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Abstract: The problem of predicting students’ performance has been recently tackled by using matrix
factorization, a popular method applied for collaborative filtering based recommender systems.
This problem consists of predicting the unknown performance or score of a particular student for a
task s/he did not complete or did not attend, according to the scores of the tasks s/he did complete
and the scores of the colleagues who completed the task in question. The solving method considers
matrix factorization and a gradient descent algorithm in order to build a prediction model that
minimizes the error in the prediction of test data. However, we identified two key aspects that
influence the accuracy of the prediction. On the one hand, the model involves a pair of important
parameters: the learning rate and the regularization factor, for which there are no fixed values for any
experimental case. On the other hand, the datasets are extracted from virtual classrooms on online
campuses and have a number of implicit latent factors. The right figures are difficult to ascertain,
as they depend on the nature of the dataset: subject, size, type of learning, academic environment, etc.
This paper proposes some approaches to improve the prediction accuracy by optimizing the values
of the latent factors, learning rate, and regularization factor. To this end, we apply optimization
algorithms that cover a wide search space. The experimental results obtained from real-world
datasets improved the prediction accuracy in the context of a thorough search for predefined values.
Obtaining optimized values of these parameters allows us to apply them to further predictions for
similar datasets.

Keywords: recommender systems; collaborative filtering; matrix factorization; gradient descent;
latent factors; learning rate; regularization factor; optimization algorithms

1. Introduction

At present, online campuses are an essential environment to support academic activities. In this
context, Learning Management Systems (LMS) generate large amounts of data about their users,
mainly students and teachers, with regard to classrooms, exams, tasks, scores, etc. LMS collects data on
the relationship between students and subjects in a sustained manner over time, recording numerous
characteristics from both sources. The size of many campuses provides a great amount of these data,
especially when we consider more than one academic year. In some cases, handling these data and
extracting knowledge from them is possible under the scope of Big Data [1].

One of the main interests of Big Data (BD) lies in its ability to extract information in order to
predict future or unknown data, after applying Machine Learning (ML) [2] or Data Mining (DM)
techniques [3]. Machine learning is a field that covers a wide set of tools and methods that optimize
performance criteria according to test data or past experience of the users’ behavior [4]. Among the
ML techniques, a Recommender System (RS) based on Collaborative Filtering (CF) [5] reveals itself as
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a powerful method for elaborating personalized recommendations to users of large databases, as it
factors in their behavior when they request and handle information.

There are many databases collecting items from users. There are also tasks where the values for
some of these items are unknown. The recommendations for these items that an RS may suggest can
be considered predictions for all intents and purposes. This is the foundation on which we anchor the
present approach to tackle the Predicting Student Performance (PSP) problem [6]. This problem consists
of calculating the unknown scores of certain academic tasks in the cases where the corresponding
students have not completed them. Among these cases, we can find exams that have not been set,
unsubmitted pieces of work and forms, etc. An unknown score can be predicted if one considers the
behavior of the student in his/her completed tasks and the behavior of the other students for that
particular task. This prediction is calculated by applying a technique that minimizes the error in the
predictions for a sample dataset. The reason for applying CF to solve PSP is simple: we can identify
the student, task, and learning score as the user, item, and rating, respectively, which are the usual
terms in CF. In other words, we can consider PSP as a rating prediction problem.

This work explores two complementary ways of improving the accuracy of the prediction model
based on CF in the PSP context. The first approach deals with the mathematical description of the
model, whereas the second one focuses on the academic context.

With regard to the prediction model, the values of certain parameters influence the resulting error
in the prediction. The Matrix Factorization (MF) technique [7] is applied in some RS implementations
for describing the prediction model, which considers the learning rate β and the Gradient Descent
(GD) [8] algorithm, as well as the regularization term λ. Both parameters are constants in the model,
although the error in the prediction can be reduced by choosing their values carefully. The simplest way
to select the optimal values for β and λ is to generate several values for both of them (for example, taken
at equal intervals from a particular range), building the corresponding models, and finally, measuring
the prediction errors; the optimal pair is that for which the error was minimum. Nevertheless,
if we have a large range and many possible values are tested, a direct search involves a high
computational effort.

The second method has to do with the number of latent factors K implicit in the relationship
“student performs a task”. It is difficult to establish the exact number of these latent factors, especially
when we deal with heterogeneous datasets of different natures or sizes. Trying to come up with an
approach to ascertain the exact number of factors is very complex, especially if one does so by studying
in depth the learning process in the students’ context. Therefore, in order to solve the question of how
many latent factors there are, we propose a method to be applied together with the optimization of the
pair (β,λ).

In this study, we propose to find the optimal number of latent factors, the learning rate, and the
regularization factor by applying algorithmic methods, which are very useful to solve optimization
problems where the computational resources are unable to perform simple direct searches. In our
approach, the optimization algorithms are applied to calculate the minimum prediction error by
determining the optimal values of K, β, and λ.

The remainder of this paper is structured as follows. After a succinct literature review in Section 2,
the problem of predicting students’ performance, formulated by means of matrix factorization and
gradient descent, is described in Section 3.1. Here, different strategies to select the training and test
datasets are presented, as well as a method to obtain consistent data when extracted from real datasets;
in this case, the students’ activity in the online campus. Next, Section 4 details our proposal for
improving the prediction, considering two simultaneous methods: selecting the ideal number of
latent factors and obtaining the best values for the learning rate, and the regularization factor for
the collaborative filtering algorithms. Section 5 presents the experimental results considering several
representative datasets that assess the accuracy of the prediction. In light of the discussion of these
results, several conclusions, as well some suggestions for further research are drawn in Section 6.
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2. Literature Review

Many DM and ML technologies have been applied to tackle the analysis of students’ behavior in
academic environments such as online campuses [9,10]. From the point of view of a learning process,
there are many potential applications of the prediction techniques. For example, identifying the
students’ performance at earlier stages [11]; predicting their success in the current semester based on
data from the previous semester and the scores of internal examinations [12]; early warning systems
as a means of identifying students at risk [13]; identifying students at risk of dropping out in early
stages [14]; predicting the difficulties that students will face in order to inform about digital course
design sessions [15]; determining optimal choices of courses for the following term [16]; predicting if
students can be warned about their potentially poor performance by looking into both cognitive and
non-cognitive features [17]; using chatbots for supporting students on some courses [18]; etc.

As regards the DM and ML algorithms considered in these learning contexts, they have been
applied with success according to different approaches. Next, we cite a selection of these applications:
CF [19]; Recursive Clustering (RC) [11]; Bayesian Knowledge Tracing (BKT) [20]; Bayesian Additive
Regressive Trees (BART), Random Forests (RF), Principal Components Regression (PCR), Neural
Networks (NN), and Support Vector Machine (SVM) [13,15,21]; Deep Learning (DL) [22]; survival
analysis approaches [14]; decision trees and meta classifiers [23]; Markov Decision Process (MDP) [16];
K-means and hierarchical clustering algorithms [24]; etc. Specifically, there are some approaches to
PSP and other similar problems that utilize RS and MF, for different [19,25–28], specific purposes in
the online learning context.

In this work, we apply matrix factorization for solving PSP by improving the prediction accuracy
so as to determine, among other questions, the best number of latent factors. Previous studies have
analyzed the latent relationship among students, activities, and performances for particular cases;
e.g., finding latent structures from questionnaires [29]; modeling latent constructs in order to obtain
data that inform research and practice on the measurement of teachers’ performance [30]; latent profile
analysis of students with common characteristics, based on teacher ratings of their behavior [31,32];
identifying latent correlations between aggregated student perceptions of the teaching ability of the
teachers themselves [33]; etc. Nevertheless, fewer works have focused on identifying the number of
latent factors, even for generic environments, which is the main purpose of this paper. To cite but one
of the few examples of previous studies in the relevant literature, an empirical approach based on
statistical techniques has been applied to the investigation of hidden factors underlying the quality of
student-teacher interactions [34].

3. Predicting Students’ Performance in Online Campuses

The PSP problem approaches the prediction of the students’ performance for some tasks in the
academic process as a ranking prediction problem in RS. The purpose of this prediction is twofold.
On the one hand, we can predict unknown student scores for particular tasks (for example, if a student
has not attempted an exercise). On the other hand, we could make recommendations to students for
some tasks based on the results of the prediction. In this work, we tackle the static approach of PSP,
where there is not a time component. The time feature is considered by other approaches to study the
learning process [35], whereas this work is useful when we analyze just the current academic course.

Table 1 lists the main terms used in the formulation of this problem.
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Table 1. Notation in the PSP problem.

Term Meaning

S Number of students
I Number of tasks
K Number of latent factors
P Performance matrix (S× I)
Dknw Set of known performances
Dunk Set of unknown performances
Dtrain Set of training performances, subset of Dknw

Dtest Set of test performances, subset of Dknw

3.1. Matrix Factorization and Gradient Descent

MF is a method used to formulate prediction models for some CF based RS. Consequently, it is
also useful to solve the PSP problem. The prediction model is comprised of two matrices, W1 and W2,
of sizes (S× K) and (I × K), respectively. MF approaches P to the product W1WT

2 , so that the predicted
performance p̂s,i of user s and task i is calculated as in (1), where k identifies the latent factor from
one to K.

p̂s,i =
K

∑
k=1

(w1s,kw2i,k) = (W1WT
2 )s,i (1)

A training dataset is used to build this prediction model, whereas a test dataset (usually much
smaller) is used to validate the training dataset by means of the Root Mean Squared Error (RMSE)
criterion (2).

RMSE =

√
∑s,i∈Dtest (ps,i − p̂s,i)2

|Dtest| (2)

The prediction methodology follows three steps, according to the model described in [6], similar to
the well-known Probabilistic Matrix Factorization (PMF) model [36]. First, we find the best parameters
for W1 and W2 in the learning phase, through Dtrain, by measuring the differences between real and
predicted values. Next, we check the validity of the model by predicting the values of Dtest and
calculating the difference from the real values. Last, we calculate the unknown values of P from the
optimal model (that with minimum RMSE). This process is summarized in Figure 1.

Figure 1. Scheme with the main steps followed by the prediction methodology.

Learning the model means finding the optimal values for W1 and W2 iteratively. Initially,
both matrices contain random values as positive real numbers generated from the normal distribution
N(0, σ2). Then, we calculate the error (3) on the training dataset, where es,i (4) is the error made by the
prediction of ps,i, and consequently, e2

s,i is calculated as in (10).

err = ∑
(s,i)∈Dtrain

e2
s,i (3)
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es,i = ps,i − p̂s,i = ps,i −
K

∑
k=1

(w1s,k w2i,k ) (4)

e2
s,i = (ps,i −

K

∑
k=1

(w1s,k w2i,k ))
2 (5)

We can minimize the error in (10) by updating W1 and W2 iteratively, considering GD.
This algorithm is very useful for solving problems when handling large datasets [37]. In order
to apply GD, we must know, for each data point, in which direction to update the values w1s,k and w2i,k

by calculating the gradients of ps,i.

∂

∂w1s,k

e2
s,i = −2es,iw2i,k = −2(ps,i − p̂s,i)w2i,k (6)

∂

∂w2i,k

e2
s,i = −2es,iw1s,k = −2(ps,i − p̂s,i)w1s,k (7)

Next, we update the values w1s,k and w2i,k in the opposite direction to the gradient (8) and (9).

w′1s,k = w1s,k − β
∂

∂w1s,k

e2
s,i = w1s,k + 2βes,iw2i,k (8)

w′2i,k = w2i,k − β
∂

∂w2i,k

e2
s,i = w2i,k + 2βes,iw1s,k (9)

The updating process is iterative. It stops when a certain criterion is satisfied, for example
when the error has converged to its minimum value or when a predefined number of iterations has
been reached.

A new parameter appears in (8) and (9): the learning rate β, which is a positive real number,
usually in the range (0, 1). This parameter affects the convergence of the algorithm. Therefore, several
techniques were used to select the best value dynamically [38,39].

In order to prevent over-fitting, a regularization factor λ is added to e2
s,i (10). This term also affects

the accuracy of the prediction model. The newer gradients (11) and (12) update W1 and W2 according
to (13) and (14), respectively.

e2
s,i = (ps,i − p̂s,i)

2 + λ(||W1||2 + ||W2||2) (10)

∂

∂w1s,k

e2
s,i = −2es,iw2i,k + λw1s,k (11)

∂

∂w2i,k

e2
s,i = −2es,iw1s,k + λw2i,k (12)

w′1s,k = w1s,k + β(2es,iw2i,k − λw1s,k ) (13)

w2i,k = w2i,k + β(2es,iw1s,k − λw2i,k ) (14)

Once W1 and W2 are available, we calculate RMSE on Dtest to assess the accuracy of the
prediction model.

3.2. Training and Test Datasets

There are many strategies for selecting the training and test datasets [40]. The datasets chosen
for a particular problem may eschew the performance results [41]. This is the rationale behind the
particular strategy selected here, which pursues two goals.
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First, we choose large-sized training datasets, comprising all the observed or known performance
values. Since the size of the databases from virtual classrooms are not too big, they can be processed
with the usual computer resources. Therefore, considering all the known performances as training
data remains manageable.

Second, we build the test dataset by selecting one performance value by each student (row) for
consecutive tasks (columns). Figure 2 shows an example of this strategy. When the selected test
performance is an unknown value, we skip to the next column of the same row (Case A in the figure)
unless the end of the row has been reached, in which case, we select the first column of the next row
(Case B in the figure). It is important to note that test data must be known data. By following this
procedure, we make sure that the test data factor in all the students and all the tasks proportionately.

Figure 2. Simple example of how to choose test data (Cases A and B) and how to filter students and
tasks that do not reach the minimum levels of activity required (Cases C and D).

3.3. Data Filtering

The prediction of the unknown performance corresponding to a particular student-task binomial
considers not only the performance of the student in the completed tasks, but also the performance of
the remaining students for the same task, according to the collaborative filtering algorithms. Hence,
it is important to remove those students and tasks that may eschew the results due to the outlying
values. For example, if a student did not attend the majority of the tasks because of a lack of interest or
because the subject was partially validated, s/he should not be considered for this activity because
the unknown performances are not isolated, random events. By the same token, the tasks attended to
by very few students are not to be considered, since it would normally mean that these tasks are not
significant enough in the academic progress of the subject.

In view of the above considerations, several filters were applied to the original data extracted
from a virtual classroom database. These filters ensure that the unknown performance values are due
to valid reasons. Consequently, the collaborative filtering algorithms will make predictions with more
possibilities of success.

We selected filters for removing the students with less than 25% of academic activity completed in
the subject, and only the tasks attended by at least 75% of the students were considered. The dataset,
obtained after applying the filters, provides a good representation of the available data in order to
perform the prediction experiments. Figure 2 shows a simple case of how the filter works: student s8

(Case C) with 14% of activity and task t3 (Case D) with 63% of activity should be removed since they
do not reach the minimum levels of activity required, 25% and 75%, respectively.

Figure 3 shows a real case of the filtering and prediction of unknown performances. It corresponds
to a small virtual classroom (HS) of 128 students and 16 tasks. On the top (A), we can see a section of
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the performance matrix with the original data as they were collected from the corresponding database.
There are some void tasks probably prepared by the teacher, but eventually not assigned to the students,
and some students with a low or null level of academic activity. If we apply the prediction algorithms
to this performance matrix, the contribution of those tasks and students to the prediction results is
negative. Hence, we need to remove them according to the methodology outlined above.

tasks

1 2 3 4 5 6 7 8

1 9.50 10.00 8.21 7.90 8.89 8.75 10.00 10.00

2 6.00 5.69 6.61 5.81 10.00 6.38 7.50 9.50

3 7.85 8.03 8.33 8.21 9.38 7.25 10.00 10.00

4 5.38 7.06 5.00 4.53 6.35 6.69 3.43 2.00

5 8.30 3.37 8.33 7.91 9.26 2.88 9.30 5.00

6 9.50 8.92 7.56 6.49 8.63 9.25 2.00 10.00

7 6.95 3.45 6.79 6.72 8.17 8.75 9.00 10.00

8 8.83 7.67 7.98 7.93 9.26 4.75 6.50 3.00

9 8.70 7.78 4.52 1.41 5.00 4.25 7.00 6.00

10 4.03 3.64 5.71 1.69 8.26 4.63 3.00 3.00

11 7.85 7.14 3.10 1.30 7.50 8.13 8.00 10.00

12 7.80 9.42 5.12 5.76 8.82 7.56 5.00 9.00

13 8.68 3.33 6.96 5.78 9.44 6.25 8.00 2.00

14 8.29 7.69 4.58 3.16 5.00 7.13 4.66 7.50

15 6.55 5.83 6.01 5.74 10.00 5.88 8.50 3.00

16 9.20 8.94 7.14 8.84 8.89 9.13 7.00 3.00

17 6.75 8.33 7.98 7.04 6.46 4.63 2.00 5.06

18 9.05 3.61 6.73 5.49 2.94 9.25 9.00 8.00

... ... ... ... ... ... ... ... ...

st
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(A)

original dataset

(B)

filtered dataset with unknown performances predicted

tasks

st
u
d
e
n
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a
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o
n
y
m
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e
d

some students

will be removed

some tasks

will be removed

predicted

performance

test

performance

Figure 3. Real case of the dataset extracted from the virtual classroom (A) and filtered and predicted (B).

After applying the corresponding filters, we obtain the final performance matrix, a piece of which
can be seen at the bottom of (B). Now, the dataset is reduced to 95 students and five tasks that meet 60%
and 92% of the minimum academic activity, respectively. The performance matrix contains 475 values,
and eighteen of them are unknown. The training and test datasets have 457 and 92 scores respectively,
according to the building rules considered in Section 3.2. In this figure, the cells show performance
values from zero to 10, and black and gray cells represent unknown and test scores, respectively.

Finally, the model predicted the unknown performances, whose values appear in the bottom
picture. These values were calculated considering K = 64 latent factors, β = 0.8, and λ = 0.06,
from which we obtained RMSE = 0.37.

Note that the prediction considers not only the performance of the student in the completed tasks,
but also the performance of the remaining students for the same task. Consequently, we can study the
expected behavior of each student by analyzing the predictions in order to detect the strengths and
weaknesses of the learning process in the corresponding subject.

4. Proposal for Improving The Prediction

We identified three parameters that affect the prediction accuracy measured as RMSE: the number
of latent factors (K), the learning rate (β), and the regularization factor (λ). We can improve the
prediction by finding the optimal values for these parameters that minimize RMSE, for a given dataset.
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4.1. Efficient Tuning of Collaborative Filtering

In order to show the influence of β and λ on the prediction accuracy, given a particular number of
latent factors, we apply Direct Search (DS). DS is a very simple approach to obtain the optimal pair
of values (β, λ) among a set of pairs taken from predefined sets for both parameters. Each of β’s and
λ’s values grow by incremental steps hβ and hλ, respectively, from the minimum βmin and λmin to
the maximum βmax and λmax values, respectively. The search is implemented by two nested loops,
where RMSE is calculated for each generated pair .

This method has the disadvantage of limiting the number of evaluated pairs (β, λ), since it is
directly related to the computing effort that can be made. Because of this, better values could have
been ignored and not considered in the search; however, DS allows one to find a good solution among
the ones that have been generated, which may lie in the vicinity of the potentially optimal solutions.

Figure 4 shows an example of DS, where a dataset composed of 107 students and eight tasks was
processed, applying predictions for 56 unknown scores, considering the ranges 0.1 < β < 200 and
0.001 < λ < 200. The 209 and 227 values for β and λ, respectively, were extracted at equal intervals
from these ranges. In total, forty-seven-thousand four-hundred forty-three values of RMSE were
calculated, obtaining a minimum value of 0.333 (yellow circle on the plot), which corresponded to
β = 1 and λ = 0.002. The predictions considered K = 64 latent factors.

Figure 4. Example of a direct search of the minimum RSME corresponding with the best pair (β,λ).

This figure displays the GRMSEmetric for each pair (β,λ). This metric is the same RMSE after
applying a linear function that highlights the minimum points, maintaining the proportion among
all the points, in order to make minimums easier to detect on the plot. The evidence of several
minimum points suggests that the prediction accuracy is very sensitive to the selected pair, so we
would need to perform a deeper search. Nevertheless, DS wastes much computational effort when
searching in wide areas without minimum values of RMSE. This consideration led us to suggest more
efficient optimization alternatives in order to find the value of K and the pair (β,λ) for which RMSE
is minimum.

4.1.1. Optimization Techniques

As there are no solid methods to determine the optimal values for K, β and λ, we tackled this
problem by applying two optimization techniques: genetic algorithms and pattern search.
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4.1.2. Genetic Algorithm

Metaheuristics [42] are approximate algorithms that explore the space of solutions efficiently,
by focusing the search on the vicinity of a promising solution. This is the rationale behind the
application of metaheuristics to solve large optimization problems. Metaheuristics are classified
as trajectory or population algorithms. Among population- based metaheuristics, Evolutionary
Algorithms (EAs) [43] search the optimal solutions by tracing the evolution of individuals according to
rules inspired by biological phenomena.

Genetic Algorithms (GAs) [44] are popular EAs that perform stochastic searches after postulating
an individual solution to the optimization problem. The individual X is composed of several decision
variables xi that define its genotype. In our case, we have two decision variables: x1 = β and x2 = λ.
A population is a set of individuals that evolves along generations. The genetic pool of the population
is composed of the genotypes of their individuals. The population evolves by minimizing a fitness
function f (X); in our problem, it is RMSE.

GA starts generating an initial population and evaluating its individuals. From here on,
the population evolves along generations. Each generation consists of several sequential phases.
The first phase assigns a fitness value to each individual. Next, the selection phase chooses the best
individuals (parents) for crossover according to their fitness values. The third phase (recombination)
crosses the parents to generate new individuals (offspring), thus updating their fitness values.
After that, some individuals among the offspring develop mutations, their fitness being updated
accordingly. The evaluation phase evaluates the offspring and eventually incorporates it back into
the population (reinsertion phase). Then, the assignment phase starts again in order for the next
generation to begin. The GA ends when it reaches a stopping criterion (usually a predefined number
of generations).

The GA was tuned for the experiments by selecting the following values for the main
hyper-parameters, among others: population size of 150 individuals; 60 generations as the stopping
criterion; (0.0001,10) as the range of search for β; (0.0001,1) as the range of search for λ; (2,200) as the
range of search for K; random initial population with a uniform distribution; rank as the fitness scaling
function; stochastic uniform as the selection function; scattered crossover function; elite count (number
of individuals that are guaranteed to survive to the next generation) of 5% of the population size;
crossover fraction of 0.8; Gaussian mutation function; and 31 runs for each experiment.

4.1.3. Pattern Search

Pattern Search (PS) [45] is a direct search method for solving optimization problems. Unlike other
optimization algorithms, PS does not require any information about the gradient or higher derivatives
of the RMSE function when searching for an optimal set of optimization parameters (in our case, K, β,
and λ), but it searches a set of values of the optimization parameters around the current set, looking
for one where the value of RMSE is lower than the value at the current set.

In other words, PS is a pattern search algorithm that computes the RMSE corresponding to a
sequence of sets of the optimization parameters that approach an optimal set. At each step, PS searches
a mesh, around the current set (obtained at the previous step of the algorithm). The mesh is built from
adding the current set to a scalar multiple of a set of vectors called a pattern. If PS finds a set in the
mesh that improves RMSE at the current set, the new set becomes the current set at the next step of
the algorithm.

4.2. Three Approaches for The Optimization

In light of a DS approach, it is necessary to keep in mind two considerations. First, there are
many different possibilities when selecting the values of the pair (β, λ), since they are real numbers
chosen from different ranges, where the precision of the floating point values can be important. On the
contrary, there are not many possible values for K since it is an integer number chosen from a relatively
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restricted range, for example between two and 256 [6] in the PSP context. Therefore, we propose three
approaches for solving the optimization problem of finding the optimal values of K, β, and λ for which
RMSE is minimum:

• GAK: This method implements a loop of predictions where for each K value, the GA algorithm is
applied in order to obtain the optimal pair (β, λ), as outlined in Figure 5. This way, the minimum
RMSE found would correspond to the optimal values of K, β, and λ.

• GA3: This method applies the same GA algorithm than in GAK, but including K as the third
optimization parameter. This way, there is no need for a K loop, since GA optimizes in each run
the three parameters K, β, and λ together.

• PS3: This method follows the same idea as GA3, although replacing GA by PS as the
optimization algorithm.

Figure 5. GAK method: combination of a K loop and GA for optimizing the pair (β,λ).

5. Experimental Results

In this section, we show the experimental results after applying the three optimization methods
GAK, GA3, and PS3, considering different datasets, each of them extracted from virtual classrooms.
For each framework (dataset), the optimal solution is given by such a value of K that the best RMSE
found was minimum, as were the corresponding values of β and λ.

5.1. Datasets

We built several datasets to perform the experiments of predicting students’ performance. They are
available at the Mendeley Data repository [46]. These datasets were prepared from virtual classrooms
of a series of university-level courses, the data of which were adequately filtered according to the
method explained in Section 3.3. The purpose of preparing this suite of datasets was having different
cases for different academic contexts: number of students and tasks, degree levels (first, middle, or
final years), academic nature (theoretical or practical contents), etc. This heterogeneous suite also
contributes to considering a different number of latent factors, which is important in order to test the
optimization algorithms proposed in Section 4.

The virtual classrooms of the online campus of the University of Extremadura (UEX) provided the
necessary data for the datasets. This online campus is composed of several software services working
together in order to cater to the needs of the users:

• Portal: It welcomes users and allows them to log in. It also implements the only communication
channel between the users and tech support.

• Avuex: It consists of a large set of virtual classrooms corresponding to the different bachelor’s
and master’s degrees, oriented toward the learning process.

• Evuex: It consists of a set of virtual spaces oriented toward different purposes for the university
community (short courses, seminars, workshops, etc.).

Table 2 shows the datasets corresponding to eight virtual classrooms. It lists the number of
students (S), tasks (I), the performance matrix (P) before (original data) and after (filtered data)
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the filtering process, the number of known (Dknw) and unknown (Dunk) performances, the sizes of
the training (Dtrain) and test (Dtest) datasets, and the percentages of the minimum activity levels for
students and tasks allowed by the filtering method. Besides, we can see in Figure 6 the variety of shapes
and of the eight datasets. The number and location of the unknown performances are highlighted.
This variety of features allows the algorithms to demonstrate their effectiveness in different scenarios.

Table 2. Experimental datasets.

Dataset IC HS TO EN BE PR SR SJ

Virtual Introduction Food Hygiene Clinical Women’s Biostatistics for Internet Network Youth
Classroom to Computers and Safety Toxicology Nursing Biotechnology Programming Security Subcultures

Original data
S (students) 207 128 123 90 47 78 17 26
I (tasks) 38 16 6 18 30 17 24 6
P (scores) 7866 2048 738 1620 1410 1326 408 156

Filtered data
S (students) 107 95 116 78 47 65 10 26
I (tasks) 8 5 3 9 10 2 24 6
P (scores) 7856 475 348 702 470 130 240 156

Subsets
Dknw (known data) 800 457 324 657 440 116 214 155
Dunk (unknown data) 56 18 24 45 30 14 26 1
Dtrain (training data) 800 457 324 657 440 116 214 155
Dtest (test data) 102 92 105 73 43 59 19 26

Minimum activity level
Students 1 88% 60% 33% 78% 30% 50% 50% 83%
Tasks 2 80% 92% 86% 77% 89% 78% 75% 96%

1 Greater than or equal to 25%, 2 Greater than or equal to 75%.

Figure 6. A variety of the characteristics of the datasets. The unknown performances are highlighted.
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5.2. Accuracy Analysis and Discussion

The experimental method for GAK consisted of selecting several consecutive values of K, from two
to 160, in an iterative process where for each K, a GA experiment was performed. In each iteration,
the GA experiment involved several runs, since GA has a strong non-deterministic nature, where the
best run reported the minimum RMSE. Once all the iterations were completed, we pointed out the
iteration (K value) for which RMSE was the minimum among the best ones and the corresponding
pair (β, λ). On the contrary, the experimental method for GA3 and PS3 considers simply applying
GA and PS where each individual in the population is composed of three values corresponding to the
optimization parameters K, β, and λ.

Figures 7–9 show the results of RMSE, β, and λ, respectively, obtained after applying GAK for
each value of K from two to 200, considering the eight datasets described in the previous section.

Figure 7. Optimal RMSE obtained for different values of K, where GA found the optimal pair (β,λ) for
each one. Hence, the optimal K is such that RMSE is minimum.

Figure 8. Optimal value of the learning rate β for each value of K.
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Figure 9. Optimal value of the regularization factor λ for each value of K.

Table 3 shows the optimal values found after applying the GAK method.

Table 3. Results for the optimization method GAK.

GAK RMSE Values for RMSE min

Dataset min β λ K

IC 0.218 0.022 0.0070 113
HS 0.201 0.495 0.1841 45
TO 0.211 0.077 0.0001 139
EN 0.159 0.037 0.0001 197
BE 0.156 0.010 0.0001 184
PR 0.089 0.033 0.0001 153
SR 0.092 0.044 0.0098 192
SJ 0.097 0.052 0.0001 139

There are two significant conclusions to be drawn after analyzing the GAK plots. First, the plots
of RMSE have a similar behavior. For each dataset, there is only one optimal value of K. Until this
value is reached, RMSE decreases when K increases; after it has been reached, the reverse occurs.
Second, the optimal K values depend strongly on the considered dataset; however, they are in the
range between 45 and 197. This way, we could select a value in the middle of this range to be used
by default for general experiments in PSP when the optimal number of latent factors for a particular
dataset is unknown, provided that it is comparable in size to the dataset that has been used here.
Furthermore, we can check that β follows a similar trend as RMSE when K increases, while λ does not
show a particular behavior.

Tables 4 and 5 show the main results after applying the GA3 and PS3 methods, respectively.
As the optimization problem has a strong non-deterministic nature, each experiment of GA and PS
consisted of 31 runs. Therefore, the minimum, maximum, mean, median, and standard deviation are
shown. The optimal values of the parameters K, β, and λ correspond to the minimum value of the
RMSE found in each experiment.
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Table 4. Results for the optimization method GA3.

GA3 RMSE Values for RMSE min

Dataset min max Mean dev.st. Median β λ K

IC 0.230 0.263 0.248 9.04× 10−3 0.248 0.204 0.019 106
HS 0.215 0.277 0.234 1.22× 10−2 0.233 0.540 0.339 55
TO 0.238 0.276 0.255 1.03× 10−2 0.254 0.020 0.002 136
EN 0.179 0.295 0.207 2.03× 10−2 0.206 0.008 0.001 187
BE 0.179 0.239 0.209 1.58× 10−2 0.207 0.003 0.133 153
PR 0.107 0.174 0.133 1.42× 10−2 0.131 0.016 0.003 194
SR 0.144 0.200 0.169 1.51× 10−2 0.167 0.007 0.006 188
SJ 0.129 0.182 0.148 1.30× 10−2 0.147 0.129 0.002 159

Table 5. Results for the optimization method PS3.

PS3 RMSE Values for RMSE min

Dataset min max Mean dev.st. Median β λ K

IC 0.23 2.74 0.50 5.87× 10−1 0.26 0.235 0.011 114
HS 0.21 3.82 0.87 8.74× 10−1 0.32 0.651 0.141 29
TO 0.22 9.50 1.20 2.02 0.28 0.040 0.013 183
EN 0.18 2.31 0.53 5.02× 10−1 0.27 0.049 0.004 163
BE 0.16 2.89 0.51 5.42× 10−1 0.37 0.001 0.171 195
PR 0.10 4.19 1.08 1.46 0.22 0.003 0.014 197
SR 0.11 2.11 0.47 5.52× 10−1 0.24 0.043 0.000 168
SJ 0.11 54.65 2.34 9.72 0.48 0.068 0.010 176

As we applied three optimization methods for solving the PSP problem, we can analyze the
performance of these methods by comparing the minimum RMSE found for each dataset. Figure 10
shows the optimal values of RMSE collected from Tables 3–5. We check that the GAK method
outperforms the prediction accuracy provided by GA3 and PS3 for all the datasets considered. In other
words, including K as a third optimization parameter in GA and PS does not improve the prediction
accuracy. Furthermore, we can also conclude that GA provides better results than PS, regardless of
whether we consider K as an optimization parameter.

Figure 10. Performance comparison among the three optimization methods.

6. Conclusions

We focused our research on improving the prediction accuracy of the students’ performance when
applying a method based on collaborative filtering to datasets extracted from virtual classrooms
in online campuses. This method makes use of a technique used in recommender systems to
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predict unknown performances and building models by using matrix factorization and the gradient
descent algorithm.

The prediction of the unknown performances is very useful for students and teachers from the
learning point of view. On the one hand, students can predict the score of an unfinished or un-attended
task, according to the scores of their completed tasks and the scores of their colleagues who completed
the task in question. This prediction can help the student to identify the main strengths or weaknesses
in their learning process of the corresponding subject and provide insights about how to maximize the
study effort. On the other hand, the teacher can monitor the level of success for a particular task by
recording the performance of all the students, including the predictions of the unknown scores.

The particular nature of each virtual classroom (number of students and tasks, degree, type of
learning) involves considering a different number of latent factors. We have proven that selecting a
right number of latent factors, together with optimal values for the learning rate and regularization
factor, improves the prediction accuracy by minimizing the error in the prediction of the test dataset.
Our proposal consists of optimizing these three parameters by applying a direct search of the ideal
number of latent factors at the same time that the prediction model is optimized by means of a genetic
algorithm, thus obtaining a minimum prediction error.

The experimental framework consisted of eight real-world datasets, filtered accordingly for a
realistic processing. After applying the proposed optimization method, not only did this method
outdo the prediction accuracy when compared to using simple direct search for the optimal values of
β and λ with less computing time, it also obtained a range where to locate the ideal number of latent
factors. The mean value of the number of latent factors can be found within this range; and it can be
utilized by default for prediction purposes on other datasets, without having to perform previous
optimization experiments.

The importance of PSP and the results obtained in this work encourage us to consider other
techniques to improve the accuracy of the prediction. In this line, other ML methods can be explored
and compared.
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Abbreviations

The following abbreviations are used in this manuscript:
β learning rate
BD Big Data
CF Collaborative Filtering
Dknw known performances
Dunk unknown performances
Dtrain training dataset
Dtest test dataset
DM Data Mining
DS Direct Search
GA Genetic Algorithm
GD Gradient Descent
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I number of tasks
K number of latent factors
λ regularization term
LMS Learning Management Systems
MF Matrix Factorization
ML Machine Learning
P performance matrix
PSP Predicting Student Performance
RMSE Root Mean Squared Error
RS Recommender System
S number of students
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