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Abstract: The concept that extra-skeletal functions of vitamin D impact on human health have
taken place since quite ago. Among all, the beneficial effects of vitamin D on immune regulation,
skeletal muscle function, and metabolism are undeniable. Adequate vitamin D levels maintain
the immune system and skeletal muscle metabolism integrity, promoting whole-body homeostasis;
hypovitaminosis D associates with the important decline of both tissues and promotes chronic
inflammation, which is recognized to underlie several disease developments. Growing evidence
shows that the immune system and skeletal muscle reciprocally dialogue, modulating each other’s
function. Within this crosstalk, vitamin D seems able to integrate and converge some biomolecular
signaling towards anti-inflammatory protective effects. Thus, vitamin D regulation appears even
more critical at the immune system-muscle signaling intersection, rather than at the single tissue
level, opening to wider/newer opportunities in clinical applications to improve health. This paper
aims to focus on the immune system-skeletal muscle interplay as a multifaceted target for vitamin D
in health and disease after recalling the main regulatory functions of vitamin D on those systems,
separately. Some myokines, particularly relevant within the immune system/skeletal muscle/vitamin
D networking, are discussed. Since vitamin D supplementation potentially offers the opportunity to
maintain health, comments on this issue, still under debate, are included.
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1. Introduction

Evidence on the importance of vitamin Ds’ extra-skeletal effects on human health is accumulating.
Vitamin D is an evolutionary, very old molecule produced in the skin by UV-B radiation-induced
photochemical/thermal conversion of the cholesterol precursor 7-dehydrocholesterol [1]. Two
enzymatic reactions in the liver (by 25-hydroxylase, CYP24A1) and in proximal tubule renal cells (by
1α-hydroxylase, CYP27B1), respectively, convert the inactive precursor first to 25-hydroxyvitamin D3
[25(OH)D], then to the biologically active molecule 1α,25-dihydroxyvitamin D3 [1,25(OH)2D]. Upon
the binding and interaction with the cognate nuclear vitamin D receptor (VDR), vitamin D can directly
regulate the expression or transrepression of several gene products [2]. As studies on the VDR have
progressed, vitamin D identity turned from an UV-B absorption product, likely useful for radiation
protection, to a multifaceted endocrine molecule playing different physiological effects, as it behaves in
higher species [3–5]. Historically, the classical action of vitamin D is the control of bone remodeling
and calcium homeostasis. The strong association between vitamin D poor status and bone disorders
or infections is well known. Indeed, more than one century ago, sun UV-B exposure or codfish liver
oil (rich in vitamin D content) were recommended as treatments to increase vitamin D level for the
protection against rickets or tuberculosis [6–8]. From the pioneering studies, and considering the
plethora of biological actions, pleiotropic effects of this hormone have emerged [9]. Indeed, a very large
number (approximately 250) of tissue and cell types express the VDR gene, suggesting a broad spectrum
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of physiological roles unrelated to calcium homeostasis, as shown, i.e., by investigations of gene
expression profiling [10]. Importantly, several observational studies evidenced a tight link between
low vitamin D and inflammatory status underlying the pathogenesis of some human pathologies,
i.e., immune and autoimmune diseases, metabolic disturbances, cardiovascular (CV), and muscular
diseases [11–16]. Among all, the deterioration of the immune system and skeletal muscle associated
with hypovitaminosis D seems to play a pivotal role in view of the heavy disease burden related to
those pathologies. Undeniably, well-functioning immune and muscular systems regulate whole-body
homeostasis, and largely contribute to physiological integrity and general good health. Conversely,
the dysregulation or loss of skeletal muscle function, i.e., naturally occurring in aging, associates
with immune system dysregulation and chronic inflammation, often promoting the development of
overlapping diseases [17–21]. In this scenario, growing evidence highlights the importance of the
dynamic dialogue existing between the immune system and skeletal muscle, almost behaving like an
“immune-muscle axis”. This paper aims to focus the attention on the immune system-skeletal muscle
bidirectional crosstalk as a target point of vitamin D in health and disease after providing a rapid
overview on the critical role of this hormone in the regulation of the immune response and muscular
function, separately. The function of some myokines particularly relevant to the network linking the
immune system/skeletal muscle/vitamin D signaling, is discussed. Finally, a comment on vitamin D
blood determination and supplementation is addressed, considering that these specific issues are hot
topics, currently still under debate [22].

2. Vitamin D Coordinates the Anti-Inflammatory Immune Response

VDR agonists are known since quite ago as fine-tuned modulators of the immune system. VDR
is present in the majority of immune cell types: T cells, including CD4+ and CD8+ subtypes, B
cells, neutrophils, and antigen-presenting cells (APCs), as macrophages and dendritic cells (DCs) [23],
and it is expressed at different levels, according to the physiological phase and immune signal
modulation. During the T cell activation, i.e., a broad VDR upregulation occurs, while the receptor is
expressed at very low levels in naïve T cells. Conversely, a significant VDR downregulation associates
with macrophages or DCs maturation from monocytes [24–27]. It is well known that vitamin D
actively participates to innate immune response building by promoting macrophage chemotactic
and phagocytotic activity. This hormone can finely drive immune-adaptive responses as well, by
targeting APCs, mainly DCs. Indeed, it counteracts DCs maturation/differentiation from monocytes,
inhibits the expression of both costimulatory molecules and the major histocompatibility complex
(MHC)-II-complexed antigen on the DC surface, consequently impairing antigen processing and
presentation to T cells [28]. In addition, vitamin D directly polarizes T cell-responses from T helper
(Th)1/Th17 inflammatory phenotypes to the Th2 tolerogenic subset. Notably, many effects of vitamin D
on immune response polarization are driven by a straight inhibition of pro-inflammatory Th1/Th17 type
cytokines, such as interleukin (IL)-2, IL-6, IL-23, IL-1, IL-8, IL-12, interferon (IFN)γ, and tumor necrosis
factor (TNF)α, IL-17, and IL-21; meanwhile, protolerogenic Th2 cytokine subset production, i.e., IL-10
and IL-4 is simultaneously enhanced [18,29–33]. The concurrent downregulation of inflammatory
cytokines and the upregulation of protolerogenic cytokines or neutraligands, as IL-10 and CCL22, with
anti-inflammatory activity, allows T regulatory (Treg) cell expansion [30,32,33]. Furthermore, VDR
agonists impair the inflammatory cascade in macrophages by targeting cyclooxygenase 2 (COX-2)
and inducible nitric oxide synthase (iNOS), leading, in turn, to a significant reduction in nitric oxide
(NO) and prostaglandin (PG)E2 content [29]. Vitamin D can suppress plasma-cell differentiation, B cell
proliferation/differentiation, and antibody (IgG and IgM) production as well [34,35]. Importantly, DCs,
macrophages, T cells, and B cells are able to synthesize vitamin D, which, in turn, downregulates the
local expression of IL-12 and IL-23 and costimulatory molecules (i.e., CD40, CD80, CD86); therefore,
modulating the immune response within the infiltrated target tissues as well [18,34]. Hence, an adequate
level of vitamin D warrants a correct function of the immune response, promotes protolerogenic
immune dominance, and protects from chronic inflammation, as shown in Figure 1.
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Figure 1. Vitamin D coordinates the anti-inflammatory immune response. Vitamin D exerts
anti-inflammatory effects promoting protolerogenic immune dominance polarization.

At variance, vitamin D insufficiency/deficiency is shown to promote altered immune response
and inflammation, which is shown to be associated with the development and maintenance of several
pathologic conditions.

3. Vitamin D Orchestrates Skeletal Muscle Integrity

Skeletal muscle is a well-known target organ of vitamin D. In situ studies in muscle tissues
documented the presence of VDR necessary for vitamin D uptake by myocytes, as confirmed in
VDR knockout (VDRKO) mice and in humans carrying VDR natural mutations [36–39]. As from
further evidence in humans and animals, vitamin D and VDR expression are necessary for muscle
development, myocyte differentiation, muscular volume, and function maintenance, and physical
performance [40–42]. Conversely, lower vitamin D levels and lower VDR expression associate with
muscular deterioration by promoting biomolecular alterations, such as increases in oxidative stress and
decline of antioxidant enzyme activity, which critically contribute to muscle atrophy [21]. Nevertheless,
consistent results showing beneficial effects on the muscular mass and power after vitamin D treatment
are missing and are still a matter of debate, as exhaustively summarized elsewhere [22]. In athletic and
nonathletic populations, an adequate vitamin D level seems to ameliorate physical performance, likely
due to hormone-induced enhancement of exercise capacity and cardiorespiratory fitness; in light of
this observation, it would be conceivable to control the vitamin D status whenever physical activity
is recommended as a therapeutic approach for CV risk prevention, primary or secondary to other
diseases [43–46]. There is evidence that vitamin D accumulates in skeletal muscle cells, which can take
up [25(OH)D] from the bloodstream through the vitamin D binding protein (DBP). Thus, it seems
that the skeletal muscle provides a “functional store” for this hormone, which could be released upon
a decrease in blood concentration. Of note, the ability of the skeletal muscle to maintain vitamin D
circulating levels seems to be enhanced by regular physical exercise [47]. Isolated human skeletal muscle
shows specific signals for the VDR protein with a different intensity expression before and after myotube
fusion, although VDR presence in human skeletal muscle was previously debated [48,49]. In tissues,
VDR is predominantly found in fast-twitch fibers, while slow muscles show lower receptor expression;
regardless of muscle fiber types, a direct association between vitamin D level and intramyonuclear
VDR concentration is documented [21]. Thus far, rather than hypovitaminosis D alone, the concomitant
decline of circulating vitamin D and muscular VDR seems to be determinant for intracellular signaling
damage and muscle function impairment. The very poor vitamin D/VDR status observed in age-related
sarcopenia—a pathologic condition characterized by muscle mass reduction and function loss—or in
myopathy associates with muscle decline and injury and very often contributes to the development
of overlapping diseases, including dysmetabolism and diabetes [48,50–52]. Interestingly, human
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skeletal muscle cells shortly exposed to a VDR agonist (in pulse/recovery assay) showed a rapid
functional activation of the insulin (I)-dependent intracellular cascade, lasting for 12 h even in the
absence of the ligand; this effect occurs simultaneously at glucose transporter type 4 (GLUT4) nuclear
translocation, induced by non-genomic actions [48]. Hence, adequate vitamin D levels/VDR expression
warrant muscular integrity and avoid musculoskeletal disorders in view of the multifaceted effects
converging onto muscle development, mass/volume/performance maintenance, function regulation
and metabolism control, therefore, largely contributing to general health homeostasis.

4. Skeletal Muscle-Immune System Interplay: A Two-Way Route

Nowadays, the link existing between skeletal muscle decline and impaired immune function
is undeniable. But while several studies in the literature state the role of the immune system onto
muscular function regulation, the concept of a reciprocal effect exerted by skeletal muscle onto immune
regulation is quite more recent.

4.1. Immune Regulation of Skeletal Muscle Function

Muscle tissue is known to be under the control of the immune system. Skeletal muscle, like
other tissues, retains a resident immune cell population, that could be further expanded by other
infiltrating immune cells in case of pathologic events, such as an insult or injury, endotoxemia,
inflammatory myopathies, obesity, diabetes. Indeed, the type and abundance of the resident immune
cell population undergo modifications, depending on the muscle conditions and needs. Different
types of immunocytes warrant skeletal muscle cell regenerative potential and homeostasis. I.e.,
immune cells following muscular tissue infiltration in response to micro- or macro injuries, eliminate
necrotic cells and produce the biomolecules required for satellite cell proliferation/differentiation
from the staminal niche [53]. It has been shown that CD4+FoxP3+ Treg type is the main T cell
subset infiltrating the damaged muscle. The interplay satellite-Treg seems to be dependent on
IL-33, present in the fibro/adipogenic progenitor-like cells within muscle tissue, and regulated by
the protein amphiregulin, a growth factor directly promoting staminal cell growth [54,55]. Damaged
Treg function, i.e., consequent to aging or diseases, promotes detrimental catabolic and inflammatory
effects within skeletal muscle [53]. Those defects are reversed either by IL-33 injection, which
rescued Treg function only in older mice, shifting the muscle transcriptome towards a reparative
signature—the younger mice show a physiological ability to recover—or by polyclonal Treg injection,
as documented by the significant improvement of disease activity in a rodent model of experimental
autoimmune myositis (EAM) [54,56–59]. As for other tissue, during acute muscular damages, monocyte
infiltration was associated with tissue TNFα positive gradient, following mast cell degranulation
and neutrophil accumulation in the muscle. Within muscle tissue, monocytes differentiate into
macrophages and polarize towards pro- or anti-inflammatory phenotypes. Indeed, in case of muscle
injury or pathogens, the first inflammatory response, driven by monocyte to macrophage conversion,
plays a pivotal role in activating pathogen clearance and muscle regeneration, orchestrating the
participation of several other cell types, including T cells, mesenchymal stem cells, muscle satellite cells,
myoblasts, and endothelial cells. Defects in macrophage activation/polarization, i.e., occurring during
senescence, seem responsible for skeletal muscle inflammation development, and maintenance, as
shown by studies in animals [60]. At variance, skeletal muscle inflammation, as observed in obesity, is
associated with an increased number of skeletal muscle resident macrophages and contributes to insulin
resistance (IR). A plethora of biomediators, mainly cytokines, chemokines, and membrane-bound
factors, actively take part in those processes and are regulated by fine-tuned communications and
interactions [61]. As an example, the drastic changes occurring in the immune system, consequent to
aging or immunosenescence—a condition remodeling the immune system towards immune efficacy
decline—significantly increase circulating pro-inflammatory molecules and markers, such as C protein
reactive (CPR), TNFα, IL-6, released by different types of senescent cells, such as T lymphocytes, natural
killer (NK), macrophages, neutrophils [62–64]. High blood levels of those mediators are considered a
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mirror of chronic inflammatory status, which, in turn, is highly harmful to skeletal muscle integrity.
As an example, patients affected by myositis show higher levels than healthy subjects of CXCL10, Th1
type chemokine known to trigger and maintain Th1-polarization within a vicious circle established
between blood and local muscle cells, as addressed later in this text [48]. It has been documented that
higher circulating pro-inflammatory cytokines likely act synergistically to trigger muscle wasting and
even tissue loss, albeit some data discrepancy is reported, probably due to study setting and type,
i.e., cross-sectional or longitudinal investigations, prospective cohort studies or metanalyses [64]. To
date, whereas it is recognized that skeletal muscle health is highly affected by immune system status,
evidence on skeletal muscle reciprocally influencing the immune system is more recent [65].

4.2. Skeletal Muscle Regulation of the Immune Function

For a long time, the immune system-muscle interplay has been thought to be unilateral. The
concept that the skeletal muscle can act as a fine regulator of immune function is relatively new and
enhances the complexity of this interplay. One of the first evidence comes from the observation that
subjects with compromised skeletal muscle show an impaired immune response to pathogens, as clearly
documented by the increased risk of infections in elderly subjects affected by sarcopenia. This condition,
in fact, is associated with a higher risk of developing nosocomial infections or community-acquired
pneumonia and mortality [66–68], besides disability and disability-related injuries (i.e., consequent
to falls). Another interesting example comes from the observation of the higher risk of infection in
healthy athletes undergoing skeletal muscle exhaustion for overtraining or muscular work overloading,
i.e., elite athletes experiencing regular intense endurance training, as well summarized in dedicated
reports [69–71]. Conversely, it has been suggested that balanced and well-scheduled physical activity
could help in maintaining a correct immune response [70]. The concept that the muscle and the
immune system could dialogue in a bidirectional way essentially relies on the renewed concept that
the skeletal muscle does not serve only as pure locomotor organ, dedicated exclusively to sustain
body and glucose homeostasis, but, remarkably, it behaves as a proper secretory organ with exquisite
immune-regulatory and anti-inflammatory functions [72]. Paradoxically, this renewed concept mostly
derives from studies aimed at verifying the muscular damage induced by the exercise itself, seen
as potentially harmful a tissue stress factor. In fact, it is undeniable that high intensity or aerobic
exercise can induce cellular and biomolecular modifications similar to a proper inflammatory response.
However, all those “inflammatory-like” changes are transiently activated, shortly tapered-off after
exercise, and occur in association with little immune cell infiltration [70]. In fact, regular exercising
and gradual exercise adaptation induce the skeletal muscle to produce and release a plethora of
immune-active factors with important beneficial regulatory functions, exerted both nearby and at a
distance, as addressed in the following paragraph [72]. Indeed, myocytes could control and regulate
immune function through cell-to-cell interactions (especially T cells-myocytes, as addressed above),
membrane surface modulatory molecules present on skeletal muscle fibers, and soluble factors, in
particular, cytokines, chemokines, and growth factors. Of note, skeletal muscle cells are, nowadays,
regarded as non-professional APCs, able to present antigens through major histocompatibility complex
(MHC) I and II, to produce immune biomolecules that, in turn, could shape the immune response. A
detailed description of those processes is exhaustively reported in the literature [61,65]. This review
would rather prefer to drive the attention on vitamin D interference at the signaling intersection
between the immune system and skeletal muscle-derived cytokines (myokines).

5. Myokines, Immune Regulation, and Vitamin D: Converging Cell Signaling

Remarkably, upon contraction, the skeletal muscle releases a plethora of regulatory factors, named
myokines, which are increasingly recognized to exert a fine-tuned control on biological age and
health status, and are even proposed as frailty biomarkers [73]. To date, the proteomic profiling
of the skeletal muscle secretome identified more than 300 myokines, potentially able to control
nearby or distant organ function in autocrine, paracrine, and endocrine fashion [72,74,75]. Out of
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all, some myokines, such as IL-6, IL-7, IL-15 seem to actively control and support immune system
function [61]. IL-15-dependent signaling is engaged in human neutrophil migration and phagocytosis
control, naïve T-cells survival, macrophage differentiation, and B cell proliferation [76]. Importantly,
IL-15 helps the clearance of viral pathogens and tumor cells by promoting the proliferation and
activation of NK cells and CD8+T cell homeostasis [77]. Accordingly, IL-15 knockout mice showed a
defective immune response to viral vaccinia [78]. During skeletal muscle function deterioration, i.e.,
consequent to aging, diseases, or inactivity, a significant IL-15 decline is found in association with the
immune defense decline and higher risk of infection [79]. IL-15 plays a pivotal role in macrophage
differentiation—the cytokine itself can induce a cascade from alpha hydroxylase CYP27b1 activation
necessary for [25(OH)D] conversion into bioactive [1,25(OH)2D], ending in VDR activation and the
induction of cathelicidin, an antimicrobial peptide largely engaged in first-line host defense [80,81].
A competent VDR is unquestionably required to mount a suitable immune response to intracellular
pathogens [82]; the addition of vitamin D during IL-15-induced differentiation of monocytes into
macrophages dose-dependently increased cathelicidin [83,84]. Interestingly, as from studies performed
in human placental trophoblasts, a sex-dependent dimorphism in vitamin D metabolism would
explain the major immune vulnerability to perinatal infections found in male fetuses and neonates vs.
female ones. In fact, testosterone seems to decrease cathelicidin gene expression through CYP27B1
inhibition [85], thus impairing male immune defense. It would be very interesting to ensure further
research in post-natal and adult life to investigate whether this mechanism might explain some
sex-dependent differences (too often neglected) observed in response to infections [86], including the
pandemic from the novel coronavirus disease 2019 (COVID-19) present at time of writing this text,
which is reported to affect prevalently men [87]. IL-7, mostly produced in the thymus, is expressed and
secreted by human skeletal muscle cells as well; it is classified as an exercise-regulated myokine, and
exercise can restore IL-7 decline induced by aging [79,88]. IL-7-dependent signaling is critical for thymic
development and function and thymic/extrathymic lymphocyte development and maturation (in
particular, γδ T cells), necessary in maintaining immune competence, particularly, in first-line immune
defense [89]. Lower circulating IL-7 is reported in conditions of impaired lymphopoiesis, as occurs in
elderly humans or in subjects positive for human immunodeficiency virus (HIV) [90–94]. Studies on
animals and humans include IL-7/vitamin D combination among the strategies to fight age-related
immunosenescence, vulnerability to infections, and susceptibility to inflammatory diseases [95,96].
Furthermore, dysregulation of IL-7 signaling seems to be engaged in several autoimmune inflammatory
processes [97]. In this context, vitamin D supplementation has been hypothesized as a tool to prevent
autoimmune reactions by targeting and reducing IL-7 defective signaling [98]. Concerning IL-6, this is
primarily known as a cytokine underlying inflammation-related diseases, including insulin resistance
(IR) development [99,100]. Conversely, IL-6 exercise-induced pulsatile release controls myocyte
metabolism, orchestrates myogenesis, and regulates inflammatory responses through the modulation
of the IL-1 receptor antagonist (IL-1ra) or IL-10, both known to retain anti-inflammatory properties [101].
In addition, IL-6 can promote an anti-inflammatory profile in macrophages (M2-like), depending on the
intracellular mediators involved in cytokine signaling, i.e., suppressor of cytokine signaling 3 (SOCS3)
ablation can shift IL-6 from pro-inflammatory to anti-inflammatory mode [102,103]. I-like effects have
been attributed to the myokine IL-6, since its transient increase in blood during muscular work—up to
100-fold, depending on exercise intensity/type—triggers hepatic glucose production and fat oxidation
to provide substrate availability in response to fuel demand [104–106]. Summarizing, muscle-derived
IL-6 could be identified as an energy level biosensor in conditions of energy shortage/demand, such
as during physical exercise. Thus, the “good” IL-6 released by skeletal muscle cells upon muscular
working shows important anti-inflammatory and metabolic properties, differently from the “bad”
inflammatory IL-6, originating from immune cells or adipocytes. Interestingly, VDR agonists enhance
the metabolic regulation exerted by the myokine IL-6, by improving glycemic control and I-sensitivity
at the cellular level. In human skeletal muscle cells, the addition of a VRD agonist can significantly
amplify protein release of IL-6 triggered by nutrient restriction, simultaneously promoting GLUT4



Appl. Sci. 2020, 10, 5592 7 of 15

trafficking in lipid rafts—cell membrane areas dedicated to glucose internalization and involved in I
sensitivity [48,107]. In vitamin D deficient trained male subjects, vitamin D intramuscular replacement
determines improvements in metabolic function in association with a significant IL-6 increase 1 h
post-resistance exercise [108], suggesting a recovery in skeletal muscle function after hormone supply.
It is a matter of fact that promoting a good metabolic balance helps avoid homeostasis perturbance and
inflammation. These beneficial effects of vitamin D combined with its other direct inhibitory actions
onto inflammatory mediators so that this hormone sometimes is used as an adjuvant in the therapeutic
approach to keep in control immune/inflammatory over-reactivity. For example, in rheumatoid arthritis
(RA), an autoimmune disease characterized by higher circulating pro-inflammatory IL-6 and low
vitamin D, the treatment with the IL-6 antibody tocilizumab retains higher efficacy in patients with
sufficient hormone levels. Albeit the mechanism of function is still unclear, it has been hypothesized
that vitamin D and IL-6 might act synergistically [109]. Table 1 summarizes the effects of vitamin D on
IL-15-, IL7-, IL6-induced immune regulation.

Table 1. Vitamin D potentiates myokine-induced immune regulation.

Myokines Immune Regulation Vitamin D

IL-15

-macrophage differentiation
-NK cell activation

-CD8+T cell homeostasis
-neutrophils migration
-naïve T-cells survival

-B cell proliferation

-enhancement of
IL-15-induced monocyte to macrophage

conversion

-enhancement of anti-microbial activity

IL-7

-thymic/extrathymic lymphocyte (γδ T cells)
development and maturation

-immune competence
-first-line immune defense

-enhancement of IL-7 immune competence
for protection against infections

-reduction of IL-7 defective signaling

IL-6
-IL-1ra and IL-10 modulation
-M2-like macrophage profile

-anti-inflammatory/metabolic balance

-enhancement of anti-IL-6 antibody action
(tocilizumab)

-improvement of IL-6-dependent
metabolic/anti-inflammatory control

The main immune-regulatory actions of skeletal muscle-derived IL-15, IL-7, and IL-6 are summarized together
with the vitamin D effects on myokine-induced immune regulation. NK, natural killer; IL, interleukin; IL-1ra, IL-1
receptor antagonist.

Patients suffering from autoimmune idiopathic inflammatory myopathy (IM) show a marked
decrease of VDR expression in muscle tissue, likely due to their poor vitamin D status, higher
lipidemic/resistin profile, and, consequently, the potentially increased risk of developing overlapping
metabolic diseases. These patients retain higher serum levels of CXCL10, a chemokine known to
initiate/amplify Th1-polarization through a self-detrimental inflammatory loop established between
systemic and local cell/tissue counterparts, as previously addressed [48]. Interestingly, a VDR
agonist could reduce CXCL10 release by human skeletal muscle cells by 40% challenged by Th1
type inflammation, could prevent NF-kB activation downstream TNFα [110], and, importantly, can
counteract class II HLA expression, necessary for immunogenic autoantigen presentation to CD4+T
cells [111]. Considering that non-hypercalcemic VDR agonists could reduce the release of CXCL10 and
other Th1/Th17 cytokines from CD4+T, shifting the immune profile towards Th2 subtypes [112,113], it
is conceivable to envisage VDR agonists as immunoregulating therapeutic tools for the resolution of
inflammation in myopathy, aging, or disease-related muscle decline [107,114–116]. However, although
the supplementation/replacement of vitamin D status from deficient to normal potentially represents
an optimal intervention to maintain human health, it is far from being conclusive, as addressed in the
following paragraph.



Appl. Sci. 2020, 10, 5592 8 of 15

6. Vitamin D Determination and Supplementation: Still Open Issues

The main source of vitamin D is sunlight exposition, followed by food intake. Aliments in nature,
i.e., some vegetables and few animal-based foods, contain small vitamin D quantity, except for fish
liver oils and fatty fish (salmon, mackerel, tuna) [117]; thus, fortified food has been introduced to
maintain adequate hormone levels [118]. Since hypovitaminosis D seems diffused worldwide and
tightly connected with poor general health status and higher mortality, vitamin D supplementation is
considered a desirable intervention strategy for preventing non-skeletal chronic diseases [119–122].
However, vitamin D supplementation is a challenge;–the first question is related to the assessment of
the levels to clearly define insufficiency/deficiency of vitamin D. Currently, values of [25(OH)D] (the
more stable analyte in the blood, chosen for tbe level determination) ranging from 50–125 nmol/L seem
sufficient to preserve overall health [123,124], 30 nmol/L is considered the threshold for hypovitaminosis
D [22], while serum concentrations of more than 125 nmol/L are considered potentially toxic, due to
side effects [125]. A further complication to accurately assess circulating vitamin D is represented by the
high variability among available assays, methodologies, and analysis laboratories [126,127]. Besides the
inter-variability, the intra-variability due to a lot of variation in reagents within a given methodology,
contributes to the resulting discrepancy. Remarkably, the lack of standardized 25(OH)D data is a major
contributor to the confusion existing on vitamin D status determination, consequently reflected in the
uncertainty regarding the hormone supplementation approach [128], as exhaustively reported in the
Consensus statement from the 2nd International Conference on Controversies in Vitamin D, recently
published [22]. Furthermore, it is a matter of fact that life stage (infancy, adulthood, old age), lifestyle
(indoor/outdoor, sedentary or training subjects, athletes), health status (health/disease, disease type),
and physiological conditions (sex, fertile life, ethnicity) impact on the optimal serum concentrations of
vitamin D, similarly to other hormone-related conditions [129–131]. In this scenario, the inconsistency
between data from basic science, observational studies, and clinical trials is not surprising, albeit the
pivotal role of vitamin D in health maintenance is clearly documented by both epidemiological and
biomolecular studies. So far, well designed clinical trials taking into account both different populations
and group-related specific variables should be strongly encouraged to clarify the causal relationships
between vitamin D and non-skeletal human physiological and pathological conditions.

7. Conclusions

It is recognized that whole-body homeostasis and general health rely on the well-preserved
function of the immune system and skeletal muscle, in association with vitamin D adequate levels.
Indeed, the integrity of both these tissues widely contributes to and warrants a balanced immune
dominance towards an anti-inflammatory status. Avoiding inflammation is considered the first step
to counteract the development of a general pathologic status, as inflammatory load is known to be
the common factor underlying different pathologies, regardless if disease type, all together often
referred to as “diseasome”. Accordingly, in the presence of muscle wasting and immune system
dysfunction, progressive inflammatory and pathologic conditions develop and associate with poor
outcomes, i.e., in metabolic and CV diseases, cancer, autoimmune diseases, just to mention some,
and the list of the major diseases connected with skeletal muscle depletion and immune function
deterioration is rapidly updated, as studies progress and clarify the underlying mechanisms. The
concept that the immune system and skeletal muscle can reciprocally interact, modulating each other’s
function is quite recent; indeed, the interplay between those tissues has been long thought to be a
one-way route, with the muscle being a “passive” target of the immune system. The renewed concept
on skeletal muscle, nowadays considered a proper immune active secretory organ, led to reconsider the
immune-muscle interplay as a dynamic two-way route. Within this integrated bidirectional dialogue,
vitamin D, until now, is undeniably recognized as a fine regulator of the immune system and muscle
development/maintenance, separately, which emerges to exhibit further multifaceted effects during
the lifespan, interacting with different biological processes and converging intracellular signaling to
protective actions, as reported above in this text and depicted in Figure 2.
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In fact, depending on the microenvironment, vitamin D can behave as an exquisite inhibitory
molecule, i.e., against inflammation, or a promoter/enhancer of homeostasis, i.e., in the regulation of
metabolic processes. Hence, within the immune-muscle axis, adequate vitamin D levels can contribute
to the careful orchestration of many biomolecular processes. At variance, hypovitaminosis D critically
associates with immune system and skeletal muscle deterioration, inflammation, higher risk of disease
development, and higher mortality. Whereas it is conceivable to include vitamin D supplementation
in the therapeutic approaches to restore muscular and immune system function and counteract
inflammation, still, clinical trials do not echo the promising results obtained by several epidemiological
and molecular studies on this issue. This discrepancy likely depends on differences and bias in trial
conditions. Further specific well-designed studies aimed to restrict the high variability are, therefore,
encouraged. In particular, it is highly desirable and challenging that novel investigations would take
into account the three-sided networking system connecting vitamin D effects, immune regulation, and
skeletal muscle function as a multifaceted “holistic” system determinant for human health.
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