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Abstract: In this paper, a novel approach that uses a deep learning technique is proposed to detect and
identify a variety of image operations. First, we propose the spatial domain-based nonlinear residual
(SDNR) feature extraction method by constructing residual values from locally supported filters in
the spatial domain. By applying minimum and maximum operators, diversity and nonlinearity are
introduced; moreover, this construction brings nonsymmetry to the distribution of SDNR samples.
Then, we propose applying a deep learning technique to the extracted SDNR features to detect
and classify a variety of image operations. Many experiments have been conducted to verify the
performance of the proposed approach, and the results indicate that the proposed method performs
well in detecting and identifying the various common image postprocessing operations. Furthermore,
comparisons between the proposed approach and the existing methods show the superiority of the
proposed approach.

Keywords: image postprocessing operations; spatial domain-based nonlinear residuals; deep
learning technique

1. Introduction

Currently, forgeries of digital images are widely propagated, and it is expected that tampered
images will be used more and more in society, including in social media and even scientific discovery.
This will cause a serious impact on political and social stability. At the same time, while postprocessing
techniques and operations for use with digital images are developing rapidly, the imperceptible
modification of digital images is becoming easier. Therefore, ever-increasing attention is being paid to
digital image forensics, including detection of forgery and postprocessing operations.

To date, many approaches regarding image forensics have been proposed, such as tracking the
history of JPEG compression [1–4]; revealing the image operations, including contrast enhancement [5,6],
resampling [7–10], and median filtering [11–14]; detecting the image splicing operations [15,16],
revealing frequency domain filtering [17]; and identifying image forgery [18,19]. However, most of
these state-of-the-art studies have simply considered specific operations. On the other hand, some of
the approaches only perform binary classification. In [1–4], the authors proposed methods of detecting
history of JPEG compression and revealing artifacts caused by image coding. The methods were based
on blocks. In [6], Stamm and Liu proposed detecting the occurrence of digital image modification
according to contrast enhancement operations in a blind way. In [7], Popescu and Farid proposed
detecting the resampling traces and interpolations based on a derivative operator and the radon
transformation. In [20], Rao and Ni proposed detecting forgeries in digital images using a deep
learning method. In [21], two-class 3D-convolutional neural network (3D-CNN) classifiers were
employed for video copy detection. However, in most cases, the features show low feasibility and
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reasonability, especially when the processing types of the detected images are unknown. For example,
if we fed a median-filtered image into a classifier to detect the histogram equalization, it could be
classified as a histogram-equalized image or an original image. Either result would be wrong because
the feature employed in this approach is specially designed for detecting histogram equalization.
Similarly, the accuracy of identifying other image operations will drop significantly if we apply the
same classifier. Therefore, an effective forensics approach that can identify various image operations
simultaneously is essential and of great importance.

Recently, in [22], a method based on a spatial rich model (SRM) feature was proposed. The SRM
was proposed to be used as a steganalysis feature by Fridrich et al. [23]. Multiple nonlinear and
linear filters were employed to generate residuals, and then the high-order features were extracted
and merged into the SRM features. Experiments were conducted to select the multiple sets of filters,
and they can be used under different models to extract the residual information from the image. In [22],
Li et al. proposed reducing the dimensionality of the SRM features. Afterward, they applied an
ensemble classifier [24] for classification of the various common image postprocessing operations.
Experimental results showed that this scheme performed better than most of the related state-of-the-art
works; however, there was an obvious downtrend when the size of the observed images was decreased.
Furthermore, features in this work were manually designed, and thus they might not be effective
enough for identifying the various image operations because of the high complexity. The ensemble
classifier [24] is a multiclassifier ensemble method that utilizes the complementary relationships
of the classifiers to improve the generalization ability effectively, and it can be used to work with
high-dimensional features with significantly lower training complexity. However, to choose the final
classifier, most base classifiers are abandoned, and the chosen classifier is the classifier that has the
minimum testing error; moreover, the classification ability of a single classifier is weak, and this could
affect the detection ability of the final classifier. In our previous work [25], we employed the SRM and
deep learning technology for image processing detection and identification, and the results indicated
the great potential of applying deep learning technology.

Currently, as a hot research field in machine learning, the deep learning technique has been
widely used in multimedia security applications. In this paper, we propose applying the deep
learning framework to the field of image forensics for the detection and classification of various
operations. As part of the development of deep learning technology, the backpropagation neural
network (BPNN) [26] classification method is a nonparametric classification method that is based on
traditional statistical theory. It does not need to assume or estimate the probability distribution function
of the target. Considering its good adaptability and complex mapping ability, this method can obtain
good classification accuracy in pattern classification. However, considering the problem of the BPNN
being fully connected in every layer, which leads to difficulty in training, the BPNN has been gradually
replaced by the CNN [27]. The CNN proposes the concept of weight sharing, which increases the
learning efficiency by greatly reducing the number of free parameters being learned. Thus far, a couple
of neural network models have been proposed. LeNet-5 is a classic CNN that defines the classic neural
network structure. AlexNet [28] extends the structure of LeNet-5, and it has made great progress in the
field of image classification. However, AlexNet uses two layers of 4096 neurons to connect to each
other, which makes the network easy to overfit and difficult to train.
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To avoid the abovementioned shortcomings and to effectively identify a variety of image operations,
in this paper we propose a novel approach by extending our previous work [25]. In our previous
work [25], we proposed this framework to identify the various image operations, and the experimental
results showed a very good potential of the proposed framework in this application. In that work,
the submodel of the spatial rich model (SRM) [23], sub_SRM, was applied for feature extraction.
On that basis, in this work, we propose the spatial domain-based nonlinear residual (SDNR) feature
extraction method by constructing residual values from locally supported filters in the spatial domain.
By applying minimum and maximum operators, diversity and nonlinearity are introduced; moreover,
this construction brings nonsymmetry to the distribution of SDNR samples. Then, similarly, we apply a
deep learning method of a five-layer CNN to the extracted SDNR features to produce the detection and
identification results. Many experiments are conducted to evaluate the performance of the improved
approach, and the results show that the improved work can identify more image postprocessing
operations when compared with the previous work [25]; this previous work allowed seven operation
types to be identified, while this improved method allowed more than twice this number to be identified.
Furthermore, the results of using BPNN and AlexNet are tested to show the superiority of the proposed
method. The remainder of this paper is arranged as follows: Section 2 presents the proposed approach
for identification of image operations, Section 2.1 explains the principle of the proposed SDNR method,
and Section 2.2 introduces the employed CNN classifier in detail. Then, Section 3 demonstrates the
experiments and discussions. Finally, Section 4 concludes this paper.

2. Proposed Approach for Identification of Image Operations

The design of the feature set plays an important part in classification problems. Fortunately, we can
borrow some powerful features from other research fields, such as image classification, computer
vision, and image steganalysis. An example is the modern universal steganalytic features, such as
SRM [23], which consists of statistics derived from a number of image residuals. In such features,
different high-pass filters are used to suppress the image content in different ways, and thus the
obtained features can represent different local properties. In this paper, we propose the SDNR by
constructing residual values from locally supported filters in the spatial domain. Then, to make use
of the extracted SDNR features, we propose applying a deep learning method of a five-layer CNN
to the extracted SDNR feature to produce the detection and classification results. The framework
of the proposed approach is shown in Figure 1. In Figure 1, it can be seen that there are two major
steps: feature extraction with the proposed SDNR method, and feature learning with a five-layer
CNN model. In the proposed approach, firstly, we apply the variety of postprocessing operations,
including spatial enhancement, spatial filtering, frequency filtering, and lossy compression, to the
original images. In this way, the original images are trained and the corresponding postprocessed
images are thus produced. Then, the SDNR is employed to the generated images to extract the feature
sets. Next, we employ a five-layer CNN model to extract the CNN features from the extracted SDNR
feature sets. A patch-sized sliding window is used to scan the extracted SDNR feature sets, and feature
fusion is adopted to aggregate the CNN features and thus to obtain the discriminated feature from the
image. Afterward, the softmax classifier of the CNN is trained for the detection and identification of
the various operations.
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2.1. Spatial Domain-Based Nonlinear Residual (SDNR) Feature

The SDNR is constructed from locally supported linear filters in the spatial domain. By applying
minimum and maximum operators, the diversity and nonlinearity are thus introduced. In this
way, the construction brings nonsymmetry to the distribution of SDNR samples. In Equation (1),
the calculation of residual value is expressed, where I and f are the host image and filter, respectively.
The corresponding residual of the pixel is calculated by multiplying and summing the corresponding
pixel and its adjacent pixels by the filter coefficients. Considering the fact that for edge pixels of the
image, the pixel value might not be adequately changed in accordance with the filter coefficients,
mirror symmetric filling operations are conducted on the images before applying the filtering operations.
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That means the images are filled adjacently by border pixel values. After this operation, the size of the
residual map does not change.

Ri, j = I ⊗ f =
M∑

a=−M

N∑
b=−N

f (a, b) · I(i− a, j− b) (1)

where R denotes the residual map, which is calculated from the host image I and the filter f ; ⊗ denotes
the convolution process; and A and B indicate the size of the host image. M = bA/2c and N = bB/2c.

Figure 2 graphically shows the structure of the proposed SDNR, where the symbol ‘

1 

 

⚫ ’ indicates
the central pixel Xi, j, and the other two symbols denote the neighboring pixels and at the same time
indicate the two employed filters. The SDNR can thus be formed with Equation (2). SDNR(min)

i, j = min
{
Xi, j−1 + Xi, j+1 − 2Xi, j, Xi−1, j+1 + Xi+1, j−1 − 2Xi, j

}
SDNR(max)

i, j = max
{
Xi−1, j + Xi+1, j − 2Xi, j, Xi−1, j−1 + Xi+1, j+1 − 2Xi, j

} (2)
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Figure 2. Definition of the proposed spatial domain-based nonlinear residual (SDNR).

To curb the residual’s dynamic range and make the residual more sensitive to the processing
changes at the spatial discontinuities in the image, especially at the edges and textures, the quantization
and truncation process are employed in the residual map SDNR{(min),(max)} using Equation (3).

SNDR_TQ(min)
i, j = truncT

SNDR(min)
i, j

q + 1
2


SNDR_TQ(max)

i, j = truncT

SNDR(max)
i, j

q + 1
2

 (3)

where the calculated SNDR_TQ{(min),(max)}means the corresponding truncated and quantized residual
map; q denotes the quantization step (in our method, we set q to be the residual order, which means the
absolute value of the central position coefficient of the filter); bc indicates the round down operation;
and truncT() denotes the truncation function, which is defined in Equation (4).

truncT(a) =
{

a, if (|a| < T)
T, if (|a| ≥ T)

(4)
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where a is the input to this truncation function. a =

SNDR(min)
i, j

q + 1
2

 for residual map SDNR(min) and

a =

SNDR(max)
i, j

q + 1
2

 for residual map SDNR(max). Meanwhile, T denotes the truncation coefficient;

in this paper, we set T = 2, which is the same value used in [22].
Next, the horizontal co-occurrence CO{(min),(max)}

d is constructed from the four consecutive residual
samples generated from Equation (3) by using Equation (5), and it is therefore a four-dimensional array.

CO(min)
d = 1

Z

∣∣∣∣∣∣∣∣
 SNDR_TQ(min)

i, j , SNDR_TQ(min)
i, j+1 ,

SNDR_TQ(min)
i, j+2 , SNDR_TQ(min)

i, j+3


∣∣∣∣∣∣∣∣

CO(max)
d = 1

Z

∣∣∣∣∣∣∣∣
 SNDR_TQ(max)

i, j , SNDR_TQ(max)
i, j+1 ,

SNDR_TQ(max)
i, j+2 , SNDR_TQ(max)

i, j+3


∣∣∣∣∣∣∣∣

(5)

where d = (d1, d2, d3, d4) ∈ {−T,−T + 1, . . . , T − 1, T}4, with T = 2 and (2T + 1)4 = 625, and therefore,
each array has 625 elements, which gives the size of each CO; Z denotes the normalization factor, and it
is used to satisfy Equation (6). ∑

d=(d1,d2,d3,d4)CO{(min),(max)}
d = 1 (6)

Considering the fact that the symmetries can increase the statistical robustness of the model while
decreasing its dimensionality, we use the sign symmetry (which means that taking a negative of an
image does not change its statistical properties) and the directional symmetry of the images. It can
be easily seen from Figure 2 that the SDNR is directionally symmetric while it is not sign symmetric,
and we propose employing Property I to achieve sign symmetry.

Property I: For any finite set ϕ ⊂ R, min(ϕ) = −max(−ϕ)

COd = CO(min)
d + CO(max)

−d (7)

COd = COd + CO←

d
(8)

where −d = (−d1,−d2,−d3,−d4) and
←

d = (d4, d3, d2, d1); CO(min) and CO(max) denote the “min” and
“max” co-occurrence matrices in Equation (6), calculated from the same residual.

With the symmetrization process in Equations (7) and (8), which turns the “min” co-occurrence
CO(min) and “max” co-occurrence CO(max) into a single matrix, the dimensionality is thus reduced
from 2× 625 to 1× 325. Therefore, the dimensionality of our proposed feature SDNR is 1× 325.

2.2. Employed Convolutional Neural Network Model for Classification

With the extracted SDNR feature, we next propose applying the five-layer CNN, as shown in
Figure 3, to detect and identify a variety of image operations. The applied five-layer CNN includes
two convolutional layers, two pooling layers, and one fully connected layer, followed by one softmax
classifier. Compared with the conventional methods, which take pixel values as input, the proposed
method improves the generalization ability and accelerates the network convergence by replacing the
pixel values with extracted features. To match the feature size of 1× 325 as explained above, we set
the size of the input layer to be 20 × 20 and employ a padding operation to the extracted features.
The convolutional layers aim to extract the feature maps, and each of their neurons is connected with
the neighboring neuron in its former layer. As shown in Figure 3, our employed CNN model involves
two convolutional layers and two pooling layers. Regarding the convolutional layers, convolutional
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layer 1 has six kernels with a receptive field size of 5 × 5, and each feature map is 16 × 16 in size;
while convolutional layer 2 has twelve kernels with a size of 5× 5, and each feature map has a size of
4× 4. The subsampling layer, which is an important component of the CNN model, is put between the
two convolutional layers. Through reducing the connections between the two convolutional layers,
the subsampling layer helps to reduce the calculation complexity. Regarding the pooling layers, both of
these two layers have one kernel with a size of 2× 2 that resamples the input spatially and reduces
75% of the activations. The down pooling methods that are frequently used are mean pooling and
max pooling.
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In addition to the two convolutional layers and the two subsampling layers described above,
the employed CNN model involves one full connection layer that is connected with each neuron in
the former layer and is followed by a softmax classifier. The full connection layer transforms the
feature map extracted from the former layer into a vector with a size of 1× 48 and feeds this vector
into the softmax classifier to perform identification. Softmax regression is the promotion of a logistic
regression model in problems with multiple classifications. The estimation of probability values is
usually achieved through the hypothetical function hθ(x) in Equation (9). Given x as the input and y
as the class label, we assume that the output of the function is a k-dimensional vector, which means
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that there are k numbers for the value of the class label y, and the sum of the vector factors in the
representation of the k estimated probability values is 1.

hθ(xi) =


p
(
y(i) = 1

∣∣∣xi;θ
)

p
(
y(i) = 2

∣∣∣xi;θ
)

...
p
(
y(i) = k

∣∣∣xi;θ
)

 =
1∑ k

j=1eθ
τ
j x(i)


eθ

τ
1x(i)

eθ
τ
2x(i)

...

eθ
τ
k x(i)


(9)

where θ1,θ2 · · · ,θk ∈ <
n+1; 1∑ k

j=1e
θτj x(i)

represents the normalization of the probability distribution.

Usually, the softmax regression algorithm can be solved by minimizing the cost function; however,
it has been proven that there is more than one minimization solution of the cost function of a softmax
regression algorithm. To solve the multisolution phenomenon, we propose employing the method
that adds a weight attenuation term into the cost function. The cost function after adding the weight
attenuation term is shown in Equation (10).

J(θ) = −
1
m

∑ m
i=1

∑
k
j=1I

{
y(i) = j

}
log

eθ
τ
1x(i)∑ k

j=1eθ
τ
j x(i)

 eθ
τ
1x(i)∑ k

I=1eθ
τ
I x(i)

+
γ

2

∑
k
i=1

∑
m
j=0θ

2
i j (10)

where I{•} is the indicative function. When y(i) = j is true, I
{
y(i) = j

}
= 1; otherwise, I

{
y(i) = j

}
= 0.

In addition, γ denotes the weight attenuation term, and γ > 0.
To minimize the cost function J(θ), the iterative gradient descent method is used to guarantee

that it converges to the optimum solution over the whole situation. The derivative function of J(θ) is
given in Equation (11).

By minimizing the J(θ), the softmax regression model can be achieved.

∇θ j J(θ) = −
1
m

∑
m
i=1

[
x(i)

(
I
{
y(i) = j

}
− p

(
y(i) = j

∣∣∣x(i);θ))]+ γθ j (11)

3. Experiments and Discussions

In the experiments conducted to test the performance of the proposed strategy, we randomly
selected a huge number of raw images from the dataset Boss Base v1.0 [29]. For each of the original
images, 15 counterparts were created by applying the image processing operations with random
parameters from the predefined range. Table 1 lists the 15 image operations that were tested and the
predefined range of the parameters of the corresponding operations, including spatial enhancement,
e.g., gamma correction (GC) and histogram equalization (HE); spatial filtering, e.g., mean filtering
(MeanF) and Wiener filtering (WF); geometric operation, e.g., scaling (Sca) and rotation (Rot); lossy
compression, e.g., JPEG and JPEG2000 (JP2); and frequency filtering, e.g., high-pass filtering (HPF) and
homomorphic filtering (HF). All of these images were then divided into two categories randomly: half
of them were utilized for training and the other half for testing.
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Table 1. Tested operation types and the corresponding parameter settings.

Operation Categories Operation Type Parameter Setting

Spatial enhancement
Gamma Correction (GC) γ: 1.0, 1.6, 1.8, 2.0

Histogram Equalization (HE) n/a

Unsharp Masking Sharpening (UM) σ: 0.5–1.5
τ: 0.5–1.5

Spatial filtering

Mean Filtering (MeanF) Window sizes: 3 × 3, 5 × 5, 7 × 7

Gaussian Filtering (GF) Window sizes: 3 × 3, 5 × 5, 7 × 7
σ: 0.8–1.6

Median Filtering (MedF) Windows size: 3 × 3, 5 × 5, 7 × 7

Wiener Filtering (WF) Windows size: 3 × 3, 5 × 5, 7 × 7

Scaling Scaling (Sca) Down-sampling: 40%, 50%, 70%

Rotation Rotation (Rot) Angle: 30◦, 35◦, 40◦, 45◦

Lossy compression JPEG Quality factor: 80–90

JPEG2000 (JP2) Compression ratio: 4.0–6.0

Frequency filtering

Low-Pass Filtering (LPF) Cutoff frequency: 80 Hz

High-Pass Filtering (HPF) Cutoff frequency: 30 Hz

Band-Stop Filtering (BF) Stop band: 35–65 Hz

Homomorphic Filtering (HF) n/a

3.1. Parameter Settings

In the employed CNN architecture, the number of epochs has a large effect on the accuracy of the
identification and the computational time. Therefore, in order for the proposed strategy to achieve
good performance, it is important to determine how to set the appropriate parameters. Figure 4 shows
the relationship between the accuracy of detection and the number of epochs (shown on the left) and
the relationship between the computational time and the number of epochs (shown on the right).
The results clearly indicate that either the detection accuracy or the computational expense increases
with the number of epochs. To achieve a balance between the computational expense and the detection
accuracy, we set the number of iterations to be 600, i.e., num_epochs = 600.
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As explained in Section 2.2, the pooling methods that are frequently used are mean pooling and
max pooling. According to the respective results with mean pooling and max pooling, as shown in
Figure 4, the max pooling always obtains a better result than the mean pooling. Therefore, we set the
pooling type as max pooling in the following experiments. In addition to the number of epochs and
the pooling type, the kernel size plays an important role in our method as well. By setting the number
of iterations to 600, we tested the detection accuracies with different kernel sizes, 3× 3, 5× 5, and 7× 7,
and the detection results are 92.2%, 95.9%, and 91.7%, respectively. Therefore, we set the kernel size to
5× 5 to achieve the highest accuracy.

3.2. Detection and Classification of Various Image Postprocessing Operations

In this section, we present the results of our evaluation of the performance of the proposed method,
which was conducted by measuring the accuracy of the detection and classification of the various image
operations. Table 2 shows the accuracy of the detection of 15 operations using different classifiers. We applied
the Ensemble classifier [24], the backpropagation neural network (BPNN) [26], the AlexNet [28], and the
proposed CNN as classifiers within the proposed framework to calculate the corresponding detection
accuracy. Additionally, to show the superiority of the proposed SDNR feature, we applied the subtractive
pixel adjacency matrix (SPAM) [30] for comparison. It is observed that when applying the SPAM feature,
the detection accuracy is 96.5% on average when using the Ensemble classifier, 94% on average when
using the BPNN, 96.8% on average when using AlexNet, and 97.7% on average when using the employed
CNN, while the corresponding detection accuracies are 97.1%, 95.3%, 97.5%, and 98.9%, respectively,
when applying the different classifiers with the proposed SDNR. The comparison results demonstrate
that the proposed SDNR feature outperforms the SPAM feature when using different classifiers. For the
classifiers, the performance of the employed CNN is shown to be better than that of the other tested
classifiers. In Table 2, the last row shows the average detection results with different features and classifiers
and the results are highlighted in italic. The results demonstrate that the proposed approach performs very
well in detecting the various image postprocessing operations.

Table 2. Detection of various image postprocessing operations using different features with different
classifiers (%).

Classifier Ensemble
Classifier [24]

BPNN
[26]

AlexNet
[28] Employed CNN

Feature SPAM
[30]

Proposed
SDNR

SPAM
[30]

Proposed
SDNR

SPAM
[30]

Proposed
SDNR

SPAM
[30]

Proposed
SDNR

GC 96.2 96.4 92.1 93.1 95.3 96.7 96.5 97.6

HE 98.3 98.1 94.3 98.9 97.2 96.4 98.4 99.5

UM 97.2 98.3 96.4 96.2 98.6 98.7 97.6 99.3

MeanF 96.5 97.5 96.2 97.6 97.3 97.5 98.5 98.8

MedF 97.9 98.1 97.6 98.8 97.6 97.1 97.3 99.6

WF 98.8 99.6 96.2 97.1 98.5 96.5 97.1 97.6

GF 99.2 98.7 97.3 98.3 98.3 98.8 99 99.8

SCA 91.3 93.4 90.3 89.1 92.2 97.5 95.3 99.5

ROT 97.2 96.3 94.5 95.6 97.6 98.6 98.3 98.9

JPEG 95.3 96 96.8 97.4 98.5 99.2 97.8 98.2

JP2 97.4 97.8 97.6 96.9 98.7 98.9 98.1 98.3

LPF 96.3 97.3 97.3 97.2 97.8 98.8 98.7 99.6

HPF 98.2 98.1 96.3 98.3 96.3 97.8 97.6 99.7

BF 93.3 95.3 84.2 86.7 94.6 95.6 97.2 98.2

HF 94.2 95.6 82.3 88.6 93.2 94.3 98 99

Average 96.5 97.1 94 95.3 96.8 97.5 97.7 98.9



Appl. Sci. 2020, 10, 5582 11 of 17

In addition to detecting whether or not the images have been processed, this approach can
also identify a variety of operations. Tables 3–5 show the confusion matrices of the multiclass
identification results using the proposed SDNR feature paired with BPNN [26], AlexNet [28], and the
employed CNN classifier. In Tables 3–5, the symbol ‘*’ indicates that the predicted percentage is
under 0.1%, which means that the classification can be ignored. The results in the diagonal show
the multiclass classification results and are highlighted in bold for easy following. According to the
results, the identification accuracy is calculated as 91.3% on average with the proposed SDNR features
and BPNN [26], 92.5% on average with the proposed SDNR features and AlexNet [28], and 95.9% on
average with the proposed SDNR features and the employed CNN classifier. These very good results
indicate the effectiveness of the proposed method.

Furthermore, in addition to the comparison of detection of various image postprocessing
operations, the comparison of classification of various image postprocessing operations using different
features with different classifiers is shown in Table 6. Similar to the results shown in Table 3, to show
the superiority of the proposed SDNR feature, we applied the SPAM [30] for comparison, and the
BPNN [26], the AlexNet [28], and the employed CNN classifier were respectively applied within
the proposed framework to calculate the corresponding classification accuracy. It is observed that
when applying SPAM feature, the classification accuracy is 89.7% on average when using BPNN,
90.6% on average when using AlexNet, and 85% on average when using the employed CNN, while
the corresponding detection accuracies are 88.89%, 92.2%, and 95.9%, respectively, when applying
the different classifiers with the proposed SDNR. The results demonstrate that the proposed method
performs the best for classifying a variety of image postprocessing operations.
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Table 3. Identification of various image postprocessing operations using the proposed SDNR features and BPNN [26] (%).

Actual/Predicted Orig GC HE UM Rot Sca MeanF MedF WF GF JPEG JP2 LPF HPF HF BF

Orig 90.3 0.4 * * * * * * * * * 1.6 3.3 1.6 * *

GC 2 82.9 2.4 1.4 0.8 * * 0.4 * * 0.8 0.8 * * * *

HE * 0.2 99.3 0.3 * * * 0.1 0.2 * * * * * * *

UM 2.1 1.4 0.3 93.3 * * * 0.4 0.3 * * 1 * * * *

Rot 2.2 1.4 * * 94.1 0.5 * * * * * * 2 * 2 *

Sca 30.5 6.5 * 0.4 * 60.2 * * * * 7.7 * 0.5 3 * 3

MeanF 0.3 * * * * * 98.8 * * * * * 0 * * *

MedF * * 0.8 * 0.4 0.4 * 97.7 * * * 0.2 * * * 0.2

WF * * * * * * * * 99.2 * * * * * * *

GF 1 * * * * 0.4 * * * 99.9 2 * * * * *

JPEG * 0.4 * 0.4 * 0.4 * 0.4 0.4 * 92.5 0.8 0.5 0.2 2 1

JP2 1 0.4 * * * 0.4 * 0.4 * * 2.4 87.4 * 0.2 * *

LPF 0.3 * * * * * * * * * * * 98.6 * * *

HPF 0.2 0.1 * * * * * 0.1 * 0.2 * * 0.1 98.4 0.1 *

HF 20.7 * * * * 3.2 0.5 0.7 2.5 0.3 * 2.5 * * 70.73 *

BF 30.5 10.7 4.2 1 5 * * 0.5 * * * 3.5 * * 1.6 59.4

Note: symbol ‘*’ indicates that the predicted percentage is under 0.1%.
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Table 4. Identification of various image postprocessing operations using the proposed SDNR features and AlexNet [28] (%).

Actual/Predicted Orig GC HE UM Rot Sca MeanF MedF WF GF JPEG JP2 LPF HPF HF BF

Orig 87.5 0.4 * * * * * * * * * 2.4 * 1.6 * *

GC 2 92.9 2.4 1.4 0.8 * * 0.4 * * 0.8 0.8 * * * *

HE * 0.2 98.7 0.3 * * * 0.1 0.2 * * * * * * *

UM 3.2 1.4 0.3 93.5 * * * 0.4 0.3 * * 1 * * * *

Rot 1.5 1.4 * * 92.2 0.5 * * * * * * 2 * 2 *

Sca 1.5 * * 0.4 * 87.8 * * * * * * 0.5 3 * 3

MeanF 0.3 * * * * * 99.7 * * * * * 0 * * *

MedF * * 0.8 * 0.4 0.4 * 97.1 * * * 0.2 * * * 0.2

WF * * * * * * * * 99.6 * * * * * * *

GF 1 * * * * 0.4 * * * 94.8 2 * * * * *

JPEG * 0.4 * 0.4 * 0.4 * 0.4 0.4 * 88.5 0.8 0.5 0.2 2 1

JP2 1 0.4 * * * 0.4 * 0.4 * * 2.4 89.7 * 0.2 * *

LPF 0.3 * * * * * * * * * * * 97.5 * * *

HPF 0.2 0.1 * * * * * 0.1 * 0.2 * * 0.1 98.2 0.1 *

HF 0.5 * * * * 1 0.5 0.7 2.5 0.3 * * * * 82.2 *

BF 1.1 0.8 * 1 * * * 0.5 * * * * * * 1.6 81.1

Note: symbol ‘*’ indicates that the predicted percentage is under 0.1%.
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Table 5. Identification of various image postprocessing operations using the proposed SDNR features and the employed CNN classifier (%).

Actual/Predicted Orig GC HE UM Rot Sca MeanF MedF WF GF JPEG JP2 LPF HPF HF BF

Orig 94.6 0.4 * * * * * * * * * 2.4 * 1.6 * *

GC 2 93.7 2.4 1.4 0.8 * * 0.4 * * 0.8 0.8 * * * *

HE * 0.2 99.1 0.3 * * * 0.1 0.2 * * * * * * *

UM 3.2 1.4 0.3 93.2 * * * 0.4 0.3 * * 1 * * * *

Rot 1.5 1.4 * * 93.3 0.5 * * * * * * 2 * 2 *

Sca 1.5 * * 0.4 * 92.8 * * * * * * 0.5 3 * 3

MeanF 0.3 * * * * * 99.7 * * * * * 0 * * *

MedF * * 0.8 * 0.4 0.4 * 98 * * * 0.2 * * * 0.2

WF * * * * * * * * 100 * * * * * * *

GF 1 * * * * 0.4 * * * 96.6 2 * * * * *

JPEG * 0.4 * 0.4 * 0.4 * 0.4 0.4 * 92.5 0.8 0.5 0.2 2 1

JP2 1 0.4 * * * 0.4 * 0.4 * * 2.4 92.5 * 0.2 * *

LPF 0.3 * * * * * * * * * * * 99.7 * * *

HPF 0.2 0.1 * * * * * 0.1 * 0.2 * * 0.1 99.2 0.1 *

HF 0.5 * * * * 1 0.5 0.7 2.5 0.3 * * * * 95.3 *

BF 1.1 0.8 * 1 * * * 0.5 * * * * * * 1.6 94.6

Note: symbol ‘*’ indicates that the predicted percentage is under 0.1%.
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Table 6. Comparison of identification of image postprocessing operations using different features with
different classifiers (%).

Classifier BPNN [26] AlexNet [28] The Employed CNN
Classifier

Feature SPAM
[30]

Proposed
SDNR

SPAM
[30]

Proposed
SDNR

SPAM
[30]

Proposed
SDNR

ORI 81.1% 90.3% 82.3% 87.5% 91.4% 94.6%

GC 82.1% 82.9% 91.3% 92.9% 87.5% 93.7%

HE 94.3% 99.3% 93.2% 98.7% 94.4% 99.1%

UM 96.4% 93.3% 91.6% 93.5% 69.1% 93.2%

MeanF 96.2% 97.6% 97.3% 99.7% 89.5% 95.0%

MedF 97.6% 98.8% 94.6% 97.1% 77.6% 98.7%

WF 96.2% 99.7% 96.5% 99.6% 92.1% 100%

GF 97.3% 99.2% 93.3% 94.8% 91.3% 99.4%

SCA 90.3% 60.2% 70.2% 87.8% 90.1% 92.8%

ROT 94.5% 94.1% 92.6% 92.2% 92.3% 93.3%

JPEG 96.8% 92.5% 91.5% 88.5% 80.4% 92.5%

JP2 97.6% 87.4% 89.7% 89.7% 89.9& 92.5%

LPF 97.3% 98.6% 97.8% 97.5% 80.6% 99.7%

HPF 82.3% 98.3% 86.3% 98.2% 89.9% 99.2%

HF 64.2% 59.4% 84.6% 82.2% 61.1% 95.3%

BF 71.3% 70.7% 88.2% 81.1% 88.1% 94.6%

Average 89.7% 88.89% 90.6% 92.2% 85% 95.9%

4. Conclusions

In summary, we have proposed the SDNR feature extraction method, which is constructed from
locally supported linear filters in the spatial domain. By applying minimum and maximum operators,
diversity and nonlinearity are thus introduced, and the construction thus brings nonsymmetry to the
distribution of the extracted SDNR features. By applying the proposed SDNR method to the original
images and the corresponding images after processing, we can extract the feature sets accordingly.
This improves the acceleration of the network convergence. Then, by scanning the extracted SDNR
feature sets with a patch-sized sliding window, we have proposed employing the five-layer CNN,
and we trained a softmax classifier accordingly to detect and identify a variety of image postprocessing
operations. The main contributions of this paper are summarized as follows: (1) We have considered
the problems of both binary classification and multiclass identification in our study and solved both of
them with the proposed approach. We have conducted extensive experiments on up to 15 various
image postprocessing operations to evaluate the proposed approach, and the results indicate the
effectiveness of our proposed method. (2) We have extracted SDNR features instead of the pixel values
as the input of our deep learning model; in this way, the generalization ability can be enhanced and the
network convergence can be promoted. (3) We have proposed employing the five-layer CNN as the
classifier, compared with the conventional methods that use a classifier such as SVM and an ensemble
classifier, to achieve higher detection accuracy. The experimental results demonstrate that the proposed
approach performs well in classifying and identifying of image postprocessing operations.
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