenger flow data was collected in 2013 while
POI data is obtained in 2018), the correlation coefficients between POI counts and clusters are not
highly significant (<0.5). However, still, we can see that hospital (0.4646), hotel (0.3972) and bus stop
(0.3661) are more positively correlated with the clustering pattern of subway stations, while school
(−0.4447) and residential (−0.3882) are more negatively correlated.

http://lbsyun.baidu.com
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(l) Cluster 5: ailian, out

Figure 9. Hourly passenger volume in terms of in-station and out-station by weekdays for example
stations in Type I, II, III, IV, V.

Table 5. Spatial autocorrelation analysis results of environmental variables.

Population Hospital Restaurant Residential Working Hotel Shopping School Bank Bus Stop

Moran’s I 1 0.7638 0.3552 0.4505 0.4968 0.3120 0.5617 0.3529 0.4091 0.4898 0.4373
z-value 13.7708 4.5965 6.4550 7.6702 4.0048 9.1815 4.3148 6.6139 7.2004 6.6956
p-value 0.0010 0.0010 0.0010 0.0010 0.0020 0.0010 0.0020 0.0010 0.0010 0.0010

Adjusted Moran’s I 2 0.4606 0.3440 0.4021 0.3840 0.3356 0.4665 0.2821 0.4103 0.4637 0.3752
z-value 6.6114 4.4703 5.5677 4.8051 4.3744 7.4033 2.9959 7.3466 6.9072 4.9410
p-value 0.0010 0.0030 0.0010 0.0010 0.0010 0.0010 0.0050 0.0010 0.0010 0.0010

Coefficient 3 0.1518 0.4646 −0.3457 −0.3882 −0.1068 0.3972 −0.2014 −0.4447 0.1632 0.3661
z-value 1.3756 3.0234 −1.7097 −2.1938 −0.6245 2.2191 −0.9108 −3.0230 1.0100 2.0907
p-value 0.1689 0.0025 0.0873 0.0283 0.5323 0.0265 0.3624 0.0025 0.3125 0.0366

1 Univariate Moran’s I of each variable. 2 Local Moran’s I with EB Rate (POI count/cluster. 3 Regression
analysis with spatial error model.
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Table 6. Diagnostics for spatial dependence.

TEST MI/DF VALUE PROB

Moran’s I (error) 0.1441 4.2879 0.00002
Lagrange Multiplier (lag) 1 4.5785 0.03238
Robust LM (lag) 1 2.9301 0.08694
Lagrange Multiplier (error) 1 7.0898 0.00775
Robust LM (error) 1 5.4414 0.01966

6. Conclusions

In this study, we utilized cluster analysis approach to reveal functional spatial structure embedded
in subway stations using smart card data collected through AFC systems. Specifically, we developed a
clustering refinement framework by introducing the concept of cluster member stability and investigating
member shifting patterns across isomorphic or heterogeneous clusterers. Furthermore, the intrinsic
connection between public transit and urban spatial structure was validated with references to urban
government planning policies and strategies through a case study of Shenzhen city.

In this paper we demonstrate that urban spatial structure could be concealed in public transit
smart card data clustering with no additional information required. However, we do not probe into
the interaction details between public transit and urban spatial structure, because it is a complex
issue which involves many factors and needs to be verified by historical evolution. Instead, based on
the smart card data of Shenzhen Metro, urban spatial structure is conceptualized as geographical
layout in urban planning orientation and land development policies, and implication of five clusters
is explained through spatial overlapping between surrounding area of subway stations and urban
layout. Moreover, to further understand the effectiveness of clustering results, we explore the spatial
correlation between POI based environmental factors and subway clusters using Moran’s I statistics
and spatial regression analysis. Consequently, the conclusion could be drawn that clustering pattern
of subway stations is consistent with spatial autocorrelation of environmental factors of urban city.

In practice the clustering structure of subway stations could be one of the significant
decision-making references for urban planning, land utilization planning and rail transit construction
planning. Take Chegongmiao station as an example, in 2013 subway clusterings, Chegongmiao station
is found to be located at Cluster 4 (Futian-Luohu economic center). Furthermore, Chegongmiao
area is identified as one of the key development zones in Thirteenth Five-Year Plan of Shenzhen.
Accordingly, Chegongmiao becomes the first transfer station of four lines in Shenzhen afterwards
in 2016. Thus it can be inferred that according to subway clusterings and urban planning policies,
considering surrounding properties of subway stations, rail transit lines could be extended and stations
could become transfer hubs. In fact, as indicated by the spatial correlation between environmental
factors and subway stations, the hidden aggregation pattern in public transit stations could be useful for
expansion, optimization and construction of public infrastructure, hospital, industrial, entertainment,
commercial, and transportation, etc.

In future works, we would like to extensively examine experimental comparison among different
clustering algorithms with proposed ensemble refinement method; and further explore public transit
data combined with fine-grained individual mobility data such as bicycles, taxis or mobile phone
trajectories to capture a more elaborated picture of urban spatial structure. Besides, application
oriented decision-making support on urban space management will be further investigated.
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