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Abstract: Passenger demand for railway transportation rapidly increases in peak periods, and the
transport capacity for existing trains is not sufficient. Railway companies usually adopt the strategy
of adding additional trains in peak periods to meet the higher passenger demand. Designing a
good operational plan for additional trains becomes a challenge for operators, though. A new
optimization approach for designing an operational plan for additional trains is proposed in this
paper. The number of trains, the operational plan, the stop plan, and the timetable for each train can
be considered simultaneously in the new optimization approach, which will make it easier to design
an operational plan for additional trains. A multi-objective nonlinear model with three objectives of
minimizing total running distance, dwelling time, and unsatisfied passengers is proposed. Big-M is
introduced to transform the nonlinear model into a linear model. The solver CPLEX is used to
solve the transformed linear model and obtain the optimal operational plan. Small-scale numerical
experiments are implemented to show the effectiveness of the optimization approach. The large-scale
case of the Beijing-Shanghai railway corridor is studied to demonstrate that the optimization approach
can be applied to real-word and large-scale situations.

Keywords: adding additional trains; operational plan; passenger demand; high-speed railway
corridors; multi-objective nonlinear programming model

1. Introduction

1.1. Background and Motivation

Railways have become a more and more important mode of transportation in China because
of advantages like safety, green potential, convenience, etc. Passenger demand is growing year by
year. The number of passengers in China was 3.38 billion in 2018, an increase of 9.4% compared to
2017 [1]. For example, in just the 40 days of the spring festival, the number of passengers taking trains
to travel was 0.38 billion, which was a great challenge for railway companies. These special periods are
called peak periods, and others are called off-peak periods. Transport capacity is not always enough
to meet passenger demand in peak periods. The purpose of this research is to look for solutions to
the shortage of transport capacity in peak periods. Railway companies usually adopt the strategy
of adding additional trains to deal with the shortage of transport capacity in peak periods and meet
passenger demand. These trains added in peak periods are called additional trains; the trains in
off-peak periods are called existing trains. Thus, a railway company must design an operational plan
for additional trains in advance. There are some important indexes for evaluating the operational plan,
e.g., the satisfaction of passenger demand and the operational cost. The purpose of this study is to
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design an efficient operational plan for additional trains that maximizes the satisfaction of passenger
demand and minimizes operating costs.

In China, tickets are booked 30 days in advance. Passengers must board trains according to the
information on the tickets. Tickets show the train number, price, departure time, and stations for
getting on and off. Thus, the number of additional trains, operational zone, stop plan, and timetable for
each additional train must be scheduled in advance. The number of additional trains is a complicated
issue for a railway company. Too many additional trains will increase the operating costs, but too
few additional trains cannot meet passenger demand. The operational zone specifies the origin and
terminal stations for the additional train. The stop plan determines whether the train stops at the
station in the operational zone. The timetable determines the departure and arrival times of each train
for each station in its operational zone. Passenger distribution determines the number of passengers
for each origin-destination (OD) pair on each train. The number of additional trains, operational
zones, stop plans, timetables, and passenger distribution are the key elements of the operational plan
for additional trains and are related to each other. Thus, the numbers of trains, operational zones,
stop plans, timetables, and the passenger demand for additional trains are jointly optimized in this
paper. Specifically, the purpose of this paper is to design an operational plan, including the number of
trains, operational zones, stop plans, timetables, and passenger demand, for additional trains in peak
periods. In this paper, the operational zones, timetables, and stop plans for existing trains are fixed,
and the operation of additional trains cannot disturb the operation of existing trains. Passengers are
accustomed to the timetables and stop plans of existing trains. Frequent changes in operational zones,
timetables, and stop plans for existing trains cause inconvenience for passengers. The railway corridor
is a part of the railway system, and a change in the operational plan for existing trains can disturb the
whole railway system. However, passenger distribution for existing trains is reoptimized to make full
use of the capacity of existing trains, which is not fully utilized in the off-peak period.

1.2. Literature Review

In this section, some studies related to the study are surveyed. The following three related
problems are discussed in this section: the problem of adding additional trains, line planning problems
(LPPs), and train timetable problems (TTPs). A practical problem solved in our work is that of adding
additional trains. Meanwhile, we aim to design the operation zone, the number of trains, and timetable
etc. Two related classic problems, i.e., LPP and TTP, are discussed in this section.

The problem of adding trains is an emerging problem that some researchers have begun to address.
Researchers [2–4] studied the problem of adding additional trains. Burdett and Kozan [2] considered
the problem of adding additional trains as a job shop problem and presented a constructive algorithm
and simulated annealing approach to solve the model. Cacchiani and Caprara [3] studied the problem
of inserting additional freight trains into the timetables of existing passenger trains. Gao et al. [4]
focused on the problem of adding passenger trains on a high-speed railway corridor, wherein the
timetables of existing trains can be modified. Although researchers focused on the problem of adding
additional trains, there are still several issues that have not been considered in the literature. First,
the number of additional trains was not considered. In most cases of adding trains, more additional
trains are better, but researchers have not determined the ideal number of additional trains to save on
operating costs and meet passenger demand. Second, the timetables of additional trains, operational
zone, stop plan, etc. have not been considered in the literature. Third, passenger demands were ignored
in the models of the above studies. The purpose of adding additional trains is to meet passenger or
freight demand, so passenger demand is a very important element of the problem of adding additional
trains. Liu et al. [5] presented a bi-objective integer programming model to solve the problem of
adding additional trains in a high-speed railway corridor in peak periods. The number of trains,
stop plans, train types, and timetables for additional trains were designated in the model, in which
passenger demand was also considered. However, several problems have not been considered in the
above studies. OD passenger demands have not been considered. Although passenger demand was
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discussed by Liu et al. [5], the number of passengers who get on and off was not tackled. Obviously,
OD passenger demand is more accurate than a macroscopic view. The other issue is that the operational
zone was not considered. These gaps are addressed herein.

The problem of adding trains falls into the scope of railway operations. One related problem
is the LPP. LPP involves designing a line system such that travel demand is satisfied and certain
objectives are met [6]. Most researchers studied LPP, determining the operational zone and number
of trains for each zone without consideration of a timetable [7–12]. Researchers studying TTP focus
on the timetables of trains. TTP is very popular in the area of railway operations, and numerous
researchers have given it attention [13–19]. Recently, passenger demand has become an important
factor considered by researchers on TTP [20–24]. Some researchers on LPP paid attention to passenger
demand [25–28]. Specifically, Sperry and Nie [25] introduced a passenger flow assignment product
to determine the stop plan under a given operational zone and the frequency for each. A similar
passenger flow assignment method is introduced by Qi et al. [27] and Qi et al. [28]. The passenger
flow assignment method is referred to in this paper to cope with passenger distribution when adding
additional trains. Whether LLP or TTP, most researchers have considered either the operational zone
and the number of trains or the timetable. This paper represents a combination of those approaches
and jointly optimizes the operational zones, number of trains, and timetables for additional trains.

1.3. Contribution

The main contributions of this paper are summarized as follows:
First, we propose a new optimization method for designing an operational plan for additional

trains. In the optimization method, the number of trains, operational zone, stop plan, timetable,
and passenger distribution are jointly optimized. Additional trains are added occasionally based
on passenger demand in peak periods, and the decision making about them is made in a short
time horizon.

Second, a multi-objective nonlinear programming model for designing an operational plan is
proposed for additional trains on the high-speed railway corridor. There are three objectives in the
model, wherein the operational cost and passenger service are considered simultaneously. Adding
additional trains aims to meet the passenger demand in peak periods. Thus, minimizing unsatisfied
passenger demand is one of the objectives. However, the operating cost is also a concern for a
railway company. In the model, running distances of trains are selected as an index of operating
costs. Minimizing dwelling time is one of the objectives of the optimization model. In addition,
we introduced the big-M method to transform the nonlinear model into the linear model, which is
easier to solve with a CPLEX solver.

Third, a set of small-scale numerical experiments are implemented on a small railway corridor,
including six stations, and a large-scale case on the Beijing-Shanghai railway corridor is also studied.
The results of these numerical experiments demonstrate the good performance of the proposed
optimization method.

The remainder of this paper is organized as follows: In Section 2, we provide a detailed problem
description. In Section 3, we present the assumptions and a multi-objective integer programming
model for designing an operational plan for additional trains. Two techniques for solving the model are
introduced in Section 4. In Section 5, we conduct a series of small-scale experiments and a large-scale
experiment to evaluate the performance of the proposed approach. In Section 6, the conclusions of this
study are presented, and future work is discussed.

2. Problem Description

In this section, a detailed description of the problem and assumptions is given. A railway corridor
consists of a set of stations and segments that connect two consecutive stations. Figure 1 shows a
double-track railway corridor from station 1 to station S. The segments between two consecutive
stations are indexed as {1 , 2 , . . . , N}. Since the study environment is a high-speed railway corridor,
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which is always double-track, we only consider our problem on the outbound-track railway corridor.
For the outbound railway corridor, station 1 is the starting station of the railway corridor and station S
is the ending station. The starting station of the railway corridor can only be selected as the origin
station of an outbound trip, and the ending station can only be selected as the terminal station of a
trip. There are two sets of trains (K1 ∪K2) in this problem, wherein K1 is the set of existing trains and
K2 is the set of additional trains. In peak periods, existing trains cannot meet the passenger demand.
As shown in Figure 1, the blue trains represent existing trains in the off-peak period. To provide more
transport capacity, we will insert some additional trains—the red trains in Figure 1.
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Our goal is to design an operational plan for additional trains. The operational plan includes
the number of trains, operational zones, stop plans, timetables, and passenger distribution for trains.
The reason why all plans for the number of trains, operational zones, stop plans, timetables, and passenger
distribution are jointly optimized is that these plans are closely connected. In the following, we will
explain the connection between them.

A small example is shown in Figure 2 to illustrate the impact of the operational zone and stop
plans on the distribution of passenger demand. As shown in Figure 2, a railway corridor with five
stations and four segments is considered. In Figure 2, there are five lines with arrows to represent
the operational plans for trains. The arrows indicate the running direction of the train. The endpoint
of a line represents the origin station or terminal station. A solid dot in the line denotes the train
stopping and a hollow dot denotes a non-stopping train. The black line represents the operational plan
for the existing train. The red lines represent four potential operational plans for the additional train.
We assume only one existing train runs on this corridor, and the operational zone is from station 1 to
station 5 in this example. The capacity of each train is N. The passenger demand for each OD pair
is listed in Table 1. In Table 1, N denotes that N passengers want to travel from their origin station
to the terminal station. Obviously, the best stopping plan for the existing train is to stop at station 3.
N passengers take the existing train to travel from station 1 to station 3, then another N passengers
take it to travel from station 3 to station 5. However, the existing train still cannot meet the passenger
demand, so adding an additional train is necessary. Four potential plans for the additional train are
considered, as shown in Figure 2. We compare these different plans for the additional train. Several
indexes of these plans are summarized in Table 2. We set the operating cost of the existing trains to E,
because the operational zone and stop plan for the existing train are fixed. In this example, we assume
that the operating cost of additional trains is related to the number of segments of their operational
zone and the number of stops. The operational cost of each segment is c, and the operational cost of
each stop is s. First, we compare plan 1 and plan 2, which demonstrate the impact of the stop plan on
the distribution of passenger demand and operating cost. As shown in Figure 2, plan 1 and plan 2 have
the same operational zone from station 1 to station 4 but different stop plans. In Plan 1, the additional
train stops at station 2 and station 3, while the train in plan 2 just stops at station 2 and skips station
3. We assume that when passengers have two choices of ways to reach their destination, we can
distribute the passengers equally to each train. If we adopt plan 1, passengers going from station 1 to
station 3 have two choices, which means that N/2 passengers take existing trains to station 3 and N/2
passengers take the additional trains in plan 1 to station 3. Meanwhile, only N/2 passengers going from
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station 1 to station 2 can board the train at station 1. Then, passengers from station 1 to station 2 get off

at station 2, and the rest of the capacity of the additional train at station 2 is N/2, which results in only
N/2 passengers boarding the train to go from station 2 to station 4. In consequence, N/2 passengers
going from station 2 to station 4 cannot get to their destination, and N/2 seats are empty in the existing
train from station 1 to station 3. Passengers from station 1 to station 3 cannot take the additional train
in plan 2 because the train does not stop at station 3. N passengers take the additional train in plan
2 from station 1 to station 2, then N passengers take this train from station 3 to station 5 to get their
destination. It is known from Table 2 that, although the operating cost of plan 1 is higher than that
of plan 2, the number of unsatisfied passengers is greater. Another comparison between plan 3 and
plan 4 is implemented. We know from Figure 2 that the operational zone in plan 3 is longer than
that in plan 4. However, there are N/2 passengers going from station 1 to station 2 who can board
the additional train in plan 3 because passengers going from station 1 to station 3 can reach their
destination. Meanwhile, there are N passengers who can take the additional train from station 1 to
station 2 in plan 2. As listed in Table 2, although the operational zone in plan 3 covers more segments
and stations, both the unstratified demand and the operating cost are higher than in plan 4. The two
comparisons show that more stops and a longer operational zone do not always load more passengers
and may cause more empty seats and higher operating costs. This example illustrates the necessity
of the optimization of the operational zone and stop plan for additional trains, which can improve
passenger satisfaction, cost-saving, and utilization of transport capacity.
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Table 1. Passenger demand for each origin-destination (OD) pair.

Origin/Terminal Station 1 2 3 4 5

1 N N
2 N
3 N

Table 2. The comparison of plan 1, plan 2, plan 3, and plan 4.

Operation Zone Operational Cost Loading Passengers Unsatisfied Passenger Demand

Off-peak E 2N 2N

Plan 1 E + 3c + 2s 3N N

Plan 2 E + 3c + s 4N 0

Plan 3 E + 2c + s 2.5N 0.5N

Plan 4 E + c 3N N
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However, we cannot ignore the importance of optimizing timetables for additional trains.
The timetable has a great impact on the operational zone, stop plan, and passenger distribution.
The departure and arrival times of additional trains must maintain the time interval between additional
and existing trains; we call that time interval headway because the added train must avoid conflicting
with existing trains and additional trains. In a finite time horizon, the number of trains that can be
added is finite because of headway.

3. Formulation

In this section, we formulate a mathematical model to design the operational plan for additional
trains in peak periods. The parameters in the model are listed in Table 3, and decision variables are
listed in Table 4. First, some assumptions are listed to simplify the problem.

Table 3. Parameters.

Notions Definitions

S = {1, 2, · · · , |S|} Set of stations
Ts The set of traveling time of segments.

K1 = {1, 2, · · · , |K1|} The set of existing trains
K2 = {1, 2, · · · , |K2|} The set of expected additional trains

[1, T] The time window of additional train arrives at its
terminal station

i, j The index of station, i, j ∈ S.
(i, j) The index of OD pair, i, j ∈ S.

(i, i + 1) The index of segment on the railway corridor,
i ∈ S/{|S|}

ti,i+1 The traveling time of train on the segment (i, i + 1)
Li The distance from station i to station 1
k The index of train, k ∈ K1 ∪K2

hmin The minimum headway of trains
dmin The minimum dwelling time
dmax The maximum dwelling time

De
i,k

The departure time of existing train k at station
i, k ∈ K1, s ∈ S.

Ae
i,k

The arrival time of existing train k at station
i, k ∈ K1, s ∈ S.

zeI
ki

Indicator for station i ∈ S as origin station of existing
train k ∈ K1 for:= 1 if train k select station i as its

origin station, =0 otherwise.

zeT
ki

Indicator for station i ∈ S as terminal station for
existing train k ∈ K1:= 1 if train k select station i as its

origin station, =0 otherwise.

ye
ki

Indicator for existing train k ∈ K1 stopping at station
i ∈ S:= 1 if train k stop at station i, =0 otherwise.

Ck The maximum loading capacity of train k

ymin
The required minimum number of boarding and

alighting passengers for train stopping.
Qi j Passenger demand for OD pair (i, j)

Qmax
The total outbound passenger demand along the

whole railway corridor
NK1 The number of existing trains
Ne

K2
The expected number of additional trains

NK2 The number of additional trains
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Table 4. Decision variables.

Variables Definitions

xk
selection indicator for adding additional train k ∈ K2:= 1 if

train k is added in peak period, = 0 otherwise;

µi
k f

selection indicator for the departure order of train k ∈ K2 and
train f ∈ K1 ∪K2 at station i.=1 if train k depart from station

earlier than train f before, =0 otherwise.

yki
selection indicator for stop plan for additional train k ∈ K2 for

station i ∈ S:=1 if train k stop at station i, = 0 otherwise.

zI
ki

selection indicator for origin station for additional train k ∈ K2
for station i ∈ S/{|S|}:= 1 if train k select train i ∈ S/{S} as its

origin station, = 0 otherwise.

zT
ki

selection indicator for terminal station additional train k ∈ K2
for station i ∈ i ∈ S/{1}:= 1 if train k select train i as its

terminal station, = 0 otherwise;

Da
ki

departure time of train k at station i, where k ∈ K2 and
i ∈ S/{|S|}.

Aa
ki

arrival time of train k at station i, where k ∈ K2 and
i ∈ SI ∪ S/{1}

qk
i j

the number of passengers take additional train k from station i
to station j, k ∈ K2, i, j ∈ S.

ρ
′k
i j

the number of passengers take existing train k from station i to
station j in peak period, k ∈ K1, i, j ∈ S.

1. The traveling time of each segment is fixed.
2. The capacity of the station and the rolling stocks is unlimited.
3. Dwelling time at the origin station and terminal station of the trip for each train is not considered.
4. Thedifferencebetweenthe infrastructureofstations isnotconsidered. In therealword, the infrastructure

in some small-scale stations is so poor that they are not suitable to serve as an origin station or
terminal station. In this paper, we assume that all stations are qualified to serve as an origin
station or terminal station for additional trains.

3.1. Decision Variables

There are two types of decision variables in the model—binary variable and integer variable.
The first binary variable xk is used to determine whether additional train k is added to the operational
plan in the peak period. We use the binary variable µi

k f to determine the departure order of trains,
which indicates the overtaking of trains at stations. Binary variable yki indicates the stop plan for the
train. Another two binary variables, zI

ki and zT
ki, are used to determine the operational zone for train k.

Da
ki and Da

ki are two integer variables to determine the timetables for additional trains. qk
i j is the integer

variable to indicate the distribution of passenger demand of each OD pair along the railway corridor.
It is worth mentioning that the value of decision variable xk determines the number of additional

trains. Ne
K2

denotes the number of expected additional trains, and we set the value of Ne
K2

according to
Equation (1).

∑
i′≤i, j>i

Qi′ j /Ck represents the required number of trains to meet the passenger demand

along segment (i, i + 1). The maximum required number among all segments is the expected additional
trains. However, not all of the additional trains can be added into the operational plan because it is
subject to limited transport resources in peak periods. The value of decision variable xk is equal to 1,
which means train k is added to the operational plan. Otherwise, train k is canceled. Thus, the number
of additional trains NK2 in the operational plan is equal to the value of

∑
k∈K2

xk, as in Equation (2).

Ne
K2

= maxi∈S


∑

i′≤i, j>i

Qi′ j /Ck −NK1

 (1)
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NK2 =
∑
k∈K2

xk (2)

3.2. Formulations of Constraints

3.2.1. Constraints of Operational Zone

Not all added additional trains need to travel across the whole rail corridor. Designing the
operational zone requires selecting the origin station and terminal station for additional trains.
Formulating some constraints to design the appropriate operational zones for the added trains makes
sense. First, it is known that only one origin station and terminal station exists during an additional
train’s one trip. Constraint (3) is formulated to restrict that, as follows, i.e.,∑

i∈S

zI
ki =

∑
i∈S

zT
ki = xk k ∈ K2. (3) (3)

Since the index of terminal station must be after the origin station, we formulate Constraint (4):
if station i is selected as the origin station for train k, all the stations before i cannot be selected as the
terminal station for train k. Similarly, Constraint (5) indicates that station i is selected as the terminal
station for train k, which means that all stations after i cannot be the origin station for train k.∑

i′∈S,i′≤i

zT
ki′ ∗ zI

ki ≤ 0 k ∈ K2 , i ∈ S. (4)

∑
i′∈S,i′≥i

zI
ki′ ∗ zT

ki ≤ 0 k ∈ K2 , i ∈ S. (5)

For an outbound trip, the starting station of the railway corridor is not set as the terminal station
and the ending station of the railway corridor cannot be the origin station. Thus, we formulate
Constraint (6) as follows, i.e., ∑

k∈K2

zI
k|S| =

∑
k∈K2

zT
k1 = 0. (6)

3.2.2. Constraints of Timetable

Constraints of timetabling are set to restrict the departure and arrival time of additional trains.
If train k is not added in the peak period, the departure and arrival time for additional train k at all
stations are zeros. The constraints are as follows:∑

i∈S

Da
k,i +

∑
i∈S

Aa
k,i

(1− xk) = 0 k ∈ K2. (7)

For an added train k in the peak period, the variables of the departure and arrival time out of
the trains’ operational zone are meaningless. Constraint (8) and Constraint (9) are the restrictions of
departure and arrival time variables outside of the operational zone. If station i is the origin station
of train k, the departure and arrival time before station i are set to zero. Furthermore, if station i is
determined as the terminal station, we also assume that the departure and arrival time after station i
are zero. ∑

i′∈S,i′<i

(
Da

ki′ + Aa
ki′

)(
1− zI

ki

)
= 0 k ∈ K2, i ∈ S. (8)

∑
j∈S, j>i

(
Da

kj + Aa
kj

)(
1− zT

ki

)
= 0 k ∈ K2, i ∈ S. (9)
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In this model, we do not consider the dwelling time at the origin station and terminal station,
and we assume that the departure time is equal to the arrival time at trains’ origin station and terminal
station, as in Constraints (10) and (11).

(Da
ki −Aa

ki)z
I
ki = 0 k ∈ K2, i ∈ S. (10)

(Da
ki −Aa

ki)z
T
ki = 0 k ∈ K2, i ∈ S. (11)

It is assumed that the traveling time of each segment is fixed. Thus, the arrival time of train k at
station i + 1 is the sum of the departure time of train k and the traveling time of the segment (i, i + 1)
(Constraint (12)). Note that station i + 1 must be within the operational zone. Thus, we introduce two
terms

∑
i∈S,i′≤i zI

ki′ and
∑

i∈S,i′>i zT
ki′ to make sure that Constraint (12) makes sense, with only station i + 1

within the operational zone.
∑

i∈S,i′≤i zI
ki′ and

∑
i∈S,i′>i zT

ki′ both being equal to 1 means that the origin
station of train k is station i or before station i, and the terminal station of train k is after station i.(

Aa
k,i+1 −Da

k,i

)
·

∑
i′∈S,i′≤i

zI
ki′ ·

∑
i′∈S,i′>i

zT
ki′ = ti,i+1 k ∈ K2, i ∈ S/{|S|}. (12)

If additional train k stops at station i within its operational zone, the dwelling time must be
greater than the minimum dwelling time dmin to leave enough time for passengers to board and alight.
Therefore, station i must be within the operational zone, not including the origin station or terminal
station, because we do not consider the dwelling time at the origin station and terminal station. On the
other hand, the departure time and arrival time of train k are the same at station i, at which train k does
not stop. We formulate the above situation via Constraints (13) and (14).

Da
k,i −Aa

k,i ≥ dmin·yki·
∑

i′∈S,i′<i

zI
ki′ ·

∑
i′∈S,i′>i

zT
ki′ k ∈ K2, i ∈ S/{1, |S|}. (13)

(
Da

k,i −Aa
k,i

)
∗ (1− yki) = 0 k ∈ K2, i ∈ S. (14)

Headway is the time interval of departure time or arrival time of trains at the same station. Trains
must keep a certain headway from each other to ensure safety. As the traveling time of each segment is
fixed, we just need to formulate the headway constraints of departure time to limit both the departure
time and arrival time. As we allow for overtaking at intermediate stations in the model, the departure
order of trains is different at different stations. Thus, the departure headway between two trains
must be related to their departure order. The departure order variable µi

k f is introduced to the model,

and µi
k f equal to 1 means that train k is before train f . In the study, we cannot only consider the

headway between additional trains; the headway between additional trains and existing trains cannot
be ignored. The departure headway constraints are classified into two sets. The first set of constraints
is of headway between an existing train and the additional train, and the other set is of headway
between two additional trains.

Constraints (15) and (16) formulate the constraints of headway between additional trains. As for the
departure order for additional trains k and f within their operational zone, only one of µi

k f and µi
f k can

be equal to 1, because either train k comes before train f or train f comes before train k. Constraint (15)
restricts the departure order for train k and f within their operational zones. Meanwhile, if train k is
located before train f , the interval of departure time between train k and train f must be greater than
the minimum headway hmin at station i of their operational zones, as defined by Constraint (16).

µi
k f + µi

f k =
∑
i′≤i

zI
ki′ ∗

∑
i∈S,i′≥i

zT
ki′ ∗

∑
i′≤i

zI
f i′ ∗

∑
i∈S,i′≥i

zT
f i′ k, f ∈ K2 and f > k , i ∈ S. (15)

Da
f ,i −Da

k,i ≥ hmin ∗ µ
i
k f k, f ∈ K2 , i ∈ S. (16)
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The other set of headway constraints between existing train f and additional train k are written
as Constraints (17) and (18). The mathematical expression in Constraint (17) indicates that, if train k
departs earlier than train f within their operational zone, the interval between the departure time of the
two trains must be greater than the minimum headway hmin. Otherwise, the situation of train f being
before train k is formulated in Constraint (18).

De
f ,i −Da

k,i ≥ hmin·µ
i
k f ·

∑
i′∈S, i′≤i

zI
ki′ ·

∑
i′∈S,i′≥i

zT
ki′ k ∈ K2, f ∈ K1 and De

f ,i > 0 , i ∈ S. (17)

Da
k,i −De

f ,i ≥ hmin·

(
1− µi

k f

)
·

∑
i′∈S,i′≤i

zI
ki′ ·

∑
i′∈S,i′≥i

zT
ki′ k ∈ K2, f ∈ K1and De

f ,i > 0 , i ∈ S. (18)

3.2.3. Constraints of Stop Plan

In this section, we set each variable of the stop plan for train k at each station to 0; train k is not
added to the operational plan, because the variable of stop plan yki is related to passenger demand
distribution. To avoid unnecessary distribution of passenger demand, we also set the variable of the
stop plan for the added additional train k at the station outside of the operational zone to 0. Thus,
we formulate Constraints (19)–(21) as follows, i.e.,∑

i∈S

yki·(1− xk) = 0 k ∈ K2. (19)

∑
i′<i,i′∈S

yki′ ·zI
ki = 0 k ∈ K2. (20)

∑
i′>i,i′∈S

yki′ ·zT
ki = 0 k ∈ K2. (21)

3.2.4. Passenger Demand Constraints

The passenger demand constraints are used to guide the passenger distribution for additional
trains and existing trains. Although the number of trains, stop plans, and timetables for existing trains
have not changed, the passenger distribution for existing trains is reoptimized. Passenger demand
in off-peak periods is less than in peak periods. There are many empty seats in the existing trains in
off-peak periods. Applying the passenger distribution for existing trains in off-peak periods to the
peak periods may be unreasonable. Passenger demand is distributed simultaneously to existing trains
and additional trains. Passenger distribution is not only restricted to other plans, e.g., operational zone
and stop plan, but also to passenger demand. Some constraints are formulated below. In this paper,
we only consider OD passenger demand in the outbound direction, and passenger demand in the
inbound direction is set to 0. The decision variables of inbound passenger distribution are meaningless,
and Constraints (22) and (23) are as follows:∑

j≤i

qk
i j = 0 k ∈ K2, i, j ∈ S. (22)

∑
j≤i

ρ
′k
i j = 0 k ∈ K1, i, j ∈ S. (23)

ymin is the minimum number of boarding and alighting persons required for a train to stop. Train k
is set to stop at station i, which meets the requirement that at least ymin person will get on or off at
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this station. Meanwhile, train k must skip a station to which no passenger demand is distributed.
The above requirements for additional trains are described by Constraints (24) and (25): ∑

j∈S, j>i

qk
i j +

∑
j<i

qk
ji

 ≥ yki · ymin k ∈ K2, i ∈ S. (24)

 ∑
j∈S, j>i

qk
i j +

∑
j<i

qk
ji

·(1− yki) = 0 k ∈ K2, i ∈ S. (25)

Similarly, the relationship between the stop plan and passenger distribution for existing trains is
described by Constraints (26) and (27): ∑

j∈S, j>i

ρ′ki j +
∑
j<i

ρ′kji

 ≥ ye
ki ·ymin k ∈ K1, i ∈ S. (26)

 ∑
j∈S, j>i

ρ′ki j +
∑
j<i

ρ′kji

·(1− ye
ki

)
= 0 k ∈ K1, i ∈ S. (27)

Generally, there is great passenger demand at the origin station and terminal station. If station i
is selected as the origin station or terminal station of train k, the passenger must be distributed to
train k at station i. The relationship between the operational zone and passenger distribution for
additional trains is formulated in Constraints (28) and (29). That for existing trains is formulated in
Constraints (30) and (31). ∑

j∈S

qk
i j ≥ zI

ki k ∈ K2, i ∈ S. (28)

∑
j∈S

qk
ji ≥ zT

ki k ∈ K2, i ∈ S. (29)

∑
j∈S

ρ
′k
i j ≥ zeI

ki k ∈ K1, i ∈ S. (30)

∑
j∈S

ρ
′k
i j ≥ zeT

ki k ∈ K1, i ∈ S. (31)

Although we hope that the added transport capacity can fully meet the unmet passenger demand
in the peak periods, it is not a matter of the greater the transport capacity, the better. The primary
objective of this model is to minimize the difference between passenger demand and transport capacity.
Constraint (32) restricts the transport capacity of additional trains and existing trains to be less than
passenger demand to avoid waste. The primary objective and Constraint (32) jointly guarantee that
the transport capacity provided by the operational plan can meet passenger demand in peak periods
where possible without creating waste.∑

k∈K

qk
i j +

∑
k∈K

ρ
′k
i j ≤ Qi j i, j ∈ S. (32)

3.2.5. Loading Capacity Constraints

In the real world, the total number of seats of each train is fixed—the maximum loading capacity.
The number of passengers must be less than the maximum loading capacity to avoid a crush and
provide good service. The number of passengers on a train changes at every station because of
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passengers boarding and alighting. Thus, we formulate Constraints (33) and (34) to restrict the number
of passengers in the train to be less the maximum loading capacity of train k.∑

i′∈S i′≤i

∑
j∈S j>i

qk
i′ j ≤ Ck k ∈ K2 i ∈ S. (33)

∑
i′∈S i′≤i

∑
j∈S j>i

ρ
′ k
i′ j ≤ Ck k ∈ K1 i ∈ S. (34)

In Constraint (33),
∑

i′∈S i′≤i

∑
j∈S j>i

qk
i′ j denotes the passengers on the additional train k through

segment (i, i + 1); these passengers get on train k before station i or at station i and get off after
station i. The capacity-occupancy ratio is an important index of the utilization of transport capacity.
The constraints of capacity and occupancy are written as in Constraints (35) and (36). Constraint (35)
is used to restrict the capacity and occupancy of additional trains, and Constraint (36) is for existing
trains. The left term in Constraint (35) is the total passenger traffic turnover of train k, which is the
sum of passenger traffic turnover for each segment. The passenger traffic turnover for each segment is
the number of passengers going through each segment, multiplied by the distance of the segment.
As for the right term of Constraint (35), δ is a coefficient of the capacity-occupancy ratio, and the other
items are the maximum loading capacity of train k multiplied by the total running distance of train k.
To make use of the capacity of each train, we guarantee that the capacity-occupancy ratio of each train
must be more than a threshold, i.e., δ. The value of δ is less than 1.

∑
i∈S/{|S|}

Di,i+1·
∑

i′∈S i′≤i

∑
j∈S j>i

qk
i′ j ≥ δ·Ck·

∑
i∈S

zT
ki·Di −

∑
i∈S

zI
ki·Di

k ∈ K2 i ∈ S/{|S|}. (35)

∑
i∈S/{|S|}

Di,i+1·
∑

i′∈S i′≤i

∑
j∈S j>i

ρk
i′ j ≥ δ·Ck·

∑
i∈S

zT
ki·Di −

∑
i∈S

zI
ki·Di

k ∈ K1 i ∈ S/{|S|}. (36)

Finally, Constraints (37)–(39) guarantee that departure time variables Da
ki, arrival time variables Aa

ki,
and the variables of distribution of passenger demand qk

ij are non-negative. In addition, we schedule the
arrival time of additional train within time window [0 T], which is also formulated in Constraint (36).

Da
ki ≥ 0 k ∈ K2 i ∈ S. (37)

0 ≤ Aa
ki ≤ T k ∈ K2 i ∈ S. (38)

qk
i j ≥ 0 k ∈ K2 i ∈ S. (39)

3.3. Objective Functions

As explained in Section 2, we intend to propose an operational plan that is cost-saving for the
railway company, and comfortable for passengers. Thus, we need to take the railway company’s
costs and passenger service into consideration to formulate the objective functions of our optimization
model. The first objective is the sum of running distances of all additional trains, i.e.,

F1 =
∑
k∈K2

∑
i∈S

zT
ki·Li −

∑
i∈S

zI
ki·Li

. (40)

The second objective of dwelling time,

F2 =
∑

i∈S,k∈K2

(
Da

ki −Aa
ki

)
. (41)
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The main purpose of adding additional trains is to cope with the passenger demand during peak
periods. Thus, minimizing unsatisfied passengers is a very important objective. To avoid the waste of
transport capacity, we propose Constraint (32) to ensure that the number of passengers boarding a
train of each OD pair is less than the passenger demand of each OD pair. That means some passengers
get to their destination by several transfers or other transportation modes. We hope passengers on
long-distance journeys will have priority to board train because passengers on short journeys have
more choices and need fewer transfers to get to their destination. Therefore, the third objective function
is the number of unsatisfied passengers in each OD pair multiplied by the corresponding distance
between the OD pair.

F3 =
∑
i∈S

∑
j∈S

Qi j −
∑
k∈K

qk
i j −

∑
k∈K

ρ
′k
ji

·(D j −Di
)
. (42)

4. Solution Technique

Since most of the proposed constraints are nonlinear and there are binary variables and integer
variables in the model, the presented problem is a nonlinear integer programming model. To solve this
model more conveniently, we first introduce big-M to reformulate the presented model into the linear
integer programming model in Section 4.1. Second, since the three objective functions are distance,
time, and people, the dimensions of the three objectives in the model are different. In Section 4.2,
the three objective functions are normalized into a common scale.

4.1. Reformulations for Nonlinear Constraints

Some constraints are nonlinear in the model. The nonlinear programming model is more
computationally difficult to solve than Linear programming model. Thus, we introduce big-M to
reformulate the nonlinear constraints into linear big-M constraints, in which big-M is a sufficiently
large number. As shown in Table 5, the nonlinear constraints in the model in Section 3 are reformulated
into linear Constraints (43)–(67). Other linear constraints are formulated in the same way.∑

i′∈S,i′≥i

zI
ki′ ≤

(
1− zT

ki

)
·M k ∈ K2 , i ∈ S. (43)

∑
i′∈S,i′≤i

zT
ki′ ≤

(
1− zI

ki

)
·M k ∈ K2 (44)

∑
i∈S

Da
k,i +

∑
i∈S

Aa
k,i ≤ xk·M k ∈ K2 (45)

∑
i′∈S,i′<i

(
Da

ki′ + Aa
ki′

)
≤

(
1− zI

ki

)
·M k ∈ K2, i ∈ S (46)

∑
j∈S, j>i

(
Da

kj + Aa
kj

)
≤

(
1− zT

ki

)
·M k ∈ K2, i ∈ S. (47)

Da
ki −Aa

ki ≤
(
1− zI

ki

)
·M k ∈ K2, i ∈ S. (48)

Da
ki −Aa

ki ≤
(
1− zT

ki

)
·M k ∈ K2, i ∈ S. (49)

Aa
k,i+1 −Da

k,i ≥ ti,i+1 −

1−
∑

i∈S,i′≤i

zI
ki′

·M−
1−

∑
i∈S,i′>i

zT
ki′

·M k ∈ K2, i ∈ S/{|S|}. (50)

Aa
k,i+1 −Da

k,i ≤ ti,i+1 +

1−
∑

i∈S,i′≤i

zI
ki′

·M +

1−
∑

i∈S,i′>i

zT
ki′

·M k ∈ K2, i ∈ S/{|S|} (51)
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Da
k,i −Aa

k,i ≥ dmin − (1− yki)·M−

1−
∑

i∈S,i′<i

zI
ki′

·M−
1−

∑
i∈S,i′>i

zT
ki′

·M k ∈ K2, i ∈ S/{1, |S|} (52)

0 ≤ Da
k,i −Aa

k,i ≤ yk·M k ∈ K2, i ∈ S. (53)

µi
k f + µi

f k ≤
∑
i′≤i

zI
ki′ ·M k, f ∈ K2 and f > k , i ∈ S. (54)

µi
k f + µi

f k ≤
∑

i∈S,i′≥i

zT
ki′ ·M k, f ∈ K2 and f > k , i ∈ S. (55)

µi
k f + µi

f k ≤
∑
i′≤i

zI
f i′ ·M k, f ∈ K2 and f > k , i ∈ S. (56)

µi
k f + µi

f k ≤
∑

i∈S,i′≥i

zT
f i′ ·M k, f ∈ K2 and f > k , i ∈ S. (57)

µi
k f + µi

f k ≤ 1 +
(
1−

∑
i′≤i

zI
ki′

)
·M +

(
1−

∑
i∈S,i′≥i

zT
ki′

)
·M +

(
1−

∑
i′≤i

zI
f i′

)
·M +

(
1−

∑
i∈S,i′≥i

zT
f i′

)
·M

k, f ∈ K2 and f > k , i ∈ S.
(58)

µi
k f + µi

f k ≥ 1−
(
1−

∑
i′≤i

zI
ki′

)
·M−

(
1−

∑
i∈S,i′≥i

zT
ki′

)
·M−

(
1−

∑
i′≤i

zI
f i′

)
·M

−

(
1−

∑
i∈S,i′≥i

zT
f i′

)
·M k, f ∈ K2 and f > k , i ∈ S.

(59)

Da
f ,i −Da

k,i ≥ hmin −

(
1− µi

k f

)
·M k, f ∈ K2, i ∈ S. (60)

De
f ,i −Da

k,i ≥ hmin −

(
1− µi

k f

)
·M−

(
1−

∑
i′≤i

zI
ki′

)
·M−

(
1−

∑
i∈S,i′≥i

zT
ki′

)
·M

k ∈ K2, f ∈ K1 and De
f ,i > 0 , i ∈ S.

(61)

De
f ,i −Da

k,i ≥ hmin − µ
i
k f ·M−

(
1−

∑
i′≤i

zI
ki′

)
·M−

(
1−

∑
i∈S,i′≥i

zT
ki′

)
·M

k ∈ K2, f ∈ K1 and De
f ,i > 0 , i ∈ S.

(62)

∑
i∈S

yki ≤ xk·M k ∈ K2. (63)

∑
i′<i,i′∈S

yki′ ≤
(
1− zI

ki

)
·M k ∈ K2 (64)

∑
i′>i,i′∈S

yki′ ≤
(
1− zT

ki

)
·M k ∈ K2. (65)

yki ≤
∑

j∈S, j>i

qk
i j +

∑
j<i

qk
ji ≤M·yki k ∈ K2 i ∈ S. (66)

yki ≤
∑

j∈S, j>i

ρ
′k
i j +

∑
j<i

ρ
′k
ji ≤M·yki k ∈ K2 i ∈ S. (67)
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Table 5. Reformulation.

Original Nonlinear Constraints Reformulated Linear Constraints

Constraints (4)~(5) Constraints (43) and (44)
Constraints (7)~(11) Constraints (45)~(49)

Constraints (12) Constraints (50) and (51)
Constraints (13) and (14) Constraints (52) and (53)

Constraints (15) Constraints (54)~constraints (59)
Constraints (16)~(21) Constraints (60) ~(65)

Constraints (24) and (25) Constraints (66) and (67)

4.2. Multi-Objective Analysis

Since the dimensions of the three objectives in the model are different, we first use the following
three functions to normalize the three objective formulations into a common scale. In Equation (68), f1,
f2, and f3 are the normalized values of F1, F2, and F3. F1min, F2min, and F3min are the minimum values of
F1, F2, and F3, respectively. Similarly, F1max, F2max, and F3max are the maximum values of F1, F2, and F3.

f1 =
F1 − F1min

F1max − F1min
, f2 =

F2 − F2min
F2max − F2min

, f2 =
F3 − F3min

F3max − F3min
(68)

In this paper, we use the weighted compromise approach to get a single trade-off objective function
as follows:

F = θ1· f1 + θ2· f2 + θ3· f3 (69)

whereθ1 ,θ2, andθ3 are prespecified weights of these three normalized objective functions, which means
the importance of the three objectives. The values of θ1, θ2, and θ3 depend on the decision-maker’s
experience and practical conditions. The final model is as follows:

Final model


Min(F)

st. Constraints (1), (3), (6), (22) and (23)
Constraints (26) ∼ (39)

Constraints (43)and (65).

5. Numerical Experiments

In this section, several sets of experiments are implemented to test the effectiveness of our
proposed model. A small-scale experiment is implemented. Furthermore, we implemented some other
experiments based on the real-word data for the Wuhan-Guangzhou railway corridor. As we know,
the proposed model is an NP-hard problem. The proposed model is an integer programming model,
wherein two types of decision variables, i.e., binary variables and integer variables, and constraints are
reformulated into the linear type. CPLEX solver is used to solve the model. All experiments were
implemented on a Windows 7 workstation with Intel Core i7 4790K CPU and 8 G RAM (Microsoft,
Seattle, WA, USA, 1975).

5.1. Small-Scale Case Study

The small-scale experiment is implemented on an outbound railway corridor within the time
horizon [0, 90] min. The railway corridor consists of six stations and five segments, as shown in
Figure 3, wherein stations are indexed from the starting station of railway corridor station 1 to ending
station 6 along the outbound direction. The length of each segment and travel time of trains across
each segment are also displayed in Figure 3. There are five existing trains in the off-peak period.
The stop plans and operational zones of these existing trains are illustrated in Figure 4. The passenger
distribution plans of these existing trains are listed in Figure 4. Each train has different colored
rectangles because of the different passenger distribution of each train. The length of the whole
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rectangle represents the maximum capacity of each train, and the width represents the total running
distance of train. In Figure 4, the different colored rectangles represent passengers for different OD.
The length of each colored rectangle represents the number of passengers for this OD pair. The width
of each color rectangle represents the distance of the OD pair. To clarify the number of passengers
for each OD in each train, the number in each rectangle denotes the number of passengers that the
train takes for this OD pair. The number of empty seats in each train is also noted in these figures of
passenger distribution. The passenger demand for each OD of the railway corridor in peak periods
is given in Table 6. Obviously, transport capacity provided by the existing trains cannot meet the
passenger demand. To meet passenger demand in peak periods, we intend to add five additional
trains according to Equation (1). The additional trains must maintain the departure headway to avoid
collisions. The minimum departure headway hd

min is set to 2 min. The maximum loading capacity of
each train is 120. To leave enough time for passengers to board, we set the minimum dwelling time
dmin to 1 min. The capacity-occupancy ratio is set to 0.8 to make full use of the transport capacity.
Since our operational plan is meant to be passenger-responsive, the third objective of passenger
demand has the highest priority in our experiments. The second objective of dwelling time has the
second priority and the importance of the first objective is the lowest. Thus, the weight parameters of
the three objectives δ1, δ2, and δ3 are set to 0.1, 0.2, and 0.7. To normalize the three objectives, we first
implement two experiments maximizing and minimizing the first objective and get the values of F1min
and F1max , i.e., 0 and 714. Similarly, the value of F2min and F2max are 0 and 166, and F3min and F3max are
408 and 186,930.
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Table 6. Passenger demand for each OD in peak period.

Origin\Terminal Station S1 S2 S3 S4 S5 S6 Total

S1 - 380 160 89 82 200 911
S2 - - 210 79 102 214 605
S3 - - - 120 150 60 330
S4 - - - - 157 83 240
S5 - - - - - 521 411

Total - 380 370 288 491 1078 2607

Based on the above parameters, the optimal solution of the model is obtained. The value of the
first objective function of trains’ running distance is 750 km. The value of the second objective function
of dwelling time is 12 min. The value of the third function is 408 unit.km. Although we set a high
weight for the third objective, 17 passengers cannot travel from origin (station 5) to destination (station
6) on train. To better illustrate the experimental results, the operational zones, stop plans, timetables,
and passenger distribution for additional trains are shown in Figures 5–7. Figure 5 illustrates the
operational zone and stop plan for the additional trains and existing trains. The red one represents
an additional train, and the black one is an existing train. S1 is station 1, E1 is the first existing train
to arrive at its terminal station, and A1 is the first additional train to arrive at its terminal station.
In Figure 5, a solid dot denotes a train that needs to stop at this station, and a hollow dot denotes a train
that goes through this station without stopping. Figure 6 shows the timetables of additional trains and
existing trains. Similarly, the red line represents the timetable of the additional train, and the black line
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represents the timetable of the existing train. In Figure 6, the existing trains are indexed from E1 to
E5 depending on the arrival time, and additional trains are indexed from A1 to A5. The passenger
distribution of the five additional trains is illustrated in Figure 7. Since the passenger distribution for
existing trains is optimized jointly with additional trains in the model, the passenger distribution for
existing trains has changed compared with the data in Figure 4. The new passenger distribution for
existing trains is illustrated in Figure 7.Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 29 
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It is known from Figure 5 that the five additional trains have different operational zones and stop
plans. There four kinds of operational zones for these additional trains. Train A3 has a long-distance
operational zone from S1 to S6. To cut down on unnecessary running distance, the other trains do not
need to select the starting station or ending station of the corridor as their origin station or terminal
station. As a result, the operational zone of trains A1 and A2 is from S2 to S6. Although trains A1 and
A2 have the same operational zone, they have different stop plans. Train A2 just serves the passengers
from S2 to S6, with no stops at intermediate stations. Train A1 stops at S5 to serve passengers departing
or arriving there. It is seen in Figure 6 that the additional trains can maintain the departure headway
in relation to existing trains to avoid collisions. It is noted that additional train A3 is overtaken by
existing trains E2 at S3 and E3 at S5. Train A3 arrives at S3 after 32 min and waits at S3 for 4 min to
make way for train E2. Train E2 goes through S3 after 34 min without stopping. Train A3 departs from
S3 36 min after E2 departs from S3 to maintain the departure-arrival headway of 2 min with relation
to train E2. Next, train A3 arrives at S5 after 69 min and waits there for 4 min to make way for train
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E3. In the end, train A3 arrives at S6 after 88 min. Therefore, our proposed model has the ability to
choose an overtaking strategy to insert more additional trains between the existing trains and maintain
the necessary headway. We know from the timetables of trains in Figure 6 that a decision maker
must select suitable times and stations to insert the additional trains to maintain headway and meet
passenger demand as much as possible. Timetabling decisions affect the operational zones and stop
plans of additional trains and further affect passenger distribution. Thus, considering the timetables of
additional trains in the operational plan is essential.Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 29 
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Figure 7 shows the passenger distribution of these additional trains. In the optimal operational
plan, only 17 passengers cannot board trains to reach their destinations, and the trip of these unsatisfied
passengers includes just one segment, i.e., S5–S6. This verifies that long-distance passengers have the higher
priority in the model. In order to keep the high use ratio of transport capacity, the capacity-occupancy
ratio of each train is over 0.8, in line with our expectations. The area of rectangles of empty seats of
additional trains A2, A3, and A5 is 0. The area of rectangles of empty seats of additional trains A1
and A4 is very small. This shows that few seats are empty on each additional train. It is interesting to
observe that when the capacity of each train is reached and no passengers need to alight, the train goes
through and does not stop at this station. The impact of passenger distribution on the stop plan is very
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significant. Figure 8 shows the passenger distribution for existing trains after optimization. Although
the stop plans and timetables are fixed for existing trains, the passenger distribution for existing trains
is optimized in the experiment. Comparing Figure 8 with Figure 4, we find that the number of empty
seats of these existing trains decreases obviously after the optimization. That shows that the model
makes full use of the transport capacity of both additional trains and existing trains.
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5.2. Additional Experiments

The influences of the three parameters of our proposed model, i.e., the capacity-occupancy ratio
of each train δ, the minimum headway hmin, and the minimum dwelling time dmin, on the optimal
solution are analyzed.
(i) Capacity–occupancy ratio

In the model, we introduce a coefficient of the capacity-occupancy ratio, δ, to control the capacity-
occupancy ratio. This coefficient is used to restrict the number of passengers along each segment
belonging to the train’s operational zone. Although a higher capacity-occupancy ratio for a single train
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is better, the impact of different capacity-occupancy ratios on the final operational plan is not known.
Thus, we implement several experiments using capacity-occupancy ratio from 0.5 to 1.0 and obtain the
corresponding operational plan. The experimental environment and other parameters are the same as
in the small-scale case study. For computational accuracy, the relative MIP gap tolerance is set to 0.01
for the set of experiments. The detailed computational results are listed in Table 7.

Table 7. Optimized solutions obtained under different capacity-occupancy ratio δ.

δ
The Number

of Trains
Running
Distance Dwelling Time The Number

of Stops
Unsatisfied
Passengers

0.5 5 750 10 4 17

0.6 5 750 11 5 17

0.7 5 750 11 5 17

0.8 5 750 12 6 17

0.9 4 600 5 5 208

1.0 4 576 5 5 207

In Table 7, some indexes of additional trains, i.e., the number of trains, the total running distance of
trains, the total dwelling time, the number of stops, and unsatisfied passengers, are displayed to evaluate
the operational plan. Clearly, when δ is from 0.5 to 0.8, although the stop plan is changed slightly
depending on the capacity-occupancy ratio, the number of additional trains, number of unsatisfied
passengers, and running distance are the same. The reason is that the objective function of passenger
demand plays a role in ensuring the capacity-occupancy ratio to some extent. The third objective
function can keep the capacity-occupancy ratio high. When δ increases to 0.9 and 1.0, the number of
additional trains decreases, and the number of unsatisfied passengers increases significantly. In the
operational plan of 0.9 and 1.0, only four trains are added and the corresponding total running distance
is decreased, which means lower costs for the railway company. However, the expectation of decision
maker is not only for a lower cost, but also meeting more passenger demand. The number of unsatisfied
passengers increases significantly, which is contrary to our aim. Generally, a high capacity-occupancy
ratio means fewer trains loading more passengers. However, in terms of designing the operational
plan for multiple trains, a higher ratio is not necessarily better. Despite the number of passengers on
some trains being large in the operational plan, the remaining passengers are not enough to guarantee
at-capacity occupancy for other trains and so they are canceled. Thus, choosing a suitable δ value that
is good for cost and passenger demand is important.
(ii) The minimum dwelling timedmin

The parameter of the minimum dwelling time dmin is proposed to offer time for passengers to get
on/off. Passengers need more dwelling time to board and alight, while the passengers staying on the
train hope for less dwelling time. Next, we will test the optimal solutions under the value of dmin from
1 to 6 min. Some meaningful indexes of optimal solutions are displayed in Table 8.

Table 8. Optimized solutions obtained under the minimum dwelling time dmin.

dmin
The Number

of Trains
Running
Distance Dwelling Time The Number

of Stops
Unsatisfied
Passengers

1 5 750 12 6 17

2 5 750 17 4 31

3 5 690 22 3 141

4 5 690 22 2 154

5 5 690 25 2 154
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When the minimum dwelling time changes from 1 to 5, the number of trains is still five, but the
running distance is decreased. With dmin increasing, the dwelling time also increases, and the number
of stops decreases. To insert more additional trains into the original operational plan and avoid
conflicts with existing trains, the number of stops need to be reduced. Also, the operational zones of
trains are shortened. As a result, the number of unsatisfied passengers increases, with the value of
dmin also increasing. The worst result is when the number of trains is three and dmin is 6: the number
of unsatisfied passengers rises to 400. Thus, a suitable dwelling time at a station where there are
passengers getting on/off is indispensable. However, more dwelling time is not always better.
(iii) The headway hmin

In the real world, railway company operators always set a certain headway, which is not only to
avoid conflicts between trains, but also to leave enough time for operators and workers to prepare.
The influence of headway on the operational plan needs to be investigated. The experimental results
with different values of hmin are listed in Table 9.

Table 9. Optimized solutions obtained under the minimum headway hmin.

hmin
The Number

of Trains
Running
Distance Dwelling Time The Number

of Stops
Unsatisfied
Passengers

1 5 750 9 6 17

2 5 750 12 6 17

3 5 654 7 5 139

4 4 468 6 4 259

5 4 468 5 3 261

When the headway is from 1 min to 2 min, there seems to be no difference between the two
operational plans. However, when we look a little more carefully at the results, the total dwelling time
changes from 9 min to 12 min. The reason is that one of the additional trains dwells at one station
for 4 min to give way to the existing train. That is to say that when the headway become longer,
some operations, e.g., overtaking, will be performed to insert more additional trains and load more
passengers. The situation is more obvious as the headway increases. When the headway increases to
6 min, all five trains cannot be inserted within the limited time horizon, and one additional train is
cancelled. Meanwhile, the number of unsatisfied passengers rises to 261. It is known from this set of
experiments that suitable headway can leave enough time for operators to prepare and avoid collisions.
Therefore, the value of the headway should be selected carefully in real-world operations.
(iv) The minimum number of boarding and alighting persons for stopping, ymin

ymin is the minimum number of boarding and alighting persons required for a train to stop.
Stopping consumes energy to accelerate and decelerate, which increases the railway company’s costs.
Therefore, operators are very serious about designing a stop plan. The required minimum number of
persons boarding and alighting for stopping is proposed in the model, which means that the train
cannot stop at a station until the sum of boarding and alighting persons is up to a certain threshold.
We select 10 different values of ymin, from 10 to 100, and the corresponding solutions are listed in
Table 10. From Table 10, the number of trains, running distance, dwelling time, and number of stops
tends to decrease, while the number of unsatisfied passengers tends to increase. On the face of it,
increasing the threshold for stopping can decrease the dwelling time, the number of stops, and the
number of trains, which can reduce costs. However, more passengers may not be able to board
the trains. Hence, in the real world, selecting the threshold for stopping is important for operators.
In addition, more passenger demand is met, which can bring about benefits for the railway company.
There is a need to consider the relationship between energy consumption and the price of a ticket,
which will be considered in further research.
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Table 10. Optimized solutions obtained under the minimum dwelling time ymin.

ymin
The Number

of Trains
Running
Distance Dwelling Time The Number

of Stops
Unsatisfied
Passengers

10 5 750 12 6 17

20 5 750 12 6 17

30 5 750 12 6 17

40 5 750 11 5 32

50 5 750 11 5 32

60 5 690 5 4 142

70 5 690 5 4 142

80 5 690 5 4 142

90 4 600 4 3 210

100 4 576 3 2 252

5.3. Large-Scale Case Study

In this section, we will test the performance by applying the proposed model to designing an
operational plan for high-speed trains on the Beijing-Shanghai high-speed railway corridor in China.
The Beijing-Shanghai railway corridor is the main railway corridor connecting Beijing and Shanghai
and one of the country’s most important corridors. The experimental data in this large-scale study are
real-world data.

Before implementing the large-scale experiment, we first introduce the input experimental data.
We implement this experiment within [0, 720] min on the Beijing-Shanghai corridor. As shown in
Figure 9, the Beijing-Shanghai railway corridor has a total length of 1318 km and consists of 24 stations
and 23 segments [29]. The details on the distance of each segment and the traveling time of high-speed
trains in each segment are listed in Table 11 [30].
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Table 11. Distance and traveling time.

Segment Distance (km) Traveling Time (min)

Beijing South-Langfang 59 21
Langfang-Tianjin 72 18

Tianjin South-Cangzhou West 88 22
Cangzhou West-Dezhou East 108 27

Dezhou East-Jinan West 92 24
Jinan West-Taian 43 18
Taian-Qufu East 71 22

Qufu East-Tengzhou 56 17
Tengzhou-Zhaozhuang 36 13

Zhaozhuang-Xuzhou East 63 18
Xuzhou East-Suzhou East 79 19

Suzhou East-Bengbu South 77 23
Bengbu South-Dingyuan 53 16

Dingyuan-Chuzhou 62 19
Chuzhou-Nanjing South 59 18

Nanjing South-Zhenjiang South 69 20
Zhenjiang South-Danyang North 25 11
Danyang North-Changzhou North 32 11

Changzhou North-Wuxi East 57 17
Wuxi East-Suzhou North 26 10

Suzhou North-Kunshan South 32 11
Kunshan South-Hongqiao 43 18

There are 24 stations along the Beijing-Shanghai railway corridor. Since Tianjin South Station
and Tianjin North Station both belong to the city of Tianjin, we do not consider the difference in
passenger demand between the two stations; their passenger demand is combined and regarded as
the passenger demand at Tianjin Station. Thus, there are totally 23 × 22/2 = 253 OD pairs. The OD
passenger demand associated with stations on the Beijing-Shanghai railway corridor in peak periods
is listed in Table 12a,b [30]. In this experiment, we designate 42 existing trains for the off-peak
period. The timetables of these 42 existing trains are illustrated in Figure 10, where the black lines
represent the timetables of existing trains. The stop plans for existing trains are also illustrated in
Figure 11. The rolling stock used on the Beijing–Shanghai high-speed railway corridor is usually
CR400AF. There are three marshalling types of CR400AF: eight marshalling types, 16 marshalling
types, and 17 marshalling types, and their capacity are 576, 1193, and 1283. In the peak period, rolling
stock with large capacity is employed. Thus, the maximum loading capacity of trains is set to 1200 unit
in this paper. The total passenger demand along the Beijing-Shanghai corridor is 132,358. The total
passenger demand distributed for existing trains is 112,601. There are still 19,757 passengers who
cannot travel by train in the peak period. Based on the passenger demand in the peak period and
the number of existing trains, we intend to add four trains. The minimum departure headway hd

min
is set to 2 min. The minimum dwelling time dmin is set to 2 min. To avoid wasting the transport
capacity, the capacity-occupancy ratio for both existing trains and additional trains is set to 0.7. In our
paper, because the purpose of adding additional trains is to meet passenger demand in peak periods,
the objective of passenger demand has the highest priority in this experiment. The weight of the
third objective δ3 is set to 0.7. However, the cost to the railway company and the service for in-train
passengers cannot be ignored. The weight parameters of the first objective about running distance δ1

and the second objective about dwelling time δ2 are set to 0.1 and 0.2. To normalize the three objectives,
we implement three experiments for maximizing F1, F2, and F3 and get the values of F1max, F2max,
and F3max: 10,416, 720, and 9,882,700. Similarly, we find that the values of F1min, F2min, and F3min are 0
by implementing experiments for minimizing F1, F2, and F3.
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Table 12. (a) Passenger demand for each OD pair. (b) Passenger demand for each OD pair.

Origin/Terminal
Station Beijing South Langfang Tianjin Cangzhou West Dezhou East Jinan West Taian Qufu East Tengzhou Zhaozhuang Xuzhou East Suzhou East

Beijing South _ 701 4427 1863 1490 3901 1512 2016 273 438 2696 460
Langfang _ _ 832 548 350 350 98 100 69 104 121 100

Tianjin _ _ _ 1315 1424 2301 613 1424 176 328 2235 240
Cangzhou West _ _ _ _ 219 394 88 88 10 44 196 21

Dezhou East _ _ _ _ _ 832 284 352 44 219 219 112
Jinan West _ _ _ _ _ _ 1183 1140 56 1227 1030 73

Taian _ _ _ _ _ _ _ 284 42 307 723 108
Qufu East _ _ _ _ _ _ _ _ 28 175 219 438
Tengzhou _ _ _ _ _ _ _ _ _ 52 125 53

Zhaozhuang _ _ _ _ _ _ _ _ _ _ 394 284
Xuzhou East _ _ _ _ _ _ _ _ _ _ _ 416
Suzhou East _ _ _ _ _ _ _ _ _ _ _ _

(a)

Origin/Desitination Bengbu South Dingyuan Chuzhou Nanjing South Zhenjiang South Danyang North Changzhou North Wuxi East Suzhou North Kunshan South Hongqiao

Beijing South 789 249 411 328 416 236 657 592 525 416 1302
Langfang 113 44 175 416 101 62 108 107 102 100 1243

Tianjin South 1052 171 219 1336 284 160 306 328 240 210 1171
Cangzhou West 109 12 21 394 65 14 112 112 87 65 1083

Dezhou East 175 57 105 394 109 53 131 132 112 112 975
Jinan West 263 54 108 1644 306 60 438 438 372 328 883

Taian 109 49 42 548 87 45 175 176 153 131 840
Qufu East 87 33 21 613 131 31 175 175 173 153 769
Tengzhou 52 10 54 81 43 12 36 29 52 27 713

Zhaozhuang 285 59 219 262 97 54 196 197 196 197 677
Xuzhou East 854 187 701 1928 548 170 657 854 832 657 614
Suzhou East _ 96 832 767 284 107 306 307 175 263 535

Bengbu South _ _ 701 898 657 91 723 767 788 701 458
Dingyuan _ _ _ 71 28 12 27 33 32 36 405
Chuzhou _ _ _ _ 175 113 219 525 592 548 343

Nanjing South _ _ _ _ 526 203 592 636 1073 569 284
Zhenjiang South _ _ _ _ _ 21 788 24 679 24 215
Danyang North _ _ _ _ _ _ 24 32 34 21 190

Changzhou North _ _ _ _ _ _ _ 482 1928 482 158
Wuxi East _ _ _ _ _ _ _ _ 2892 1008 101

Suzhou North _ _ _ _ _ _ _ _ _ 1205 75
Kunshan South _ _ _ _ _ _ _ _ _ _ 43

Hongqiao _ _ _ _ _ _ _ _ _ _ _

(b)
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Based on the data above, we implemented a large-scale experiment and obtained a new operational
plan for peak periods. In the new operational plan, although the timetables and stop plans for existing
trains were unchanged, the passenger distribution for existing trains was optimized to meet passenger
demand in peak periods. The capacity-occupancy ratio of existing off-peak trains is 0.79, which rises
to 0.8 after optimization. This means that the model can improve the capacity-occupancy ratio for
existing trains to meet passenger demand in peak periods. Here, 19,757 passengers’ travel demand
was not satisfied, and four additional trains were added. Four additional trains provide significant
transport capacity, so just 23 passengers’ travel demand remained unsatisfied. These 23 passengers can
travel by transferring or using other modes of transportation, which means the model can meet most of
the passenger demand. The timetables for these four additional trains are given in Figure 10. As shown
in Figure 10, two additional trains have overtaking ability at Tengzhou East and Dingyuan stations,
etc. Meanwhile, all trains can maintain headway in relation to both existing trains. Stop plans for
additional trains in peak periods are given in Figure 11. In Figure 11, stations are labeled 1 to 23 in the
order Beijing South, Langfang, Tianjin, Cangzhou West, Dezhou East, Taian, Qufu East, Zhaozhuang,
Xuzhou East, Suzhou East, Bengbu South, Dingyuan, Chuzhou, Nanjing South, Zhenjiang South,
Danyang North, Changzhou North, Wuxi East, Suzhou North, Kunshan South, and Hongqiao. The dots
represent trains that stop at these stations, and lines represent trains that go through these stations.
It is seen from Figure 11 that these four additional trains have different operational zones. There are
additional long-distance trains, e.g., train A1 from Langfang to Hongqiao. There is also an additional
short-distance train, e.g., train A3 from Tengzhou East to Wuxi East.

6. Conclusions

The problem of designing an operational plan for additional trains to meet the passenger demand
in peak periods is studied in this paper. We present an optimization approach for designing the
operational plan for additional trains, which saved time. In this approach, all plans, including
operational zones, the number of trains, stop plans, timetables, and passenger distribution, can be
optimized simultaneously. A multi-objective nonlinear programming model was proposed to formulate
this approach. Three objective functions are presented in the model. The goal of this paper was meeting
more passenger demand in peak periods. Minimizing the deviation between the passenger demand
and the transport capacity was the primary objective. Meanwhile, operating costs and passenger
service on trains cannot be ignored. Minimizing the dwelling time and running distance of trains were
the other two objectives. In the model, some constraints are introduced to formulate the railway system
operations. OD passenger demand is specifically considered, and the constraints of passenger demand
are distributed between the train. The big-M is introduced to reformulate the nonlinear model into a
linear model. Two series of experiments are implemented to show the performance of the proposed
approach. A small-scale experiment is conducted to demonstrate that the approach can be used to
obtain a good operational plan for additional trains. Furthermore, a series of small-scale experiments
are conducted to analyze the effect of the parameters on the results. A large-scale experiment based
on the Beijing-Shanghai railway corridor is conducted to illustrate the application of the proposed
approach to large-scale and real-word situations. This paper provides an optimization approach for
railway companies to schedule additional trains in peak periods. Railways should use a scientific
optimization method to design an operational plan for additional trains instead of relying on experience.
The studied method can obtain good results on the railway corridor.

The passenger demand for trains in the real word is dynamic and stochastic. Considering the
dynamic and stochastic nature of the model will allow us to obtain a more reasonable and practical
operational plan. Moreover, adding additional trains at passengers’ preferred boarding times can
provide more convenience. Passengers’ boarding time preference will be considered in future work.
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