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Abstract: Coherent plane-wave compounding (CPWC) is widely used in medical ultrasound imaging,
in which plane-waves tilted at multiple angles are used to reconstruct ultrasound images. CPWC helps
to achieve a balance between frame rate and image quality. However, the image quality of CPWC
is limited due to sidelobes and noise interferences. Filtering techniques and adaptive beamforming
methods are commonly used to suppress noise and sidelobes. Here, we propose a neighborhood
singular value decomposition (NSVD) filter to obtain high-quality images in CPWC. The NSVD filter
is applied to adaptive beamforming by combining with adaptive weighting factors. The NSVD filter
is advantageous because of its singular value decomposition (SVD) and smoothing filters, performing
the SVD processing in neighboring regions while using a sliding rectangular window to filter the
entire imaging region. We also tested the application of NSVD in adaptive beamforming. The NSVD
filter was combined with short-lag spatial coherence (SLSC), coherence factor (CF), and generalized
coherence factor (GCF) to enhance performances of adaptive beamforming methods. The proposed
methods were evaluated using simulated and experimental datasets. We found that NSVD can
suppress noise and achieve improved contrast (contrast ratio (CR), contrast-to-noise ratio (CNR) and
generalized CNR (gCNR)) compared to CPWC. When the NSVD filter is used, adaptive weighting
methods provide higher CR, CNR, gCNR and speckle signal-to-noise ratio (sSNR), indicating that
NSVD is able to improve the imaging performance of adaptive beamforming in noise suppression
and speckle pattern preservation.

Keywords: coherent plane-wave compounding; neighborhood singular value decomposition;
adaptive beamforming; coherence factor; short-lag spatial coherence

1. Introduction

Because of its safety and non-invasiveness, ultrasound imaging is commonly used in medical
applications. The plane-wave method is a conventional way to achieve ultrafast ultrasound imaging,
and has been applied in various new ultrasound technologies with high frame rate requirements [1–3].
In the field of plane-wave imaging, researches have been focused on improving the imaging speed
and imaging quality. A high frame rate imaging method based on the Fourier spectrum of the
object function using the limited diffraction beams was developed by Lu et al. to accelerate image
formation [4,5]. Compressed sensing has been successfully applied for fast image acquisition in
pulse-echo ultrasound [6,7]. Furthermore, the convolutional neural network (CNN) was successfully
implemented to learn a compounding operation from data, and thus reconstruct high-quality images
using a small number of transmissions [8]. Montaldo et al. [9] coherently compounded plane-waves
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with different steering angles to obtain equivalent quality but higher frame rate images compared to
B-mode multi-focus imaging. This technique was named coherent plane-wave compounding (CPWC).
However, because CPWC uses the delay-and-sum (DAS) beamformer to construct images, it suffers
from poor resolution and high sidelobes. Therefore, many new developments have been taking place
in the field of adaptive beamforming techniques with the aim of improving CPWC image quality.

Adaptive beamforming methods based on the coherence of echo signals to select weighting factors
have a better capability in terms of resolution improvement and interference rejection as compared
to DAS [10,11]. The coherence factor (CF)—defined as the ratio between the energy of the coherent
sum and the incoherent sum of the signal—can suppress sidelobes and improve image contrast [12,13].
The generalized coherence factor (GCF) is a robust CF, which is defined as the ratio of the spectral
energy in the low-frequency region to the total energy [14]. Ultrasonic speckle is an interference effect
caused by the scattering of the ultrasonic beam from microscopic tissue inhomogeneities [15], and it
provides useful information about the underlying microstructure. Speckle has been demonstrated
as being valuable in medical imaging and speckle tracking techniques have been applied to cardiac
imaging and blood speckle imaging [16,17]. It has been found that in vivo tissue and diffuse scatters
have similar coherence [18]. Due to the randomness of diffuse scatters, speckle-generating targets
contain a degree of incoherence. GCF tends to preserve part of the incoherence in echo signals from
speckle by including a part of high-frequency components. Thus, it preserves the speckle pattern better,
but has higher sidelobe levels compared to CF. Furthermore, CF and GCF have been demonstrated
to have good imaging performances in CPWC imaging [19,20]. Wang et al. [21] proposed a modified CF
for CPWC, named dynamic coherence factor (DCF). DCF introduces a normalized standard deviation
to evaluate the angular difference of different steered plane-waves, and then uses several plane-wave
imaging results with a small angular difference to calculate CF. Because DCF could evaluate the
coherence of steered plane-wave signals more accurately than CF, images obtained by DCF weighted
CPWC showed a higher contrast. A united sign coherence factor (uSCF) [22] was proposed for contrast
and resolution enhancements in CPWC imaging. Short-lag spatial coherence (SLSC), which uses the
spatial coherence of the backscattered echo signals to calculate weighting factors, was studied to weigh
CPWC images [18,23]. It has been shown that SLSC beamforming can reduce clutter and sidelobes.
SLSC images provide a superior speckle signal-to-noise ratio (sSNR) and CNR compared to DAS
images, but with reduced contrast. SLSC was also studied for use as a weighting factor. The study of
Pozo et al. [24] showed that contrast is improved in the SLSC weighted image, while CNR is slightly
reduced as compared to the DAS image.

In addition to these coherence-based methods, several new adaptive weighting factors have been
identified as enhancing CPWC image quality. To improve image resolution and contrast, a normalized
autocorrelation factor (NAF) was proposed for CPWC [25]. Zheng et al. [26] introduced a subarray
zeros-cross factor (SZF), which was based on the polarity of the adjacent plane-wave imaging results
to evaluate signal coherence. SZF can obtain a higher quality of speckle pattern than CF and GCF, with
a low computational complexity close to CF. Though adaptive weighting methods can reduce noise
and clutter and suppress sidelobes, they tend to suppress the desired signals, especially for signals in
the background speckle. It is known that the speckle contains coherent and incoherent components [14].
However, adaptive weighting methods usually reduce the incoherent signals, and thus result in an
altered speckle pattern [27].

Singular value decomposition (SVD) is often used to help extract and preserve desired signals from
raw signals. SVD has been introduced into Doppler imaging to filter the clutter in echo signals [28–30].
Recently, SVD was applied to ultrasound imaging to improve image quality. Hasegawa et al. [31]
proposed an SVD filter for speckle noise reduction and applied it to monofocal imaging. Guo et al. [32]
proposed a sidelobe suppression beamformer based on SVD for CPWC, which can reduce the sidelobe
level and improve the contrast-to-noise ratio (CNR). The sidelobe distributions in plane-wave images
of different angles were uncorrelated, while the mainlobe energy originating from on-axis targets
was highly correlated. Therefore, the utilization of the SVD to filter the beamformed plane-wave RF
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data before summation can suppress sidelobes in CPWC. In Guo’s study [32], all beamformed signals
from the entire imaging region are reshaped to a matrix; then, the matrix is decomposed by SVD,
resulting in enhanced computational efficiency. However, in this approach, the suppression of noise
is limited. While the adaptive weighting methods are excellent at noise reduction so as to address
these limitations.

Inspired by these findings, we proposed a neighborhood SVD (NSVD) filter for CPWC that
computes the SVD in a neighboring region to obtain high-quality images. We applied the NSVD
filter to adaptive beamforming to achieve both noise reduction and speckle pattern preservation.
For a point p in a plane-wave image, we selected a rectangular neighbor region centered around point
p to form a two-dimensional matrix. Then, a three-dimensional data matrix is obtained and reshaped
to rebuild a matrix with two dimensions representing samples and plane-waves with different steering
angles, respectively. SVD is performed on this two-dimensional matrix to complete decomposition
and reconstruction. Finally, the compound output of the imaging point p can be obtained through
the summation of the filtered plane-wave images. We present a sliding rectangular window with
a fixed size to perform the procedure for every imaging point and filter the entire imaging region.
The proposed NSVD filter was then combined with adaptive weighting methods to enhance noise
reduction and preserve the speckle pattern. SVD was recently used in a speckle-tracking algorithm
to reduce the effect of clutter and noise of stationary background for quantifying displacement in the
carpal tunnel [33]. In this paper, we used the NSVD filter to extract effective signals for all steering
plane-wave imaging results. Then, the extracted signals were used to estimate adaptive weighting
factors and reconstruct images. With this application of NSVD, adaptive weighting methods can
achieve improvements in contrast and speckle pattern preservation.

We used CF, GCF, and SLSC combined with NSVD to verify the performance for image quality
enhancement. Simulation and experimental results show that the NSVD filter has a better ability to
reduce noise and clutter as compared to SVD. With the combination of the NSVD filter and adaptive
weighting methods, the contrast and quality of the speckle pattern of reconstructed images will
be enhanced.

The paper is organized as follows. The next section is a brief introduction to the CPWC, SVD,
and NSVD, and theories of CF, GCF, and SLSC are also provided. Then, we describe simulated and
experimental datasets and image quality metrics. Imaging results of different methods are illustrated
in Section 4. The paper concludes with a discussion on the proposed methods and a conclusion
in Sections 5 and 6, respectively.

2. Method

2.1. Coherent Plane-Wave Compounding

Different time delays are applied to excite the array elements to emit plane-waves from multiple
angles in CPWC. The plane-wave imaging results at different angles can be obtained using DAS
beamforming of the echo signals from the region of interest. Then, the CPWC image can be
reconstructed by averaging those plane-wave imaging results.

Assume that N plane-waves are used to compound an image, where each plane-wave
has a steering angle of θn(n = 1, 2, . . . , N). In an imaging region with a lateral direction x and
an depth direction z, the n-th plane-wave imaging result at a point p = (xp, zp) is s(xp, zp, θn). Then,
the CPWC output at the point p = (xp, zp) is expressed as [9]:

SCPWC(xp, zp) =
1
N

N

∑
n=1

s(xp, zp, θn). (1)
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2.2. Singular Value Decomposition Filter for Cpwc

For one plane-wave image, we assume that there are nx ∗ nz samples, where nx and nz is the
number of samples along x-axis and z-axis. For a CPWC, there are nx ∗ nz ∗ N samples. We defined
Ns = nx ∗ nz. The 3D dataset should be reshaped into a 2D matrix A with dimension (Ns, N) to
perform the SVD. The matrix A is decomposed into a diagonal matrix Σ with dimension (Ns, N),
a unitary matrix U with dimension (Ns, Ns) of singular vectors related to the variations of the spatial
sampling values and a unitary matrix V with dimension (N, N) of singular vectors related to the
angular variations. The SVD of the matrix A is defined as [31]:

A = UΣV H , (2)

where the diagonal matrix Σ contains singular values λi(λ1 > λ2 > λ3 > · · · > λN) on the diagonal
and (.)H denotes the conjugate transpose.

It is assumed that the matrix A contains effective signals and noise. Singular values can reflect the
concentration of signals and noise energy. A larger singular value mainly reflects the effective signals
and mainlobes, and a smaller singular value mainly reflects the noise and sidelobes [32]. Setting the
singular values that reflect the noise to zero can reduce the noise and sidelobes in the signals and
improve the signal-to-noise ratio. After the SVD processing, the matrix of the decomposed image data
ASVD with dimension (Ns, N) is defined as:

ASVD = UΣβV H , (3)

where β is a subscript threshold. Σβ is a diagonal matrix, which is obtained by setting singular values
λi with i larger than β at zero in the matrix Σ. Then, the spatio-angular signals for point p can be
expressed as:

sSVD(xp, zp, θn) = ASVD[i(xp, zp), j(θn)], (4)

where ASVD[i, j] denotes the element at the i-th row and j-th column of the matrix ASVD. THe row
index i(xp, zp) corresponds to the point p = (xp, zp), while j(θn) is the column index corresponding to
the n-th angle.

Then, the CPWC output at point p = (xp, zp) after SVD filtering can be obtained by:

SCPWC+SVD(xp, zp) =
1
N

N

∑
n=1

sSVD(xp, zp, θn). (5)

2.3. Neighborhood Singular Value Decomposition Filter for Cpwc

We will theoretically describe the proposed NSVD filter in this section. For the point p = (xp, zp),
we create a matrix B that is composed of signals from the neighbor region centered at point p.
The matrix B is defined as:

B =


b−K,−L b−K+1,−L b−K+2,−L · · · bK,−L

b−K,−L+1 b−K+1,−L+1 b−K+2,−L+1 · · · bK,−L+1

b−K,−L+2 b−K+1,−L+2 b−K+2,−L+2 · · · bK,−L+2
...

...
...

. . .
...

b−K,L b−K+1,L b−K+2,L ... bK,L

 , (6)

where bk,l = s(xp + ∆x ∗ k, zp + ∆z ∗ l) in which k ∈ [−K, K] and l ∈ [−L, L] denotes the signals from
points in the neighborhood of point p. ∆x ∗ 2K and ∆z ∗ 2L restrict the size of the neighborhood.
The ∆x ∗ 2K is set to the mainlobe width of the CPWC image, which is about 1 mm in this paper.
The ∆z ∗ 2L is equal to a transmit pulse length. Considering all plane-waves with different angles,
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a three-dimensional matrix can be obtained, and it is reshaped to form a two-dimensional matrix A′

with dimensions ((2K + 1) ∗ (2L + 1), N). The SVD of A′ is:

A′ = U′Σ′V ′H , (7)

where the diagonal matrix Σ′ with dimension ((2K + 1) ∗ (2L+ 1), N) contains singular values λ′i(λ
′
1 >

λ′2 > λ′3 > · · · > λ′N). U′ and V ′ are with dimensions ((2K + 1) ∗ (2L + 1), (2K + 1) ∗ (2L + 1)) and
(N, N), respectively. By using the threshold β, the matrix A′

NSVD of the decomposed image data in
the neighbor region of the point p are expressed as:

A′
NSVD = U′Σ′

β, V ′H (8)

where Σ′
β is obtained by setting singular values λ′i with i larger than β at zero in the matrix Σ′. Then,

the spatio-angular signals in the neighbor region of the point p = (xp, zp) is obtained by:

s′(xp + ∆x ∗ k, zp + ∆z ∗ l, θn) = A′
NSVD[i(xp + ∆x ∗ k, zp + ∆z ∗ l), j(θn)]. (9)

After NSVD filtering, the spatio-angular signal of the point p = (xp, zp) is:

sNSVD(xp, zp, θn) = s′(xp, zp, θn). (10)

Finally, the CPWC output after the NSVD filter can be obtained by:

SCPWC+NSVD(xp, zp) =
1
N

N

∑
n=1

sNSVD(xp, zp, θn). (11)

2.4. Adaptive Weighting Methods Based on Nsvd

2.4.1. Coherence Factor and Generalized Coherence Factor Weighting Methods Based on Nsvd

CF was first presented for the purpose of analyzing echo signals and as a metric for focusing
quality in ultrasound imaging. It is obtained by calculating the ratio of the coherent sum to
the incoherent sum. Unlike CF, which evaluates signal coherence in the temporal domain, GCF
estimates coherence using the spatial frequency spectrum. GCF is computed as the ratio of mainlobe
(low-frequency components) energy to the total spectral energy. The mainlobe energy is determined by
a cutoff frequency, M0, which is a spatial frequency index and divides the spectrum into low-frequency
and high-frequency regions. In general, M0 is selected from 1 to 3 to achieve a good tradeoff between
sidelobe suppression and speckle preservation.

In CPWC imaging, the CF and GCF can be implemented in the angular domain and angular
frequency spectrum, respectively. They are generally calculated using DAS outputs of raw echo signals
in all steering plane-waves. Instead of DAS, our study uses the output signals from the NSVD filter to
calculate CF and GCF, which are respectively expressed as:

CF(xp, zp) =
|∑N

n=1 sNSVD(xp, zp, θn)|2

N ∑N
n=1 |sNSVD(xp, zp, θn)|2

. (12)

GCF(xp, zp) =
∑j∈[−M0,M0]

|P(j)|2

∑N/2−1
j=−N/2 |P(j)|2

, (13)
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where the vector P = [P(−N/2), P(−N/2 + 1), . . . , P(N/2− 1)] is the Fourier transform of the vector
[sNSVD(xp, zp, θ1), sNSVD(xp, zp, θ2), . . . , sNSVD(xp, zp, θN)]. CF and GCF are used to weigh the output
of CPWC+NSVD, and the final output can be obtained by:

SCF+NSVD(xp, zp) = CF(xp, zp)× SCPWC+NSVD(xp, zp) (14)

SGCF+NSVD(xp, zp) = GCF(xp, zp)× SCPWC+NSVD(xp, zp). (15)

2.4.2. Short-Lag Spatial Coherence Weighting Methods Based on Nsvd

SLSC was proposed as a new imaging technique that utilized spatial coherence between
backscattered echoes instead of echo signal amplitudes to form a standalone image [18]. In addition,
it can also be used as a weighting factor. In this paper, we use SLSC as a weighting factor to form
weighted images.

Assume that sNSVD(i, θn) is the signals filtered by the NSVD fitler at sample i in the n-th
plane-wave. The normalized spatial correlation at lag m is given by:

R̂(m) =
1

N −m

N−m

∑
n=1

∑
p2
i=p1

sNSVD(i, θn)sNSVD(i, θm+n)√
∑

p2
i=p1

s2
NSVD(i, θn)∑

p2
i=p1

s2
NSVD(i, θm+n)

, (16)

where p2 and p1 is normally taken over a length of a wavelength [23]. The value of SLSC is obtained
by integrating the first M lags of the spatial coherence function:

SLSC =
∫ M

1
R̂(m)dm ≈

M

∑
m=1

R̂(m). (17)

As the value of M has an effect on the performance of SLSC, a parameter Q = M
N is used to

determine the selection of M. Generally, SLSC-weighted images provide improved CNR and sSNR
when Q decreases. The final output of SLSC weighted CPWC+NSVD is represented by:

SSLSC+NSVD = SLSC× SCPWC+NSVD. (18)

3. Simulation and Experimental Setup

3.1. Data Description

To evaluate the efficiency of the proposed algorithms, we used the simulated and experimental
data for CPWC image reconstruction. All datasets are provided by the Plane-wave Imaging Challenge
in Medical Ultrasound (PICMUS) [34,35]. The simulated data was generated by Field II [36,37] software.
The experimental data contains phantom data and in vivo data. All datasets were acquired with a linear
array. The element spacing of the 128-element linear array was 0.3 mm and the center frequency was
5.208 MHz. The system sampling frequency was 40 MHz and the propagation speed of the ultrasonic
wave in the medium was 1540 m/s. Each dataset was acquired using 75 plane-wave transmissions.
The steering angles were spaced from −16◦ to 16◦ with an angular interval of 0.43◦.

A Gaussian distributed noise with a signal-to-noise ratio (SNR) of 10 dB was added to the channel
RF data. The dynamic range of all B-mode images in this paper is 60 dB. 25 plane-waves (N = 25)
with steering angles spaced uniformly between −16◦ to 16◦ were used to reconstruct B-mode images.
Parameters β = 2, 3, M0 = 2 and Q = 10% are respectively set in NSVD, GCF, and SLSC for the
realizations of the proposed methods.
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3.2. Image Quality Metrics

This paper evaluated the imaging performances of all beamforming methods in terms of the
lateral resolution, contrast, and quality of speckle pattern. These performances are quantitatively
represented by performance parameters of the full width at half maximum (FWHM,−6 dB beamwidth
of the mainlobe), contrast ratio (CR), contrast-to-noise ratio (CNR), and speckle signal-to-noise ratio
(sSNR) [38–40]. FWHM corresponds to the lateral resolution, while CR and CNR quantify the contrast
performance. Speckle pattern represents the speckle statistics in ultrasound images. The speckle
pattern in the DAS image closely obeys the theoretical Rayleigh distribution, while adaptive weighting
methods usually alter speckle pattern and lead to a distribution far from the theoretical Rayleigh [27].
Using the DAS as a reference, the quality of speckle pattern for different beamformers means the
degree of similarity as compared to the speckle pattern of DAS. The sSNR is used to quantitatively
assess the quality of speckle pattern [18,19]. CR, CNR, and sSNR are defined as:

CR = |20log10(
µi
µb

)| (19)

CNR =
|µi − µb|√

σ2
i + σ2

b

(20)

sSNR =
µb
σb

. (21)

The above three metrics are calculated using envelope detected signals before log compression, in
which µi and µb denote the mean values in the cyst targets and in the background speckle, respectively.
σi and σb are the corresponding standard deviation values.

In addition, the generalized contrast-to-noise ratio (gCNR) [41] was also assessed to evaluate the
imaging performances of different methods. The gCNR compares the overlap between the intensity
distributions of background region and cyst region, and it is defined as

gCNR = 1−
∫

min{pB(x), pROI(x)} dx, (22)

where pB(x) and pROI(x) are the probability distributions of the background and cyst, respectively,
and x is the pixel intensity. If the two distributions overlap less, the gCNR value will be higher, and
this indicates enhanced lesion detectability.

4. Results

4.1. Simulations

4.1.1. Simulated Phantom with Point Targets

The proposed CPWC+NSVD method was compared to CPWC and CPWC+SVD. Images obtained
using adaptive weighting factors (CF, GCF, and SLSC) to weight the output of CPWC were also
presented as a comparison of the adaptive weighting methods based on NSVD. For convenience,
hereinafter, CPWC weighted by CF, GCF, and SLSC are referred to as CF, GCF, and SLSC, respectively.

The first simulated phantom contains several point targets from a depth of 10 mm to 45 mm.
Figure 1 presents B-mode images beamformed using different methods. The top row contains
CPWC, CPWC+SVD, and CPWC+NSVD images. The second and third rows contain CF-, GCF-,
and SLSC-weighted CPWC images and weighted images with the NSVD filter for β = 2 and β = 3.
Figure 2 shows the zoomed images of the point target located at a depth of 20 mm with a dynamic
range of 80 dB. CPWC shows the highest noise and sidelobe levels. Through the use of the NSVD filter,
noise is suppressed in the images of Figure 1d–e and Figure 2d–e, while sidelobes of NSVD+CPWC
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show little suppression compared to CPWC. It is also noted that the adaptive weighting methods can
reduce noise and sidelobes relative to CPWC, CPWC+SVD, and CPWC+NSVD. Lateral profiles of
two-point targets p1(x, z) = (0 mm, 20 mm) and p2(x, z) = (0 mm, 40 mm) in all simulated images
are shown in Figure 3. For adaptive weighting methods, the NSVD filter leads to increased sidelobes,
which is obvious in CF-weighted images. After further observations, NSVD+CPWC shows reduced
sidelobes compared to CPWC and CPWC+SVD in Figure 2b. Therefore, NSVD may have a good ability
to suppress sidelobes in the deep region. It is also observed that beamformers with β = 3 provide
narrower mainlobes than those with β = 2.

The lateral FWHM of point targets p1(x, z) = (0 mm, 20 mm) and the average FWHM of all
simulated point targets are calculated and Figure 4 gives the barplot of lateral FWHM. As seen in
Figure 4, the NSVD filter has little effect on lateral FWHM. Compared to CPWC, CPWC+SVD (β = 2)
and CPWC+NSVD (β = 2) have a slightly larger lateral FWHM, while CPWC+SVD (β = 3) and
CPWC+NSVD (β = 3) have equivalent lateral FWHM values. For adaptive weighting methods, β = 2
also leads to a wider lateral FWHM.
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Figure 1. B-mode images of simulated phantom with point targets formed by different methods.
(a) CPWC, (b) CPWC+SVD (β = 2), (c) CPWC+SVD (β = 3), (d) CPWC+NSVD (β = 2), (e) CPWC+NSVD
(β = 3), (f) CF, (g) GCF, (h) SLSC, (i) CF+NSVD (β = 2), (j) GCF+NSVD (β = 2), (k) SLSC+NSVD (β = 2),
(I) CF+NSVD (β = 3), (m) GCF+NSVD (β = 3), (n) SLSC+NSVD (β = 3).
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Figure 2. Simulated point target images formed by different methods and displayed with a dynamic
range of 80 dB. (a–n) Zoomed images of the point target at a depth of 20 mm in Figure 1a–n, respectively.
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Figure 3. The lateral profiles of two simulated point targets of (a) p1(x, z) = (0 mm, 20 mm),
(b) p2(x, z) = (0 mm, 40 mm).

Figure 4. Lateral full width at half maximum (FWHM) in simulated images: (a) p1(x, z) =

(0 mm, 20 mm), (b) average values and standard deviation of all point targets.
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4.1.2. Simulated Cyst Targets

The second simulated phantom contains anechoic cysts and a homogeneous speckle background.
Figure 5 presents the simulated cyst target images reconstructed by various methods. Anechoic cysts
in the CPWC+NSVD images of Figure 5d–e have less noise than the CPWC and CPWC+SVD images
of Figure 5a–c. Compared to Figure 5f–h, the corresponding Figure 5i–k and Figure 5l–n show reduced
dark-region artifacts in the background speckle and higher background intensity. Figure 6 displays
the lateral profiles of two cyst targets centered at depths of 18 mm and 42 mm and distributed at the
middle line (x = 0 mm) in Figure 5. The CPWC+NSVD shows reduced noise inside the anechoic cysts
as compared to CPWC and CPWC+SVD. Similarly, when combined with the NSVD filter, the adaptive
weighting methods also show better noise suppression.

In Figure 5a, we indicate the marked regions used to calculate CR, CNR, gCNR, and sSNR,
according to Equations (19)–(22). Being within the red circle means inside the cyst, while being
within the two green circles means inside the background speckle. Figure 7 gives the barplot of the
quantified values for each method. CPWC+NSVD has improved CR and CNR values relative to
CPWC. Compared to CPWC, CPWC+NSVD (β = 3) can achieve CR improvements of 6.93 dB/4.52 dB
(26.4%/34.5%) and CNR improvements of 0.05/0.16 (3%/12.3%). The adaptive weighting methods
based on NSVD all have improved CR, CNR, and sSNR. CF+NSVD (β = 3) has improvements of
14.53 dB/7.28 dB (29%/26.1%) in CR, 0.09/0.25 (7.4%/27.5%) in CNR, and 0.08/0.23 (6.5%/24.2%)
in sSNR. The CR, CNR, and sSNR improvements of GCF+NSVD (β = 3) are 12.76 dB/6.99 dB
(29.8%/31.6%), 0.11/0.32 (6.9%/28.8%), and 0.11/0.27 (6.8%/22.3%). The corresponding improvements
of SLSC-NSVD (β = 3) are 4.66 dB/6.99 dB (10.3%/23.7%), 0.16/0.42 (10.5%/43.3%), and 0.16/0.42
(10.4%/42%), respectively. In the near region, gCNR values of different methods are similar. For the
deep region, the NSVD leads to a gCNR improvement by about 0.14 for adaptive weighting methods.
It can be observed that β has an effect on CR, CNR, gCNR and sSNR. For adaptive weighting methods,
NSVD (β = 2) leads to improvements of CR, CNR, and sSNR by about 2 dB, 0.1, and 0.1 compared
with NSVD (β = 3), respectively.
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Figure 5. B-mode images of simulated phantom with cyst targets formed by different methods.
(a) CPWC, (b) CPWC+SVD (β = 2), (c) CPWC+SVD (β = 3), (d) CPWC+NSVD (β = 2), (e) CPWC+NSVD
(β = 3), (f) CF, (g) GCF, (h) SLSC, (i) CF+NSVD (β = 2), (j) GCF+NSVD (β = 2), (k) SLSC+NSVD (β = 2),
(I) CF+NSVD (β = 3), (m) GCF+NSVD (β = 3), (n) SLSC+NSVD (β = 3). The area in the red circle
and between the two green circles indicates the inside and outside the cyst, respectively, used for
calculating contrast ratio (CR), contrast-to-noise ratio (CNR), generalized CNR (gCNR), and speckle
signal-to-noise ratio (sSNR).
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Figure 6. Lateral profiles of the simulated cyst targets centered at (a) (x, z) = (0 mm, 18 mm),
(b) (x, z) = (0 mm, 42 mm).

Figure 7. (a) CR, (b) CNR, (c) gCNR, and (d) sSNR for each beamforming method in images of
simulated phantom with cyst targets. The first and second column contain the results of anechoic cysts
centered at (x, z) = (0 mm, 18 mm) and (x, z) = (0 mm, 42 mm), respectively.

4.2. Phantom Experiment

4.2.1. Experimental Phantom with Point Targets

The first experimental phantom contains point targets, a massive cyst, and a speckle background.
Figure 8 presents images of the experimental phantom with point targets beamformed by various
beamformers. Images obtained by adaptive weighting methods show dark artifacts beside point
targets compared to CPWC, CPWC+SVD, and CPWC+NSVD. GCF and SLSC provide fewer artifacts
than CF. From Figure 8i–k, these dark artifacts become more visible through the use of the NSVD
(β = 2) filter. However, in adaptive weighting images, NSVD (β = 3) results in reduced artifacts
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compared to NSVD (β = 2). Images of GCF+NSVD (β = 3) and SLSC+NSVD (β = 3) show fewer dark
artifacts than other adaptive weighting methods.

Figure 9 plots the lateral profiles of two experimental point targets positioned at
p1(x, z) = (−0.4 mm, 18 mm) and p2(x, z) = (−0.4 mm, 38 mm). As seen in Figure 9, CPWC+SVD
and CPWC+NSVD have slightly lower sidelobes than CPWC. Experimental point targets of adaptive
weighting methods show narrowed mainlobes and suppressed sidelobes compared to CPWC,
CPWC+SVD, and CPWC+NSVD. Figure 10 shows the barplot of the quantitative lateral FWHM
of the experimental point targets. Adaptive weighting methods can significantly improve the lateral
resolution. The NSVD filter has only a slight effect on lateral FWHM and increased β results in
decreased lateral FWHM, which is consistent with the simulation results.
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Figure 8. B-mode images of experimental phantom with point targets formed by different methods.
(a) CPWC, (b) CPWC+SVD (β = 2), (c) CPWC+SVD (β = 3), (d) CPWC+NSVD (β = 2), (e) CPWC+NSVD
(β = 3), (f) CF, (g) GCF, (h) SLSC, (i) CF+NSVD (β = 2), (j) GCF+NSVD (β = 2), (k) SLSC+NSVD (β = 2),
(I) CF+NSVD (β = 3), (m) GCF+NSVD (β = 3), (n) SLSC+NSVD (β = 3).
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Figure 9. The lateral profiles of two experimental point targets positioned at (a) p1(x, z) = (−0.4 mm,
18 mm), (b) p2(x, z) = (−0.4 mm, 38 mm).



Appl. Sci. 2020, 10, 5595 13 of 23

Figure 10. Lateral FWHM in experimental images: (a) p1(x, z) = (−0.4 mm, 18 mm), (b) average
values and standard deviation of all point targets.

4.2.2. Experimental Cyst Targets

The second experimental phantom contains two anechoic cyst targets and a speckle background.
The B-mode images of the experimental phantom with cyst targets obtained by different beamformers
are shown in Figure 11. It can be observed that anechoic cysts in the CPWC+NSVD image have
less noise than with CPWC+SVD. Adaptive weighting methods achieve improved image quality
because, in their images, noise is suppressed and the boundaries of cyst targets are more easily
detectable. However, the images of adaptive weighting methods show visible dark-region artifacts in
the background speckle and the image intensity is reduced, especially in the deep region. With the
combination with NSVD, in the near region, all the adaptive weighting methods provide reduced
dark-region artifacts in the speckle and obtain brighter background speckle. For the deep region,
dark-region artifacts become worse in images of adaptive weighting methods with NSVD (β = 2).
However, when β = 3, the artifacts in the deep region are reduced and the speckle pattern in the near
region is still well-preserved.

Figure 12 presents the lateral profiles of the two experimental cysts. It is also observed that
CPWC+NSVD has an advantage in terms of noise suppression over CPWC and CPWC+SVD. Figure 13
presents the barplot of CR, CNR, and sSNR in experimental cyst target images. CPWC+NSVD
outperforms CPWC+SVD and CPWC in terms of CR, and CNR. Compared to CPWC, CPWC+NSVD
(β = 3) achieves CR improvements of 3.24 dB/2.77 dB (15.3%/42%), and CNR improvements
of 0.05/0.16 (3%/17.8%). For CF, by combining with the NSVD filter, CR, CNR, and sSNR
achieve improvements of 5.7dB/7.49 dB (14.2%/43.8%), 0.13/0.19 (10.9%/27.1%), and 0.12/0.12
(10%/14.6%), respectively. For the GCF (β = 3), the corresponding improvements are 2.62 dB/4.5 dB
(8.1%/37%), 0.16/0.14 (10%/16.5%), and 0.15/0.02 (9.2%/1.7%), while for the SLSC (β = 3),
the corresponding improvements are 0.66 dB/7.14 dB (1.7%/36.8%), 0.34/0.33 (23.8%/37.9%),
and 0.35/0.28 (24.3%/28.6%), respectively. The gCNR improvements in the deep region are more than
0.1 due to the utilization of NSVD. For adaptive weighting methods, NSVD (β = 2) and NSVD (β = 3)
both achieve enhancements of CR, CNR, gCNR, and sSNR. This indicates that adaptive methods can
achieve improved image contrast and quality of speckle pattern by combining with the NSVD filter.
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Figure 11. B-mode images of experimental phantom with cyst targets formed by different methods.
(a) CPWC, (b) CPWC+SVD (β = 2), (c) CPWC+SVD (β = 3), (d) CPWC+NSVD (β = 2), (e) CPWC+NSVD
(β = 3), (f) CF, (g) GCF, (h) SLSC, (i) CF+NSVD (β = 2), (j) GCF+NSVD (β = 2), (k) SLSC+NSVD (β = 2),
(I) CF+NSVD (β = 3), (m) GCF+NSVD (β = 3), (n) SLSC+NSVD (β = 3). The area in the red circle and
between the two green circles indicates inside and outside the cyst, respectively, used for calculating
CR, CNR, gCNR, and sSNR.
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Figure 12. The lateral profiles of two experimental cysts centered at (a) (x, z) = (0 mm, 15 mm),
(b) (x, z) = (0 mm, 43 mm).
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Figure 13. (a) CR, (b) CNR, (c) gCNR, and (d) sSNR for each beamforming method in images of
experimental phantom with cyst targets. The first and second column contain the results of anechoic
cysts centered at (x, z) = (0 mm, 15 mm) and (x, z) = (0 mm, 43 mm), respectively.

4.3. In Vivo Experiment

All presented methods were next applied to in vivo datasets obtained from a human carotid artery.
In vivo images obtained with various beamformers are shown in Figure 14. The adaptive weighting
methods of Figure 14f–n show clear carotid arteries with little noise. As observed, CPWC+NSVD
outperforms CPWC and CPWC+SVD in terms of reduced noise inside the carotid. Adaptive weighting
methods provide visible noise suppression inside the carotid. However, the speckle pattern is affected
relative to CPWC. Due to the combination of the NSVD filter, enhanced noise suppression and speckle
preservation can be achieved for all the adaptive methods.

Various parameters are used to verify the efficiency of different methods. A circular region inside
the carotid artery and a rectangular region outside the carotid artery are marked in Figure 14a and used
to calculate CR, CNR, and sSNR. Figure 15 show the barplot of quantitative results. CPWC+NSVD
achieves a CR enhancement (over 5 dB) and similar CNR and sSNR compared to CPWC. The adaptive
weighting methods combined with the NSVD filter can obtain CR improvements (by about 8 dB),
as well as improved CNR, gCNR, and sSNR.
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Figure 14. B-mode in vivo images formed by different methods. (a) CPWC, (b) CPWC+SVD (β = 2),
(c) CPWC+SVD (β = 3), (d) CPWC+NSVD (β = 2), (e) CPWC+NSVD (β = 3), (f) CF, (g) GCF, (h) SLSC,
(i) CF+NSVD (β = 2), (j) GCF+NSVD (β = 2), (k) SLSC+NSVD (β = 2), (I) CF+NSVD (β = 3),
(m) GCF+NSVD (β = 3), (n) SLSC+NSVD (β = 3). A circular region inside the carotid artery and
a rectangular region outside the carotid artery are marked and used to calculate CR, CNR, gCNR,
and sSNR.

Figure 15. (a) CR, (b) CNR, (c) gCNR, and (d) sSNR for each beamforming method in in vivo images.
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4.4. Statistical Analysis of Results

We use the t-test to determine whether there is a significant statistical difference between
quantitative metrics calculated for different methods. Lateral FWHM, CR, CNR, gCNR, and sSNR
calculated in all simulated and experimental images are used to evaluate the significant improvements
of proposed methods. A paired t-test was performed between NSVD-based methods and methods
without the use of NSVD at a 5% significance level. The results indicate that NSVD does not
effectively help the lateral FWHM. However, compared to CPWC and CWPC+SVD, the CR and
CNR improvements obtained by CPWC+NSVD are significant. Furthermore, CF+NSVD, GCF+NSVD,
and SLSC+NSVD show significant improvements of CR, CNR, gCNR, and sSNR compared with
corresponding CF, GCF, and SLSC, respectively.

Because of the complicated tissue in in vivo images, the overall improvement of NSVD is hard to
judge using only the results in Figure 15. We chose several different background regions to calculate
metrics and statistically assess significant improvement. Figure 16 shows the barplot of CR, CNR,
and sSNR of in vivo images obtained by different imaging methods. The results of the paired t-test
at a 5% significance level show the significant improvements in CR and CNR of CPWC+NSVD as
compared to CPWC and CPWC+SVD, while CR, CNR, gCNR, and sSNR improvements are also
significant between an adaptive weighting method with NSVD and without the use of NSVD.

Figure 16. Barplot of (a) CR, (b) CNR, (c) gCNR, (d) sSNR calculated for different method with the in
vivo datasets.

5. Discussion

Here, we proposed a neighborhood singular value decomposition (NSVD) filter and its
combination with adaptive weighting methods for CPWC to improve imaging performance
(noise reduction and speckle pattern preservation). The center-surround relation is useful since
the surrounding region has more correlations and gives more useful clues for an imaging point.
NSVD considers information of the neighbor region instead of the entire region so that it can more
accurately reserve effective signals and reduce noises. The main characteristic of the NSVD filter is
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that it uses a sliding rectangular window to slice the entire region into several continuous sub-regions,
then performs SVD for all sub-regions. The sliding window can be viewed as a smoothing filter with
a step of 1. Therefore, the NSVD filter actually has the advantages of the SVD filter and smoothing
filter. To verify the performance of the NSVD filter, lateral FWHM, CR, CNR, gCNR, and sSNR are
assessed in simulation and experiments. Our results indicate that the NSVD filter has little effect on the
lateral resolution. However, it does help to reduce noise and can improve the quality of speckle pattern
of images beamformed using adaptive weighting methods. Compared to CPWC and CPWC+SVD,
CPWC+NSVD can obtain higher CR and CNR. By combining with the NSVD filter, CF, GCF, and SLSC
all provide improved CR, CNR, gCNR, and sSNR.

The SVD filter can reduce sidelobes and maintain mainlobes due to the high coherence of mainlobe
signals and the high incoherence of sidelobe signals, while the number of eigenvalues, β, will affect
the performance of the SVD filter. As per Figure 4b–c, a smaller β leads to lower sidelobes but a
wider mainlobe, which is the same as with the NSVD filter. Therefore, the NSVD filter can hardly
reduce the mainlobe width, and thus produces no improvement in the lateral resolution. From both
simulated and experimental data, NSVD-based methods achieve a better image contrast than those
methods without the use of NSVD, since noises within cysts are further suppressed, as shown in
Figures 6, 12 and 15. It can be seen from the B-mode images that adaptive weighting methods influence
the speckle pattern. Images of CF, GCF, and SLSC show visible dark-region artifacts and low CNR
and sSNR compared to the CPWC image. Multiple studies have indicated that adaptive beamforming
methods alter the statistical distribution of the speckle and increase the variance of the background
speckle pattern [27,42], which can be reflected from the degraded sSNR. However, using the NSVD
filter in adaptive weighting methods, we can observe decreased dark-region artifacts and background
variance in B-mode images, since the NSVD filter has the characteristic of smoothing images. It is also
demonstrated that CF+NSVD, GCF+NSVD, and SLSC+NSVD provide higher CNR and sSNR than
the corresponding CF, GCF, and SLSC (Figures 7, 13 and 15). From all B-mode images, we see that
SLSC+NSVD (β = 3) suffers from few artifacts and provides outstanding performance in terms of CR,
CNR, gCNR, and sSNR. Therefore, among the methods of CF+NSVD, GCF+NSVD, and SLSC+NSVD,
we recommend SLSC+NSVD with β = 3 as the best overall method.

The width of the sliding window (i.e., the size of the neighbor region) and β both have an influence
on the imaging performances of the proposed methods. From Figure 17, NSVD-based methods achieve
stable CR, CNR, gCNR, and sSNR when the width of the sliding window is larger than 1.6 mm.
It should be noted that a wide window for NSVD will increase the computational load. As mentioned,
NSVD tends to utilize the neighbor region clues, thus it may not be reasonable to select a large sliding
window. From the simulation and experimental results, NSVD with both β = 2 and β = 3 can improve
the image quality in CR, CNR, gCNR, and sSNR. However, experimental images obtained by adaptive
weighting methods with NSVD (β = 2) show severe dark artifacts alongside point targets and in
the deep region. Figures 18 and 19 presents the effect of the β value on the image quality. It can be
seen that all values of these metrics increase as β decreases. Nevertheless, artifacts alongside point
targets become more visible with a small β. Generally, these artifacts can be reduced by increasing β.
Therefore, β = 3 is a suitable choice for the application of NSVD.
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Figure 17. Effect of the width of the sliding window on (a) CR, (b) CNR, (c) gCNR, and (d) sSNR in
simulated cyst target images.



Appl. Sci. 2020, 10, 5595 19 of 23

1 2 3 4

(a)

10

20

30

40

50

C
R

 (
d
B

)

CPWC+NSVD SLSC+NSVD 18mm-depth cyst 42mm-depth cyst

1 2 3 4

(b)

0.8

1

1.2

1.4

1.6

1.8

C
N

R

1 2 3 4

(c)

0.6

0.8

1

1.2

g
C

N
R

1 2 3 4

(d)

0.8

1

1.2

1.4

1.6

1.8

sS
N

R

Figure 18. Effect of the β value on (a) CR, (b) CNR, (c) gCNR, and (d) sSNR in simulated cyst target images.

Figure 19. Experimental images with point targets formed by SLSC+NSVD with β from 1 (a) to 6 (f).

To evaluate the impact of the number of plane-waves on the quality of compounded images
obtained by the proposed methods, we performed several tests using simulated cyst data and calculated
the CR, CNR, and sSNR. SLSC (β = 3) is used as a representation of adaptive weighting methods,
and β = 3 is used for SVD and NSVD. Figure 20 shows a comparison of different methods. CR
and CNR increase as the number of compounding angles increases, while sSNR is relatively stable.
When decreasing the number of compounded plane-waves, CPWC+NSVD can still provide higher CR
and CNR than CPWC and CPWC+SVD. It is also observed that the CPWC+NSVD with 25 plane-waves
can achieve comparable performance to CPWC with 75 plane-waves in CR, CNR, and sSNR. The SLSC
(β = 3) has a consistent variation, as shown in Figure 18. For both the near and deep regions,
SLSC+NSVD outperforms SLSC in CR, CNR, and sSNR.
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Figure 20. Effect of the number of compounding angles on (a) CR, (b) CNR, and (c) sSNR in simulated
cysts target images.

Since the simulated and experimental phantoms usually have omnidirectional scatters and
uniform propagation velocity, the influence of angle dependency on simulated and experimental
images would not be apparent. For human tissue imaging, the echo signals include coherent
backscattered signals from the focal plane and incoherent reverberation clutter signals [43]. Coherent
signals show high coherence between different transmit angles, while reverberation clutter signals
show high angle-dependency. This indicates that the influence of transmitting angles may be more
apparent in the in vivo image compared to simulated and experimental images. Therefore, we also
present the effect of plane-wave numbers on the image quality metrics of in vivo images in Figure 21.
Similar to the simulation case, 25 plane-waves are required for CPWC+NSVD to provide equivalent
CR, CNR, and sSNR compared to CPWC, with 75 plane-waves. With an equal number of plane-waves,
SLSC+NSVD shows improved image quality compared to SLSC in terms of CR, CNR, and sSNR.
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Figure 21. Effect of the number of compounding angles on (a) CR, (b) CNR, and (c) sSNR in in vivo images.

The SVD filter was performed for the entire image, while the NSVD is a pixel-based filter. For each
imaging point in an image, NSVD must perform an SVD filter for a neighbor region centered at
the imaging point. Therefore, the computational complexity of NSVD is higher compared to SVD.
We recorded the runtime of SVD (β = 3) and NSVD (β = 3) using simulated datasets on a PC with
an Intel(R) Core(TM) i7-7700HQ CPU at 2.8 GHz and RAM of 8 GB. The number of plane-waves was
25, and each image contained 3328× 387 pixels. SVD and NSVD required a runtime of 0.32 s and
149.62 s, respectively.

6. Conclusions

We propose an NSVD filter and study its application in adaptive beamforming for high-quality
CPWC images. The proposed CPWC+NSVD method is compared to CPWC and CPWC+SVD on
simulated and experimental datasets, while CF, GCF, and SLSC are presented to show the image
quality improvements when the NSVD filter is combined with adaptive weighting factors. We found
that CPWC+NSVD outperforms CPWC and CPWC+SVD in noise suppression, which provides higher
CR and CNR. With 25 plane-waves, CPWC+NSVD achieves similar CR, CNR, and sSNR compared
to CPWC with 75 plane-waves. When applied in combination with adaptive beamforming methods,
the NSVD filter helps to achieve a well-preserved speckle pattern and further reduce noise. We also
analyze the influences of the size of the sliding window (i.e., neighbor region) and β values on the
proposed methods. We recommend the size of neighbor region about 1 mm and β = 3 by taking
into consideration of image quality and computational complexity. Regarding the optimization of
computational efficiency, parallel computation can be adopted to improve imaging speed.
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