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Abstract: Global and local features are essential for visual-similarity texture perception. Therefore,
understanding how people allocate their visual attention when viewing textures with global or local
similarity is important. In this work, we investigate the influences of global and local features of a
texture on eye-movement patterns and analyze the relationship between eye-movement patterns
and visual-similarity selection. First, we synthesized textures by separately controlling global and
local textural features through the primitive, grain, and point configuration (PGPC) texture model,
a mathematical morphology-based texture model. Second, we conducted an experiment to acquire
eye-movement data where participants identified the texture that was highly similar to the standard
texture. Experiment data were obtained through an eye-tracker from 60 participants. The collected
eye-tracking data were analyzed in terms of three metrics, including total fixation duration in each
region of interest (ROI), fixation-point variance in each ROI, and fixation-transfer counts between
different ROIs. Analysis results indicated the following. (1) The global and local features of a texture
influenced eye-movement patterns. In particular, the texture image that was globally similar to the
standard texture contained dispersed fixation points. By contrast, the texture image that was locally
similar to the standard texture contained concentrated fixation points. The domination of global and
local features influenced the viewers’ similarity choice. (2) The final visual-similarity selection was
related to the fixation-transfer count between different ROIs, but not to the fixation time in each ROI.
This research also extends the applicability of the mathematical morphology-based texture model to
human visual perception.

Keywords: eye-movement; visual perception; visual-similarity; synthesized texture; mathematical
morphology-based texture model

1. Introduction

Whether human visual processing is dominated by holistic or analytic processing is a hot issue in
the field of human cognition. Many researchers have investigated the influences of global and local
features on visual perception. According to the hypothesis advocated by Navon [1], people perceive a
forest before seeing its trees; this assertion emphasizes the precedence of the global features. Navon
defined these effects as the “global precedence effect” (GPE) [2]. The GPE can be reduced or even
reversed by factors such as task variables [3,4], sparsity between local features [5], the position of local
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elements, and the saliency of the global form [6] and the visual angle [7], and the meaningfulness of
the stimuli [8,9]. Another remarkable aspect of global features is that human beings can understand
the meaning of a complex novel scene very quickly, even when the image is blurred [10]. This quick
recognition in a glance (about 200 ms) refers to the gist of the scene [11,12]. Although local features in
the blurred image are missing, observers can identify the semantic category of each image, inferred
from the spatial relationships between regions or blobs of a particular size and aspect ratio [13].
This emphasizes that global features (the spatial arrangement of regions) precede the analysis of
local details for scene and object recognition, particularly in images constituted by many element
patterns [14,15]. Other studies suggested that global and local processing can be influenced by several
factors, such as training and viewing distance and prior knowledge. Dulaney and Marks [16] reported
that global interference decreases with training, whereas local interference develops with training.
Li et al. [17] noted that prior knowledge and viewing distance also affect global precedence in humans
in tasks involving similarity selection.

At any given moment, we can selectively attend to our environment at the component level
through local processing or at the holistic level through global processing. During the process
of visual perception, global and local features differently influence our attention and then affect
our visual perception patterns and manners, for example searching and detecting eye-movements
in scenes [18]. Torralba et al. [19] proposed a computational instantiation of a Bayesian model of
attention, demonstrating the mandatory role of scene context for search tasks in real-world images.
They suggested that searching eye-movements are influenced by local image features (saliency)
and global context features. Additionally, Najemnik and Geisler [20] compared the eye-movements
of humans, maximum a posteriori (MAP), and idea searchers in tasks of visual search. Results
demonstrated how humans actually select fixation locations in visual search. They also pointed
out that eye-movements are directed toward locations with features similar to those of the target.
Furthermore, Cheng et al. [21] investigated two kinds of eye-movement patterns in face recognition,
holistic and analytic patterns. They also examined the link between eye-movement patterns and the
engagement of global/local attention. Apparently, eye-movements are influenced by global and local
features in visual perception.

Similarity perception, as a very important aspect of visual perception, plays an essential role in
scene and object recognition [22,23]. It is regarded as one of the variables that affects global and local
processing [24]. Therefore, visual perception manners and results are likely to be affected by global
and local similarity. However, how global and local similarity affect human eye-movements when
perceiving remains unknown and lacks intuitive data (i.e., eye-movement data) and corresponding
quantitative analysis. Therefore, this paper seeks to answer two questions: (1) How do global and
local features influence eye-movement patterns under similarity perception? (2) Are visual-similarity
perception manners and results related to eye-movement patterns?

To address these questions, we utilized synthesized texture images as research stimuli.
We generated synthesized textures through the primitive, grain, and point configuration (PGPC)
texture model, a mathematical morphology-based method [25,26]. This model enables the independent
characterization of global and local features. We synthesized textures by separately controlling global
and local textural features. We then employed an eye-tracker to acquire eye-movement data when the
subjects were viewing the synthesized texture scenes with the task of selecting textures similar to a
standard texture (the texture being compared).

We statistically analyzed the eye-movement data in terms of three eye-fixation metrics: total
fixation duration (TFD) in each region of interest (ROI), fixation-point variance (FPV) in each ROI,
and fixation-transfer counts (FTCs) between different ROIs. We assumed that global and local features
affected eye-movement patterns. We hypothesized that, if the global features of a texture were similar
to those of the standard texture, then the fixation points in the texture would be highly dispersed.
By contrast, if the local features of a texture were similar to those of the standard texture, then fixation
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points in the texture would be highly concentrated. We also verified that the final similarity choice was
closely related to FTCs between ROIs of different textures viewed in the experiment.

Our research differs from conventional studies on visual perception. First, instead of artificial
images (e.g., patterns or fabric images), the utilized textures in the eye-tracking experiment were
synthesized by a mathematical morphology-based texture model. We artificially synthesized textures
with the required features instead of simply analyzing and extracting features from the existing textures.
Second, it was identified that viewing distance influences the visual perception of global and local
texture features. Viewers are attracted to local features when viewing images from a short distance
and to global features when viewing images from a long distance. In [17], a logistic-regression model
was built to construct a statistical relationship between viewing distance and visual perception of
global/local features. In this research, viewing distances in the visual-similarity experiment were
determined according to the distance equation proposed in [17]. We then set different viewing distances
to ensure the equal probability of similarity selection in the experiment.

2. PGPC Texture Model

Mathematical morphology is a theory of describing shapes. It is used to investigate the interaction
between an image and a selected structuring element through the basic operations of erosion
and dilation.

The PGPC texture model is a mathematical morphology-based model. It was first proposed
in [25] and subsequently improved in [26–28]. The PGPC texture model represents a texture as an
image composed of regular or irregular arrangement of grains. The grains are considerably smaller
than the image, resemble one another, and are derived from one or a few typical objects called
primitives. The PGPC texture model enables the independent characterization of primitive shapes and
grain configurations.

In the PGPC texture model, nonempty texture image X is represented as:

X =
N⋃

n=0
nB ⊕ Φn, (1)

where B is a primitive and nB represents the grains that are derived from n-times homothetic
magnifications of the primitive B, with n being zero or a positive integer. This is usually defined
as follows:

nB = B ⊕ B ⊕ ... ⊕ B ((n − 1) times o f ⊕), (2)

where ⊕ denotes a Minkowski set addition. This definition is, however, inconvenient since the
difference between nB and (n + 1)B is too large if the original B is large. In this experiment, we used a
single-sized structuring element (n = 1) as the grain for texture synthesis. Φn is a point configuration
(skeleton) that is a set indicating the pixel positions for locating grain nB. These locations were
randomly generated, whereas the number and directional strength of the locations could be controlled.
N is the maximal size of magnification.

The PGPC model can be used to synthesize different textures by controlling different primitives
and skeletons. For the synthesized textures, the primitive or grains of a texture refer to local features,
whereas the skeleton of a texture and grain-size distribution refer to global features. Therefore, global
and local features can be separately modified in the PGPC texture model. In contrast to existing textures
(e.g., Brodatz textures), those textures that were globally and locally similar could be synthesized
through the PGPC texture model.
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3. Experiment on Texture Perception with an Eye-Tracker

3.1. Stimuli and Apparatus

Stimuli: This research investigated the influences of global and local features on eye-movement
patterns in texture visual-similarity perception. Therefore, textures that were globally and locally
similar had to be synthesized for use in this research. We synthesized the textures by separately
controlling local (grain) and global (skeleton) parameters using the PGPC texture model. Here, global
parameters refer to the directionality and density of skeletons, and local parameters refer to the
shapes of the grain. The synthesized textures, their grains, and their skeletons are shown in Figure 1.
The different grains of Textures 1 (Figure 1a) and 2 (Figure 1e) generated different local features.

The skeleton of Texture 1 was created with horizontal strength (Figure 1b), and the skeleton
of Texture 2 was created with diagonal strength (Figure 1f). Both skeletons had the same density,
but different directionality.

( a )

( b )

( c ) ( d )

( e )

( f )

Figure 1. Synthesized textures. Texture 1 (a) grain and (b) skeleton and (c) Synthesized Texture 1;
(d) Synthesized Texture 2 and Texture 2 (e) grain and (f) skeleton.

Synthesized textures (Figure 1c,d) were cropped into disks to reduce the visual effects of the
horizontal and vertical borders of the texture frames. Using the two synthesized textures, we derived
six texture stimuli and arranged them into two scenes, as shown in Figure 2. Synthesized Textures
1 and 2 were labeled as Textures A and B in Scene 1. Standard Texture S was derived by rotating
Synthesized Texture 2 by 45◦ counterclockwise (Figure 2a). Textures in Scene 2 are presented at twice
the magnification (200% zoomed in view of Scene 1) of the respective textures in Scene 1 (Figure 2b).
Thus, Texture S in both scenes had the same global features (directionality) as Texture A and the same
local features (grains) as Texture B.

S S

(a) (b)

Figure 2. (a) Scene 1 and (b) Scene 2 (200% zoom of Scene 1) in the experiment. The locations of
Textures A and B are randomly on the left or right.
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We synthesized the two other textures on the basis of the same idea as in the above synthesis
procedure. The grains used for synthesis were the same as those in Figure 1a,e. However, the skeletons
used for synthesizing two textures had the same directionality (with horizontal strength), but different
density. The synthesized texture scenes were Scenes 3 and 4, as shown in Figure 3. The density of the
skeleton was twice higher in Texture A than that in Texture B in Scenes 3 and 4. A total of four scenes
were generated in this experiment (the synthesized textures are available for research upon request).

In this experiment, to counterbalance the influences from the order of trials (Scenes 1 and 3 used a
similar synthesizing process, so the display of the front trial appeared to influence the subsequent trial)
and the presentation in the left and right visual field (some participants may have had attention-related
disorders such as spatial hemineglect, so the location of Textures A and B may influence the visual
attention), we took two strategies: (1) in both tests, the display orders of two scenes were alternated,
and (2) in each scene, the locations of Textures A and B were randomly on the left or right.

Figure 3. (a) Scene 3 and (b) Scene 4 (200% zoom of Scene 3) used in the experiment. The locations of
Textures A and B are randomly on the left or right.

Apparatus: In this experiment, the participants’ visual-attention patterns were tracked and
recorded with the eye-tracker Tobii T60 (Tobii Technology AB, Danderyd, Stockholm, Sweden).
The eye-tracker had a 17 inch monitor and a resolution of 1280 × 1024. The sampling rate of the
eye-tracking system was 60 Hz. The eye-tracker had an accuracy of 0.2◦ and 0.3◦ spatial resolution.
Tobii studio software (Version 3.3, Tobii Technology AB, Danderyd, Stockholm, Sweden, 2016)
was used in the initial processing of the eye-tracking data. Fixation was defined by a pause in
eye-movements for 75 ms within a certain spatial area defined in 0.5◦. We found some related
references on eye-movements [29,30] and arranged the experiment settings. A participant was seated
in a soft chair while viewing the display of the eye-tracker. The distance from the screen was controlled
by a head rack that had the same function as that of a chin rest. To avoid environmental influences,
we eliminated external noise and disturbances from the experiment.

3.2. Participants

A total of 60 undergraduate students from Shanxi University participated in the experiment.
The participants were comprised of 28 females and 32 males aged 19–23 years (average = 19.13,
standard deviation (SD) = 1.11). They had normal or corrected-to-normal vision. Informed consent
was obtained from all participants prior to the experiment.

3.3. Viewing Distance

Viewing distance is a critical factor for global/local perception [17]. In the experiment, subjects
were asked to identify if candidate Texture A or B was more similar to Texture S. To ensure that the
viewing distance set for the experiment yielded the same probabilities of selecting Texture A or B,
we referred to the equations proposed in [17]. In [9], a logistic-regression model was built to construct
a statistical relationship between the viewing distance and visual perception of global/local features.
It was also identified that there was an increasing domination of global features with an increase in
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viewing distance. In order to evaluate the absolute position where local and global features had the
same domination, two equations were proposed in [17], as follows:

D1,PA=0.5 = 2.2814 × 2 × d1

D2,PA=0.5 = 3.3473 × 2 × d2,
(3)

where d1 denotes the diameter of the texture in Scene 1, d2 denotes the diameter of the texture in Scene
2, D1,PA=0.5 is the viewing distance at which the probability of selecting Texture A of Scene 1 was 50%,
and D2,PA=0.5 is the viewing distance at which the probability of selecting Texture A of Scene 2 was
50%. By the above equations, we estimated the viewing distances for different visual stimuli. In the
experiment, texture diameters were 10.5 cm. According to Equation (3), the viewing distances for
Scenes 1 and 3 were set to 48 cm, and the viewing distances for Scenes 2 and 4 were set to 70 cm.

3.4. Procedure

Two tests were conducted in this experiment. Scenes 1 and 3 were used as visual stimuli in Test 1.
Scenes 2 and 4 were used as visual stimuli in Test 2. In each test, every participant (30 participants
in each test) first signed an informed consent form, and then, they were seated in a soft chair with
a suitable height at which the eye-tracker could easily capture the participant’s eyes. After setting
the viewing distance and chair height, a calibration test was performed in the eye-tracking system
in accordance with the participant’s eye-movement and visual acuity. The participant’s eyes were
calibrated to help fixate on five markers on the display area. They were asked to gaze at and visually
track the movement of a red dot on the screen of the eye-tracker. If the calibration failed, then the
participant was excluded from the experiment.

When calibration was successful, the participant was required to view the screen on which
the instructions of the experiment were shown. The visual angle of the presented pattern was 0.5◦.
The experiment task was asking the subjects to select if Texture A or B was more similar to Texture
S. The participant was required to click the mouse to immediately change the visual stimuli when
his/she made a decision. Lastly, the participants provide their answers to similarity selection.

4. Experiment Results and Data Analysis

Eye-Tracking-Data Analysis

Before exporting the data from Tobii Studio [31], we divided each scene into three regions of
interest (ROIs). In eye-tracking research, there is always disparity between a person’s actual gaze
location and the location recorded by the eye-tracker [32,33]. The Tobii T60 eye-tracker has a reported
accuracy of a 0.5 visual angle. Therefore, to eliminate the effect of systematic error, we took each texture
and its external padding as one ROI. This strategy was adopted to avoid the problem of a participant
viewing the edge of a texture and not being inside the ROI as a result of calibration issues.According to
viewing distance, we calculated the external padding for different scenes. For Scenes 1 and 3, external
padding was around 12 pixels. For Scenes 2 and 4, external padding was around 18 pixels. The size
and location of the marked ROIs are shown in Figure 4.

In the Introduction, we wondered whether global/local features and final similarity selection
influence eye-movement patterns in texture recognition. Therefore, we used three metrics
to identify the participants’ visual behavior on the basis of the outcomes of the eye-tracking
experiment: (1) total fixation duration (TFD) in each ROI, (2) fixation-point variance (FPV) in each
ROI, and (3) fixation-transfer counts (FTCs) between different ROIs [34,35]. As the final selection was
determined between Textures A and B, we mainly considered the eye-movement data in Textures A
and B.

(1) TFD in each ROI represents the duration of fixation within an ROI. It was calculated as the
average value in seconds. For Scenes 1–4, we calculated the average TFDs and the SD of TFDs in



Appl. Sci. 2020, 10, 5552 7 of 15

different ROIs (as shown in Table 1). The TFD in Texture B was longer than that in Texture A for
the four scenes. This result was in accordance with that of Deng et al. [36], who demonstrated that
horizontal displays were easier to process. Therefore, TFD in Texture A was shorter than that in
Texture B. To verify whether global and local texture features influenced the average TFD in Textures
A and B, we analyzed the average TFD through ANOVA (Analysis of Variance). ANOVA results
(F(1,29) = 0.000, p = 0.997 for Scene 1, F(1,29) = 1.22, p = 0.273 for Scene 2, F(1,29) = 0.000, p = 0.996
for Scene 3, and F(1,29) = 0.090, p = 0.755 for Scene 4) indicated that no significant difference existed
between Textures A and B under the significance level of 0.05. Furthermore, we calculated the effect
size (eta-squared) for one-way ANOVA. Eta-squared values also showed that the global and local
features of the synthesized textures exerted no significant effects on TFD when participants perceived
the textures.

Figure 4. Scene 1 after tagging different regions of interest (ROIs): ROI_S, ROI_A, and ROI_B.

Table 1. Statistical analysis of total fixation duration (TFD) for the four scenes in both tests.

TFD(s)
Scene 1 Scene 2 Scene 3 Scene 4

ROI_A ROI_B ROI_A ROI_B ROI_A ROI_B ROI_A ROI_B

Average 3.104 3.106 1.526 1.905 2.835 2.629 2.764 2.980
Std 2.314 2.844 1.347 1.414 1.456 1.779 2.757 2.581

F-test F(1,29) = 0.000 F(1,29) = 1.22 F(1,29) = 0.000 F(1,29) = 0.090
p-value 0.997 0.273 0.996 0.755

eta2 0.000 0.019 0.000 0.002
Average (Sele_A) 3.832 3.308 1.862 1.979 2.865 2.272 3.220 2.305

Std (Sele_A) 2.576 2.826 1.821 1.597 1.462 1.181 3.339 2.034
t-test (Sele_A) t(16) = 2.434 t(11) = −0.327 t(23) = 3.059 t(16) = 1.674

p-value (Sele_A) 0.027 0.750 0.006 0.114
Cohen’s d (Sele_A) 0.194 0.068 0.447 0.327
Average (Sele_B) 2.151 2.843 1.343 1.870 2.712 4.061 2.167 3.864

Std (Sele_B) 1.154 2.962 0.869 1.311 1.504 2.979 1.536 3.015
t-test (Sele_B) t(12) = −1.327 t(17) = −1.79 t(5) = −2.274 t(12) = −3.286

p-value (Sele_B) 0.209 0.091 0.072 0.007
Cohen’s d (Sele_B) 0.293 0.474 0.567 0.709

Moreover, we hypothesized that the final similarity choices and TFDs in ROIs (especially Textures
A or B) were highly related. That is, if the final similarity choice was Texture A (Sele_A for short in
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Table 1), the participant tended to spend more time gazing at Texture A than at Texture B; by contrast,
if the final similarity choice was Texture B (Sele_B for short in Table 1), the participant tended to spend
more time gazing at Texture B than at Texture A. To verify this hypothesis, we conducted a paired
t-test to verify differences between choices (Textures A and B) on the basis of TFDs in Textures A and
B (shown in Table 1). Analysis results showed that, for Scene 1, TFD in Texture A was significantly
greater (in the paired t-test, t(16) = 2.434, p = 0.027) than that for Texture B when the similarity choice
was Texture A under the significance level of 0.05. TFD in Texture B, on the other hand, was not
significantly greater (in the paired t-test, t(12) = −1.327, p = 0.209) than that for Texture A when the
choice of similarity was Texture B. For Scene 2, TFD in Texture A was not significantly greater (in the
paired t-test, t(11) = −0.327, p = 0.750) than that for Texture B when the choice of similarity was Texture
A. TFD in Texture B was also not significantly greater (in the paired t-test, t(17) = −1.79, p = 0.091)
than that for Texture A when the choice of similarity was Texture B. For Scene 3, TFD in Texture A was
significantly greater (in the paired t-test, t(23) = 3.059, p = 0.006) than that for Texture B when the choice
of similarity was Texture A. However, TFD in Texture B was not significantly greater (in the paired
t-test, t(5) = −2.274, p = 0.072) than that for Texture A when the choice of similarity was Texture B.
For Scene 4, TFD in Texture A was not significantly greater (in the paired t-test, t(16) = 1.674, p = 0.114)
than that for Texture B when the choice of similarity was Texture A. However, TFD in Texture B was
significantly greater (in the paired t-test, t(12) = −3.286, p = 0.007) than that for Texture A when the
choice of similarity was Texture B. Analysis results showed that there was no significant relationship
between final similarity choices and TFDs in the ROIs.

Furthermore, we added Cohen’s d (on Social Sciences Statistics website [37]) to reflect the effect
size when interpreting our results. Cohen’s d is the difference between two means divided by
the standard deviation. Cohen [38] gave useful rules of thumb about what to regard as a “large”,
“medium”, or “small” effect. On the basis of the above analysis of the p-values and Cohen’s d-values,
the relationships between final similarity choices and TFDs in ROIs were not significant.

(2) FPV in each ROI refers to the degree of fixation concentration when the participants were
viewing the stimuli. In our research, this indicator was used to reflect whether a participant’s
eye-movement was local attention or global scan. Since Texture S had the same global features
as those of Texture A and the same local features as those of Texture B, if participants captured the
global features of the visual stimuli, the fixation points were dispersed; if the participants paid more
attention to the local features of the visual stimuli, the fixation points were concentrated. Therefore,
we hypothesized that, during the process of visual searching, the fixation points in Texture A were
more dispersed than those in Texture B. To verify this hypothesis, we calculated the FPV in each ROI.

The coordinates of all fixation points in each ROI could be accessed from Tobii Studio. We first
computed the FPVs in Textures A and B through the following steps.

I. Calculate the central point of all fixations in each ROI.

(a, b) =
1
n

n

∑
i=1

(xi, yi), (4)

where (xi, yi) is one of the fixations in each ROI and (a, b) is the central point among all fixations in
each ROI.

II. Calculate the Euclidean distance between each fixation and the center point.

di =
√
(xi − a)2 + (yi − b)2, (5)

where di is the Euclidean distance between each fixation and the center point in each ROI.
III. Calculate the variance from all distances.

Var =
1
n

n

∑
i=1

di, (6)
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where Var is the variance from all distances. It represents the concentration of all fixations in each ROI.
The average and SD of FPVs in the ROIs of Textures A and B for four scenes are shown in Table 2.

We conducted a paired t-test to estimate differences in global and local features on the basis of FPVs
for Textures A and B. The independent variable used in the t-test was the FPVs, which were calculated
from 30 participants’ eye-movements. The p-values and Cohen’s d-values indicated that significant
differences existed between global and local features on the basis of the FPVs for Textures A and B at
the significance level of 0.05. Results validated the hypothesis that fixation points were more dispersed
in Texture A than in Texture B. Overall, the fixation points in Texture A were scattered because Textures
A and S had the same global features; fixation points in Texture B were concentrated because Textures
B and S had the same local features. An example of the fixation-point distribution is shown in Figure 5.
From this figure, it is obvious that the fixation points in Texture A were more dispersed than the
fixation points in Texture B.

Table 2. Statistical analysis of fixation-point variance (FPV) for four scenes in both tests.

FPV
Scene 1 Scene 2 Scene 3 Scene 4

ROI_A ROI_B ROI_A ROI_B ROI_A ROI_B ROI_A ROI_B

Average 61.137 53.003 53.218 43.762 50.285 42.683 52.141 41.349
Std 20.062 23.699 22.902 18.168 16.526 17.115 15.347 12.518

t-test t(29) = 2.376 t(29) = 2.284 t(29) = 2.178 t(29) = 3.345
p-value 0.024 0.030 0.038 0.002

Cohen’s d 0.370 0.457 0.450 0.770
Average (Sele_A) 65.057 48.197 68.975 41.640 54.8534 35.779 65.7071 43.997

Std (Sele_A) 21.458 26.514 29.388 7.320 17.579 15.588 14.582 8.400
t-test (Sele_A) t(14) = 3.661 t(5) = 2.603 t(14) = 4.512 t(8) = 3.561

p-value (Sele_A) 0.001 0.024 0.000 0.004
Cohen’s d (Sele_A) 0.699 1.276 1.148 1.824
Average (Sele_B) 56.232 64.214 43.844 57.257 45.551 49.314 39.193 53.507

Std (Sele_B) 15.411 16.056 17.754 21.942 11.067 13.758 6.446 13.878
t-test (Sele_B) t(7) = −2.034 t(5) = −1.835 t(5) = −2.487 t(6) = −2.768

p-value (Sele_B) 0.040 0.063 0.028 0.016
Cohen’s d (Sele_B) 0.507 0.672 0.301 1.322

Figure 5. Example of eye-gaze trajectories for Scenes (a) 1, (b) 2, (c) 3, and (d) 4. In the four scenes,
fixation points were more dispersed in Texture A than in Texture B.
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In the four scenes, Texture A contained dispersed fixation points because participants paid more
attention to its global features (horizontally similar to Texture S). The horizontal displays were easier
to process, which subsequently led to higher choice quantities [36,39]. Therefore, we hypothesized
that the final similarity choices and the FPVs in ROIs (especially for Textures A or B) were highly
related. That is, if the FPV in Texture A was larger than that in Texture B, the final similarity choice
tended to be Texture A; by contrast, if the FPV in Texture A was smaller than that in Texture B, the final
similarity choice tended to be Texture B. To verify this hypothesis, we conducted a paired t-test to
verify differences between choices (Textures A and B) on the basis of the FPVs in Textures A and B
(shown in Table 1). The independent variable used in the t-test was the FPVs in ROIs under a certain
final similarity choice (Texture A or B).

Analysis results showed that, for Scene 1, the FPV in Texture A was significantly greater (in the
paired t-test, t(14) = 3.661, p = 0.001) than that for Texture B when the similarity choice was Texture A
under the significance level of 0.01. The FPV in Texture B, on the other hand, was not significantly
greater (in the paired t-test, t(7) = −2.034, p = 0.040) than that for Texture A when the choice of similarity
was Texture B. For Scene 2, the FPV in Texture A was not significantly greater (in the paired t-test,
t(5) = 2.603, p = 0.024) than that for Texture B when the choice of similarity was Texture A. The FPV
in Texture B was also not significantly greater (in the paired t-test, t(5) = −1.835, p = 0.063) than that
for Texture A when the choice of similarity was Texture B. For Scene 3, the FPV in Texture A was
significantly greater (in the paired t-test, t(14) = 4.512, p = 0.000) than that for Texture B when the choice
of similarity was Texture A. However, the FPV in Texture B was not significantly greater (in the paired
t-test, t(5) = −2.487, p = 0.028) than that for Texture A when the choice of similarity was Texture B.
For Scene 4, the FPV in Texture A was significantly greater (in the paired t-test, t(8) = 3.561, p = 0.004)
than that for Texture B when the choice of similarity was Texture A. The FPV in Texture B was not
significantly greater (in the paired t-test, t(6) = −2.768, p = 0.016) than that for Texture A when the
choice of similarity was Texture B. Analysis results showed that there was no significant relationship
between final similarity choices and FPV in the ROIs.

(3) FTCs between different ROIs represent the fixation-transfer counts between different ROIs.
In this research, the subjects viewed three synthesized texture images in one scene. Their final similarity
choices between Textures A and B were determined by checking which of the two textures was more
similar to Texture S. Therefore, we mainly considered the FTCs between Textures S and A (FTCs_S,A)
and the FTCs between Textures S and B (FTCs_S,B).

As per Question (2) in the Introduction, we hypothesized that visual-similarity perception may
influence eye-movement patterns, and there are two relationships between the final similarity choice
and the FTCs between different textures (especially Textures A and S and Textures B and S). Moreover,
Atalay et al. [40] demonstrated that gaze duration and fixation frequency tended to influence the final
choice. Therefore, the relationships that we hypothesized are shown as follows:

I. If the final similarity choice was Texture A, then FTCs_S,A> FTCs_S,B.
II. If the final similarity choice was Texture B, then FTCs_S,A<FTCs_S,B.
To verify the hypothesis, we conducted a paired t-test to evaluate differences in FTCs_S,A and

FTCs_S,B for the similarity choice between Textures A and B in the four scenes. The independent
variable used in the t-test was the FTCs between different ROIs under a certain finial similarity choice
(Texture A or B). Results are shown in Table 3. For Scene 1, FTCs_S,A was significantly greater (in the
paired t-test, t(16) = 4.883, p < 0.001) than FTCs_S,B when the similarity choice was Texture A. FTCs_S,A
was much less (in the paired t-test, t(12) = −3.32, p = 0.006) than FTCs_S,B when the choice of similarity
was Texture B. The same results were obtained in Scene 2. FTCs_S,A was significantly greater (in the
paired t-test, t(11) = 2.966, p = 0.013) than FTCs_S,B when the similarity choice was Texture A. FTCs_S,A
was considerably less (in the paired t-test, t(17) = −2.247, p = 0.038) than FTCs_S,B when the similarity
choice was Texture B. In addition, in Scene 3, FTCs_S,A was significantly greater (in the paired t-test,
t(23) = 6.075, p < 0.001) than FTCs_S,B when the similarity choice was Texture A. FTCs_S,A was much
less (in the paired t-test, t(5) = −3.464, p = 0.018) than FTCs_S,B when the choice of similarity was
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Texture B. Lastly, in Scene 4, FTCs_S,A was significantly greater (in the paired t-test, t(16) = 3.289,
p = 0.005) than FTCs_S,B when the similarity choice was Texture A. FTCs_S,A was less (in the paired
t-test, t(12) = −2.241, p = 0.045) than FTCs_S,B when the choice of similarity was Texture B. Examples
of FTCs for the four scenes are shown in Figure 6. On the basis of p- and Cohen’s d-values, analysis
results verified the hypothesis that the final visual-similarity selection was related to FTCs between
the different ROIs, and it influenced the fixation-transfer counts between different ROIs.

Table 3. Statistical analysis of FTCs for four scenes in both tests.

FTCs Scene 1 Scene 2 Scene 3 Scene 4

FTCs_S,A FTCs_S,B FTCs_S,A FTCs_S,B FTCs_S,A FTCs_S,B FTCs_S,A FTCs_S,B

Average (Sele_A) 8.410 5.710 6.830 4.830 7.917 5.333 9.117 6.294
Std (Sele_A) 4.542 4.341 3.380 2.791 3.309 2.884 3.140 4.089

t-test (Sele_A) t(16) = 4.883 t(11) = 2.966 t(23) = 6.075 t(16) = 3.289
p-value (Sele_A) <0.001 0.013 <0.001 0.005

Cohen’s d (Sele_A) 0.607 0.645 0.834 0.777
Average (Sele_B) 4.460 6.230 4.110 5.560 7.667 8.500 7.231 9.1538

Std (Sele_B) 2.602 2.555 1.605 2.455 5.279 5.540 3.940 5.550
t-test (Sele_B) t(12) = −3.320 t(17) = −2.247 t(5) = −3.464 t(12) = −2.241

p-value (Sele_B) 0.006 0.038 0.018 0.045
Cohen’s d (Sele_B) 0.686 0.699 0.378 0.398

Figure 6. Examples of fixation-transfer counts (FTCs) for four scenes. (a) Scene 1: FTCs in the red circle
on the right were greater than those in the blue circle on the left; the final similarity choice was Texture
B. (b) Scene 2: FTCs in the red circle on the right were greater than those in the blue circle on the left;
the final similarity choice was Texture B. (c) Scene 3: FTCs in the blue circle on the right were less than
those in the red circle on the left; the final similarity choice was Texture A. (d) Scene 4: FTCs in the
blue circle on the right were less than those in the red circle on the left; the final similarity choice was
Texture A.

5. Discussion and Conclusions

Two main issues were studied in this experiment. The first was related to how global and local
features influence eye-movement patterns under similarity perception, and the second was related to
the relationship between similarity choice and eye-movement patterns.
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Regarding the first issue, TFD and FPV in each ROI were calculated to analyze eye-movement
patterns. Generally, a high TFD value was attributed to the attractiveness of an ROI [41]. For Scenes 1–4,
the TFD in Texture B was longer than that in Texture A. This reflected that Texture B got more attention.
However, some studies had different views. Long fixation duration on an ROI indicates that the ROI
is too complex to understand [42,43]. In this research, textures in each scene were synthesized with
the PGPC texture model. The complexities of grains and skeletons that were used in the synthesis
were at the same level of complexity. Therefore, the only difference of complexity for Textures A and
B was shown in directionality (for Scenes 1 and 2) and density (for Scenes 3 and 4). Deng et al. [36]
demonstrated that horizontal displays are easier to process. This also proves our finding that the
TFD in Texture A was shorter than the TFD in Texture B. Previous research [24] demonstrated that
similarity has a different effect on processing global and local features. In the present study, fixations
in Textures A and B showed different distributions under similarity perception. Textures A and S had
a similarity of global features, and the fixation points in Texture A were dispersed. Textures B and S
had a similarity of local features, and the fixation points in Texture B were relatively concentrated.

In terms of the second issue, we summarized the experiment data corresponding to the two types
of relationships between final similarity choice and FTCs between the different ROIs; results are shown
in Table 4. A total of 88.2%(15/17) of subjects in Scene 1, 75.0% (9/12) of subjects in Scene 2, 87.5%
(21/24) of subjects in Scene 3, and 76.5% (13/17) of subjects in Scene 4 transferred more frequently
between Textures A and S than between Textures B and S; these subjects believed that Texture A was
more similar to Texture S. Meanwhile, a total of 61.5% (8/13) of subjects in Scene 1, 72.2% (13/18)
of subjects in Scene 2, 83.3% (5/6) of subjects in Scene 3, and 61.5% (8/13) of subjects in Scene 4
transferred more frequently between Textures B and S than between Textures A and S; these subjects
regarded Texture B as more similar to Texture S. Furthermore, we conducted a paired t-test to evaluate
differences in FTCs_S,A and FTCs_S,B in the similarity choice between Textures A and B for the four
scenes. On the basis of paired t-test results, we concluded that the final similarity choice was closely
related to the FTCs of different textures viewed in the tests. This was in accordance with previous
research that transitions between different fixations are related to the search behavior and expectations
of the observers [44].

Table 4. FTCs in different ROIs of four tests and final similarity selection.

Relationships Scene 1 Scene 2 Scene 3 Scene 4

I 15/17 9/12 21/24 13/17
II 8/13 13/18 5/6 8/13

In conclusion, we investigated whether global and local features influence eye-movement patterns
in texture-similarity perception. When the texture was globally similar to the texture being compared,
the fixation points in the texture were highly dispersed. By contrast, when the texture was locally
similar to the texture being compared, the fixation points in the texture were highly concentrated.
Furthermore, the domination of global and local features influences viewers’ similarity choice. The final
visual-similarity selection was related to FTCs between different ROIs, but not related to the TFD in
each ROI. This research contributes to analyzing the pattern of texture recognition using an eye-tracker
and extends a new application of the mathematical morphology-based texture model to human
visual perception.

The texture stimuli utilized in the experiment were limited. In our future work, we aim to
synthesize different types of textures for experimental research. We will further analyze other metrics
of eye-movements to investigate the relationship between similarity perception and global/local
processing.



Appl. Sci. 2020, 10, 5552 13 of 15

Author Contributions: Conceptualization, X.G. and L.L.; methodology, X.G. and L.L.; software, X.G.; validation,
X.G., L.L., and A.A.; formal analysis, C.M.A.; investigation, X.G.; resources, L.L.; data curation, L.L.; writing,
original draft preparation, X.G.; writing, review and editing, X.G. and L.L.; visualization, X.G.; supervision, A.A.;
project administration, X.G.; funding acquisition, X.G. All authors have read and agreed to the published version
of the manuscript.

Funding: This project was funded by the National Natural Science Foundation of China (Grant No. 61603228),
the Shanxi Province Science Foundation for Youths (Grant No. 201901D211171), the Research Project Supported by
Shanxi Scholarship Council of China (Grant No. HGKY2019001), and the Scientific and Technological Innovation
Programs of Higher Education Institutions in Shanxi (Grant No. 2020L0036).

Acknowledgments: The authors thank the experiment participants.

Conflicts of Interest: The authors declare no potential conflict of interest with respect to the research, authorship,
and publication of this article.

References

1. Navon, D. Forest before trees: The precedence of global features in visual perception. Cogn. Psychol. 1977,
9, 353–383. [CrossRef]

2. Beaucousin, V.; Simon, G.; Cassotti, M.; Pineau, A.; Houdé, O.; Poirel, N. Global interference during early
visual processing: ERP evidence from a rapid global/local selective task. Front. Psychol. 2013, 4, 539.
[CrossRef] [PubMed]

3. Shedden, J.M.; Reid, G.S. A variable mapping task produces symmetrical interference between global
information and local information. Percept. Psychophys. 2001, 63, 241–252. [CrossRef]

4. Volberg, G.; Hübner, R. Deconfounding the Effects of Congruency and Task Difficulty on Hemispheric
Differences in Global/Local Processing. Exp. Pscyhol. 2007, 54, 83–88. [CrossRef] [PubMed]

5. Martin, M. Local and global processing: The role of sparsity. Mem. Cogn. 1979, 7, 476–484. [CrossRef]
6. Ripoll, T.; Fiere, E.; Pelissier, A. Relative weight of localand global properties depends on both the position

of local elements and the saliency of global orm. Exp. Psychol. 2005, 52, 272–280. [CrossRef]
7. Lamb, M.R.; Robertson, L.C. The effect of visual angle on global and local reaction times depends on the set

of visual angles presented. Percept. Psychophys. 1990, 47, 489–496. [CrossRef]
8. Poirel, N.; Pineau, A.; Mellet, E. Implicit identification of irrelevant local objects interacts with global/local

processing of hierarchical stimuli. Acta Psychol. 2006, 122, 321–336. [CrossRef]
9. Poirel, N.; Pineau, A.; Mellet, E. What does the nature of the stimuli tell us about the Global Precedence

Effect? Acta Psychol. 2008, 127, 1–11. [CrossRef]
10. Schyns, P.G.; Oliva, A. From blobs to boundary edges: Evidence for time- and spatial-scale-dependent scene

recognition. Psychol. Sci. 1994, 5, 195–200. [CrossRef]
11. Oliva, A. Gist of the Scene. In Neurobiology of Attention; Itti, L., Rees, G., Tsotsos, J.K., Eds.; Elsevier:

San Diego, CA, USA, 2005; pp. 251–256.
12. Oliva, A.; Torralba, A. Building the gist of a scene: The role of global image features in recognition.

Prog. Brain Res. 2006, 155, 23–36. [PubMed]
13. Oliva, A.; Schyns, P.G. Diagnostic colors mediate scene recognition. Cognit. Psychol. 2000, 41, 176–210.

[CrossRef] [PubMed]
14. Kimchi, R. Primacy of wholistic processing and global/local paradigm: A critical review. Psychol. Bull. 1992,

112, 24–38. [CrossRef] [PubMed]
15. Kimchi, R. Uniform connectedness and grouping in the perceptual organization of hierarchical patterns.

J. Exp. Psychol. Hum. Percept. Perform. 1998, 24, 1105–1118. [CrossRef]
16. Dulaney, C.L.; Marks, W. The effects of training and transfer on global/local processing. Acta Psychol. 2007,

125, 203–220. [CrossRef]
17. Li, L.; Asano, A.; Asano, C.M.; Okajima, K. Statistical quantification of the effects of viewing distance on

texture perception. J. Opt. Soc. Am. Opt. Image Sci. Vis. 2013, 30, 1394–1403. [CrossRef]
18. Murphy, K.P.; Torralba, A.; Freeman, W.T. Using the forest to see the trees: A graphical model relating

features, objects and scenes. In Advances in Neural Information Processing Systems; MIT Press: Vancouver, BC,
Canada, 2003.

http://dx.doi.org/10.1016/0010-0285(77)90012-3
http://dx.doi.org/10.3389/fpsyg.2013.00539
http://www.ncbi.nlm.nih.gov/pubmed/23986728
http://dx.doi.org/10.3758/BF03194465
http://dx.doi.org/10.1027/1618-3169.54.1.83
http://www.ncbi.nlm.nih.gov/pubmed/17341018
http://dx.doi.org/10.3758/BF03198264
http://dx.doi.org/10.1027/1618-3169.52.4.272
http://dx.doi.org/10.3758/BF03208182
http://dx.doi.org/10.1016/j.actpsy.2005.12.010
http://dx.doi.org/10.1016/j.actpsy.2006.12.001
http://dx.doi.org/10.1111/j.1467-9280.1994.tb00500.x
http://www.ncbi.nlm.nih.gov/pubmed/17027377
http://dx.doi.org/10.1006/cogp.1999.0728
http://www.ncbi.nlm.nih.gov/pubmed/10968925
http://dx.doi.org/10.1037/0033-2909.112.1.24
http://www.ncbi.nlm.nih.gov/pubmed/1529037
http://dx.doi.org/10.1037/0096-1523.24.4.1105
http://dx.doi.org/10.1016/j.actpsy.2006.07.001
http://dx.doi.org/10.1364/JOSAA.30.001394


Appl. Sci. 2020, 10, 5552 14 of 15

19. Torralba, A.; Oliva, A.; Castelhano, M.S.; Henderson, J.M. Contextual guidance of eye-movements and
attention in real-world scenes: The role of global features in object search. Psychol. Rev. 2006, 113, 766–786.
[CrossRef]

20. Najemnik, J.; Geisler, W.S. Eye movement statistics in humans are consistent with an optimal search strategy.
J. Vis. 2008, 8, 4. [CrossRef]

21. Cheng, Z.; Chuk, T.; Hayward, W.G.; Chan, A.; Hsiao, J.H. Global and Local Priming Evoke Different Face
Processing Strategies: Evidence from An Eye Movement Study. J. Vis. 2015, 15, 154. [CrossRef]

22. Huang, X.; Chen, D.; Han, X.; Chen, Y. Glocal and local features for accurate impression estimation of cloth
fabric images. In Proceedings of the 2013 IEEE/SICE International Symposium on System Integration, Kobe,
Japan, 15–17 December 2013; pp. 486–489.

23. Eisa, M. Combined Local and Global Features for Improving the Shape Retrieval. Int. J. Comput. Sci. Issues
2014, 11, 12–20.

24. Blanca, M.J.; Luna, R.; López-Montiel, D.; Zalabardo, C.; Rando, B. Effect of the similarity between target
and global and local levels in hierarchical stimuli processing. Psychol. Res. 2002, 66, 124–132. [CrossRef]
[PubMed]

25. Asano, A.; Ohkubo, T.; Muneyasu, M.; Hinamoto, T. Primitive and point configuration texture model and
primitive estimation using mathematical morphology. In 10th Scandinavian Conference on Image Analysis;
Lecture Note in Computer Science 2749; Springer: Berlin/Heidelberg, Germany, 2003; pp. 178–185.

26. Li, L.; Asano, A.; Asano, C.M.; Muneyasu, M.; Hanada, Y. Dual Primitive Estimation of Textures. IEICE Trans.
Fundam. Electron. Commun. Comput. Sci. 2011, 94, 1165–1169. [CrossRef]

27. Yang, L.; Li, L.; Asano, C.M.; Asano, A. Primitive and grain estimation using flexible magnification for a
morphological texture model. In 10th International Symposium on Mathematical Morphology; Lecture Note in
Computer Science 6671; Springer: Berlin/Heidelberg, Germany, 2011; pp. 190–199.

28. Yang, L.; Asano, A.; Li, L.; Asano, C.M.; Kurita, T. Multi-Structural Texture Analysis Using Mathematical
Morphology. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2012, 95, 1759–1767. [CrossRef]

29. Yamada, M.; Fukuda, T. Quantitative evaluation of eye-movements as judged by sight-line displacements.
SMPTE J. 1986, 95, 1230–1241. [CrossRef]

30. Yamada, M.; Fukuda, T.; Hirota, M. Development of an eye-movement analyzer possessing functions for
wireless transmission and autocalibration. Med. Biol. Eng. Comput. 1990, 28, 317–324. [CrossRef]

31. Tobii Technology. Tobii Studio 3.3.0 User Manual; Tobii Technology: Danderyd, Sweden, 2014.
32. Zhang, Y.; Hornof, A.J. Mode-of-disparities error correction of eye-tracking data. Behav. Res. Methods 2011,

43, 834–842. [CrossRef]
33. Hwang, Y.M.; Lee, K.C. Using an Eye-Tracking Approach to Explore Gender Differences in Visual Attention

and Shopping Attitudes in an Online Shopping Environment. Int. J. Hum. Comput. Interact. 2017, 34, 15–24.
[CrossRef]

34. Goldberg, J.H. Measuring Software Screen Complexity: Relating Eye Tracking, Emotional Valence, and
Subjective Ratings. Int. J. Hum. Comput. Interact. 2014, 30, 518–532.

35. Sendurur, E.; Yildirim, Z. Students’ Web Search Strategies With Different Task Types: An Eye-Tracking Study.
Int. J. Hum. Comput. Interact. 2014, 31, 101–111.

36. Deng, X.; Kahn, B.E.; Unnava, H.R.; Lee, H. A Wide variety: Effects of horizontal versus vertical display on
assortment processing, perceived variety, and choice. J. Mark. Res. 2016, 53, 682–698. [CrossRef]

37. Social Science Statistics. Available online: http://www.socscistatistics.com/effectsize/Default3.aspx
(accessed on 3 October 2019).

38. Wassertheil, S.; Cohen, J. Statistical Power Analysis for the Behavioral Sciences. Biometrics 2006, 26, 588.
[CrossRef]

39. Van der Lans, R.; Wedel, M. Eye Movements during Search and Choice. In Handbook of Marketing Decision
Models; Wierenga, B., van der Lans, R., Eds.; International Series in Operations Research & Management
Science; Springer: Cham, Switzerland, 2017; p. 254.

40. Atalay, S.; Bodur, H.O.; Rasolofoarison, D. Shining in the center: Central gaze cascade effect on product
choice. J. Consum. Res. 2012, 39, 848–866. [CrossRef]

41. Resnick, M.L.; Albert, W. The Impact of Advertising Location and User Task on the Emergence of Banner Ad
Blindness: An Eye-Tracking Study. Int. J. Hum. Comput. Interact. 2013, 30, 206–219.

42. Just, M.A.; Carpenter, P.A. Eye fixations and cognitive processes. Cogn. Psychol. 1976, 8, 441–480. [CrossRef]

http://dx.doi.org/10.1037/0033-295X.113.4.766
http://dx.doi.org/10.1167/8.3.4
http://dx.doi.org/10.1167/15.12.154
http://dx.doi.org/10.1007/s004260100078
http://www.ncbi.nlm.nih.gov/pubmed/12132115
http://dx.doi.org/10.1587/transfun.E94.A.1165
http://dx.doi.org/10.1587/transfun.E95.A.1759
http://dx.doi.org/10.5594/J04053
http://dx.doi.org/10.1007/BF02446149
http://dx.doi.org/10.3758/s13428-011-0073-0
http://dx.doi.org/10.1080/10447318.2017.1314611
http://dx.doi.org/10.1509/jmr.13.0151
http://www.socscistatistics.com/effectsize/Default3.aspx
http://dx.doi.org/10.2307/2529115
http://dx.doi.org/10.1086/665984
http://dx.doi.org/10.1016/0010-0285(76)90015-3


Appl. Sci. 2020, 10, 5552 15 of 15

43. Liversedge, S.P.; Zang, C.; Zhang, M.; Bai, X.; Yan, G.; Drieghe, D. The effect of visual complexity and word
frequency on eye-movements during Chinese reading. Vis. Cogn. 2014, 22, 441–457. [CrossRef]

44. Fitts, P.M.; Jones, R.E.; Milton, J.L. Eye movements of aircraft pilots during instrument-landing approaches.
In Ergonomics: Psychological Mechanisms and Models in Ergonomics; Taylor & Francis: Park Drive, UK, 2006.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/13506285.2014.889260
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	PGPC Texture Model
	Experiment on Texture Perception with an Eye-Tracker
	Stimuli and Apparatus
	Participants
	Viewing Distance
	Procedure

	Experiment Results and Data Analysis
	Discussion and Conclusions
	References

