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Abstract: As a passive sampling device, the polar organic chemical integrative sampler (POCIS) has
the characteristics of simple operation, safety, and reliability for assessing the occurrence and risk
of persistent and emerging trace organic pollutants. The POCIS, allowing for the determination of
time-weighted average (TWA) concentration of polar organic chemicals, exhibits good application
prospects in aquatic environments. Before deploying the device in water, the sampling rate (Rs),
which is a key parameter for characterizing pollutant enrichment, should be determined and
calibrated accurately. However, the Rs values strongly depend on experimental hydrodynamic
conditions. This paper provides an overview of the current situation of the POCIS for environmental
monitoring of organic pollutants in an aquatic system. The principle and theory of the POCIS
are outlined. In particular, the effect factors such as the ambient conditions, pollutant properties,
and device features on the Rs are analyzed in detail from aspects of impact dependence and
mechanisms. The calibration methods of the Rs under laboratory and in situ conditions are
summarized. This review offers supplementary information on comprehensive understanding of
mechanism and application of the POCIS. Nevertheless, the Rs were impacted by a combined effect
of solute–sorbent–membrane–solution, and the influence extent of each variable was still unclear.
On this basis, the ongoing challenges are proposed for the future application of the POCIS in the
actual environment, for instance, the need for this device to be improved in terms of quantitative
methods for more accurate measurement of the Rs.
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1. Introduction

The development and application of a fast, efficient, and low-cost integrated sampling approach
is of great significance for monitoring the concentration and fate of trace pollutants in the water
environment, and furthermore for accurately assessing their toxicity and risk. Passive sampling is
the developing technique that is based on the flow of pollutants from environmental medium to
uptake phase due to chemical potential difference between pollutants [1–4]. On the basis of the
principle of permeation or molecular diffusion, pollutants could enter the uptake phase by passive
diffusion through a well-defined diffusion barrier or permeation through a membrane, thus achieving
the enrichment of target substances in the environment media [5]. Compared to active sampling,
the uptake rate of compounds by passive sampling is relatively low, and thus a longer exposure
time is needed for sampling in a low-concentration environment, which has a significant advantage,
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allowing the measurement of time-weighted average (TWA) concentration of target pollutants and
more comprehensively reflecting the long-term effects of these pollutants [6–9].

Nowadays, many configurations of water passive sampling devices have been proposed for
inorganic pollutants, such as diffusive gradient in thin film technique (DGT), peeper (a kind of balanced
permeate device), and Chemcatcher [6,10,11], and for organic pollutants, such as polar organic chemical
integrative sampler (POCIS), semi-permeable membrane devices (SPMDs), membrane enclosed
sorptive coating (MESCO), Chemcatcher, and others [12–16]. The development milestones in the field
of passive sampling are shown in Figure 1 [10,17]. These passive sampling devices can be performed
in two different accumulation regimes during field exposure: the kinetic linear uptake mode with
fast mass transfer rate to the uptake phase, and the equilibrium regime with slower stagnant uptake,
described by a partition coefficient of contaminant between the uptake phase and the environmental
media [18].Appl. Sci. 2019, 9, x 3 of 19 
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Figure 1. Milestones in the development of passive sampling in aquatic environment (DET: diffusive
equilibrium in thin films technique; SLM: supported liquid membrane; PISCES: passive in situ
concentration extraction sampler; PRCs: performance reference compounds; LDPE: low-density
polyethylene; SPATT: solid phase adsorption toxin tracking bags.).

The POCIS has been identified as an effective passive sampler for qualitative analysis of pesticides,
pharmaceuticals, and perfluorinated compounds (PFCs), among others, in surface water, groundwater,
and wastewater [8,19–22]. It has the advantages of simple operation, low cost, no power demand, no
maintenance requirement for isolation, and enrichment of organic compounds at low concentrations
in a water environment. Before application of POCIS for the monitoring of target compounds, it is
necessary to determine the sampling rate (Rs, the equivalent volume of water drawn by the sampler per
unit time) for each compound of interest, which is the key parameter to deduce the concentrations of
pollutant in water from the amount of pollutants accumulated by the sampling device [23]. Obtained Rs
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values can be further optimized to determine the average concentration of analytes in the environment
so as to decrease the uncertainty of in situ application [18,24–26]. It has been reported that the Rs values
would not be affected by analyte concentrations in water, however, this is totally dependent on a range
of environment factors, such as water turbulence, temperature, salinity, biofouling, physicochemical
parameters of water body, and so on [16,27–30]. For example, Yabuki et al. [27] reported that the Rs

values increased with temperature, flow rate, and pH, while Shi et al. and others [21,31–33] only
observed a significant effect of the salinity on uptakes for basic pharmaceuticals. As a matter of fact,
these environment conditions are so complex that questions still remain in these aspects as to how the
Rs values are impacted by environmental factors and how the in situ calibration methods of the Rs

need to be improved for accurate quantification of target pollutants.
Therefore, the aim of this review is to mainly focus upon on the Rs values of the POCIS in relation

to its influence factors, such as ambient factors, compound properties, and device features, as well as
its calibration method in laboratory and in situ, which would furthermore allow for a comprehensive
understanding of the mechanisms and applications related to the POCIS since the device was first
reported to measure the hydrophilicity pollutants in 1999 [34].

2. Theory of the POCIS

The POCIS, a permeation-based passive sampler, consists of a receiving phase made of solid
sorbent sandwiched between two microporous diffusion-limiting membranes [34]. The passive
diffusion of pollutants into the POCIS in an aquatic environment can be regarded as a multi-phase mass
transfer process. As shown in Figure 2, the analytes firstly transport through the water boundary layer
(WBL) from bulk water; then across biofilm, water-filled membrane pores, and the membrane matrix
transfer by molecular diffusion; and finally the analytes enter the absorbent phase inside the device [35].
Several mathematical models have been proposed to describe the dynamic process of compound
sorption in passive samplers, which have some differences in the composition of models [36]. Most of
them are based on simplified common assumptions: the existence of steady (or pseudo-stability)
state, isotropic water sampler exchange kinetics, and the linear distribution curve. In those cases,
the accumulation of analytes by passive samplers typically follow first-order kinetics (Equation (1)),
which is divided into dynamic and equilibrium stages with time [37].

Cs(t) = CwKmw
(
1− e−ket

)
(1)

where Cs(t) is the concentration (µg/g) of analyte in the sorbent; Cw is the TWA concentration (µg/L) of
the analyte in water; Kmw (ku/ke) is the partition constant (L/g) of analytes in membrane water; ke and ku

are the elimination and uptake rate constants (L/g/d), respectively; and t is exposure time (days). In the
Equation (1), the ke value can be defined as follows [38]:

ke =
Rs

KmwMs
(2)

where Rs is the sampling rate (L/d or mL/d) and Ms is the mass (g) of sorbent in the POCIS.
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The enrichment process of target compounds on sorbent in the POCIS can be divided into three
different regimes: (a) a linear (or kinetic/integrative) regime, (b) a pseudolinear regime, and (c) an
equilibrium regime. The POCIS, as an integrative sampler, generally determines TWA concentration in
a linear regime by calibrated the Rs [39]. During a kinetic regime, the ke is negligible compared to the
ku, and thus Equation (1) is simplified to Equation (3):

Cs(t) = Cwkut (3)

By substituting the ku with the sampling rate Rs, Equation (3) can be changed to an equivalent
relationship, as expressed by Equation (4):

Cs(t) =
CwRst

Ms
(4)

The diffusion of analytes into the POCIS in an aquatic environment is a complicated mass transfer
process through the WBL, biofilm, and the membrane matrix, entering the receiving absorbent (Figure 2).
Under WBL control [13,34], the Rs can be described by Equation (5):

Rs = (Dw/δw)A (5)

where Dw is the diffusion coefficient in water; δw is the effective thickness of the WBL, and A is the
surface area of the sampler. Under membrane control, the Rs can be expressed by Equation (6):

Rs = (Dm/δm)KmwA (6)

where Dm is the diffusion coefficient in the membrane and δm is the thickness of the membrane.
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3. Influence Factors of Rs

3.1. Influence of Environmental Factors on Rs

3.1.1. Water Flow Rate

Many studies have reported a several-fold increase in Rs values under water turbulence state
compared to those under static state [32,40–43]. The summary of Rs values from 23 previous studies
are presented in Figure 3. The further statistical analysis of data revealed a substantial positive
correlation between water flow rate and the Rs values due to the rise in diffusion rate and the decrease
of WBL thickness by increasing turbulence [13,21,26,27,41–59]. Not surprisingly, however, a significant
variability was observed in the Rs/A values, ranging from 4.73 × 10−5 to 1.63 × 10−1 L/cm2/d at flow
rate from unstirring to 16.75 cm/s since different pH values, various temperatures, and diverse analytes
were used in the calibration experiments from the literature [44,53,57,58].
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With regard to the influence of water flow rate on the Rs values, researchers deduced a common
view that the variation of the Rs values with flow rate is controlled by the thickness of WBL because the
fixed Rs values for different analytes were obtained at a given flow rate [60]. By considering that the
total resistances to mass transfer were equivalent to the sum of the resistances for transport through the
WBL, the membrane, and the sorbent, the effect of mass transfer through the WBL on the Rs of polar
organic compounds can be understood more comprehensively as it is expressed in Equation (7) [61,62].

Figure 3. Summary of the Rs (L/cm2/d) of the POCIS determined in previous studies at different water
flow rates: (a) distribution of the Rs with water flow rate; (b) statistical analysis of the Rs (the Rs values
were normalized to the unit surface area of the passive sampler, and the data source was from 23
previous studies).

With regard to the influence of water flow rate on the Rs values, researchers deduced a common
view that the variation of the Rs values with flow rate is controlled by the thickness of WBL because the
fixed Rs values for different analytes were obtained at a given flow rate [60]. By considering that the
total resistances to mass transfer were equivalent to the sum of the resistances for transport through the
WBL, the membrane, and the sorbent, the effect of mass transfer through the WBL on the Rs of polar
organic compounds can be understood more comprehensively as it is expressed in Equation (7) [61,62].
When transport through the membrane was only via the pore, Equation (7) could be presented as
Equation (8):

1
ko

=
A
Rs

=
1

kw
+

1
Kmwkm

+
1

Kbwkb
(7)

1
ko

=
δw

Dw
+
δmθ2

Φkm
+

1
Kbwkb

(8)

where ko is the overall mass transport coefficient (MTC); kw, km, and kb are the MTC for the WBL, the
membrane, and the biofilm, respectively; A is the exposure surface area of the sampling device; Kmw

and Kbw are the partition coefficient of the membrane water and the biofilm water, respectively; θis the
tortuosity; andΦ is the membrane porosity. It was very clear from Equations (7) and (8) that the δw value
had a negative relationship with the Rs, indicating that the WBL is one of key effect factors on the Rs.
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In general, the enhanced water turbulence could cause an increase of analyte diffusion and a
reduction of WBL thickness without taking account of the influence of temperature, pH, and salinity
on Rs [48,63]. Nevertheless, when the WBL thickness reduced to a certain extent, where further
increase in flow rate would no longer affect the Rs values, the components of membrane and/or pore
characteristics should dominate the Rs [55]. Numerous experiments have been carried out under
laboratory conditions to explore the cumulative dynamics of samplers controlled by water membrane
interface. It was found that there was a large deviation in the Rs values obtained under in situ and
laboratory conditions for the same pollutant [26,49,52]. This variability was mainly due to the diverse
environmental conditions that have been poorly explored.

Owing to the key role of water flow rate in the mass transfer process of contaminants, it is
necessary to calibrate this factor for reducing the monitoring error by POCIS, presumably through
determining the difference in Rs between quiescent and turbulent conditions and keeping the error of
Rs caused by different velocity in confidence intervals, or establishing the empirical functions of Rs and
flow rate by a large number of experiments in laboratory and in situ conditions.

3.1.2. Temperature

Temperature, as one of important factors in the calibration of passive samplers, plays a crucial
role in the determination of the Rs. Several studies have reported that the Rs values for some polar
organic contaminants generally increased with the temperature [27,64,65], although these effects were
relatively small [50]. The effects of temperature on the Rs might be associated with the solubility and
mobility of analytes, the octanol–water partition coefficient (Kow), and the permeability of polymers in
membrane [66]. Theoretically, the increase in temperature would cause an enhancement in mobility
and solubility of analytes, thus facilitating the transfer of analytes from aqueous solutions to adsorbents
in the POCIS. Equation (9) shows the relationship between Rs and temperature, which can be used to
calibrate the error caused by temperature effect.

ln Rs = ln a− ∆Ea

RT
(9)

where R is the universal gas constant (kJ/mol/K), a is the pre-exponential factor expressing the maximum
uptake rate at infinite temperature, T is the absolute temperature (K), and ∆Ea is the activation energies
(kJ/mol).

On the other hand, the temperature affected the permeability of polymers, and thus determined
the diffusion coefficient and solubility of analytes in polymers [67], which could be described by using
Arrhenius equations:

S = S0 exp
(
−Hs

RT

)
(10)

D = D0 exp
(
− Ed

RT

)
(11)

P = P0 exp
(
− Ep

RT

)
(12)

where S0, D0, and P0 are the standard solubility, diffusion coefficient, and permeability coefficient,
respectively; Hs is the heat of sorption; Ed is the activation energy for diffusion; and Ep is the activation
energy for permeation. Through combination of Equations (10)–(12), the Ep can be expressed as
Equation (13), where two parameters, Hs and Ed, depend on the net change of permeability of polymers
with temperature.

Ep = Ed + Hs (13)

It has been shown that the diffusion coefficient of analytes in the polymer polydimethylsiloxane
(PDMS) increased with temperature, whereas the partition coefficient decreased with temperature [68].
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For polymers poly(tetrafluoroethylene) (PTFE), poly(ethersulfone (PES), and polyethylene, an enhanced
permeability was found with increasing temperature [69].

3.1.3. pH

The solution pH values influenced the existing form of target compounds, further affecting their
hydrophobicity, solubility, and charge properties. These physicochemical natures determined the
sorption of compounds onto the adsorptive phase, thus affecting the Rs values [70,71].

The pH dependence of the Rs values was strongly related to the type of compounds. Li et al. [51]
reported that the Rs values for acidic pharmaceuticals decreased as pH increased from 3 to 9,
whereas those for basic compounds, such as β-blockers and anti-depressants, increased as the pH
increased from 3 to 9. As for the neutral drugs, e.g., carbamazepine and phenolic compounds with
high ionization constant, there were no significant impacts on the Rs values by the ambient pH values.
Similar results were also obtained for organophosphate flame retardants (OPFRs) by Yang et al.,
who reported that the calculated Rs values for the neutral molecules exhibited a slight variation in the
pH range from 3 to 9 [72]. Therefore, due to differences in charge and physicochemical properties of
the various species of a given compound, their uptake into passive sampler might differ significantly,
resulting in the diverse pH dependence of the Rs for various compounds [31].

3.1.4. DOM

The sorption of chemicals onto dissolved organic matter (DOM) was controlled by their
hydrophobicity, as characterized by the Kow values. The partition of organic contaminant into
the hydrophobic center of DOM might be through induced dipole interaction [73–75]. The presence of
DOM promoted the sorption of chemicals on membrane in devices and made the mass transfer process
difficult through the membrane, thus reducing the accumulation of hydrophobic organic contaminants
into passive sampler [76]. The opposite conclusion has also been proposed by Charlestra et al.,
where the association of hydrophilic pesticides with DOM limited the sorption extent of pollutants onto
the membrane surface in POCIS [77]. Moreover, several studies found that diffusive mass transfer of
hydrophobic organic pollutants through the WBL could be enhanced by the presence of DOM [78,79].
These different results suggested that several factors apart from hydrophobicity influenced the Rs

values, for instance, the sorption of pharmaceuticals to DOM was driven not only by Kow of compounds,
but also by the combined effect of DOM properties, pH value, and chemical properties in the sorption
process [80,81]. In addition, the effect of DOM concentration on the Rs values has been explored in
several studies, where the agreed result was achieved, with little impact on Rs values by increasing
DOM concentration [51,72,77].

Given the complex structure and diverse composition of DOM, the Rs for different pollutants are
significantly diverse. Before using POCIS for monitoring chemicals, researchers should determine the
effect of DOM on the device by a laboratory–field combined calibration method to obtain whether the
caused error can be ignored.

3.1.5. Salinity

The salinity impact on the Rs values of chemicals by the POCIS is related to the properties of the
compounds, in particular to chemical groups. In general, the hydrophilicity of some organic pollutants
would be reduced with the increase of salinity, affecting the partition coefficient of the pollutants.
Togola et al. [64] found that with increasing salinity, the Rs for acidic compounds exhibited subtle
change, whereas for basic compounds they showed an obvious reduction. Shi et al. [32] explored
the effect of salinity in the range of 0–35%� on the Rs of the POCIS, with the results showing that the
maximum Rs value was achieved at a salinity of 14%�.

The influence of salinity on the Rs might be explained by the salting-out effect [82]. This effect
increased with the size of the solute molecule and decreased with the polarity of the solute molecule [83];
thus, for most polar compounds in POCIS, the salting-out effect should not be statistically significant.
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Accordingly, caution should be taken in the application of freshwater-derived Rs values to the marine
environment due to the difference in partition coefficients of chemicals between membrane water in
both environments [84,85]. Nevertheless, the impact mechanisms of salinity and the accurate salinity
dependence of the Rs value are still unknown and require more investigation.

3.1.6. Biofouling

When passive sampler was deployed in waterbody, biofilm layers (microorganisms, plants, algae,
or animals) might be formed on the filter membrane surface, resulting in biofouling [86]. Several studies
suggested that the biofouling layer could be described as the water layer with dispersed organic
matter [87–89], and the mass transport coefficient (kb) for this layer was given as:

kbKbw =
Φ2Dw

θδb
(14)

where δb is the effective thickness of biofilm and other parameters referred to in Equation (8).
This equation indicated that the biofilm was similar to an immobilized water layer and the kb value
was independent on the Kbw.

The biofouling layer had an inhibitory effect on the diffusion of analyte, and thus impacted the Rs

of target analyte through an increased biofilm layer with deployed time [90]. This phenomenon might
be explained by the facts that the filter membrane pores were physically clogged by biofilm [91,92] and
interfacial physical–chemical reactions occurred between algae, metal oxides, dissolved substance, and
the analyte on the membrane surface [39,93].

Nevertheless, a different view was proposed by some researchers [86,87,94,95], who showed an
insignificant effect of biofouling on the Rs for more compounds, especially for hydrophilic compounds.
In those publications, the biofilm was regarded as a water layer with dispersed organic matter, and the
hydrophilic compounds could permeate this layer faster.

The error of Rs caused by biofouling can be corrected by a mathematical model (as shown in
Equation (14)) simulating the impact of biofouling on the mass transfer of pollutants, as well as by
performance reference compounds (PRCs) as an effective calibration method, correcting the impact of
biological pollution.

3.2. Influence of Pollutant Nature on Rs

In previous studies, more efforts have been made to explore the correlation between Rs values
of the POCIS and log Kow or logarithmic octanol–water distribution coefficient (log D) of analytes;
unfortunately, no consistent results were obtained. A poor correlation between the Rs and log Kow or
log D values was observed by Shaw et al. [96] and a large scattering was found by Gunold et al. [97].
Meanwhile, several researchers suggested the non-linear or linear relationship between the Rs of
POCIS and log Kow or log D values [53,57,71] Those different results [51,98–100] were more likely due
to the diverse functional groups of chemicals that were linked to variable trend of their hydrophobicity
with alteration of solution pH values. As expressed in Equations (15) and (16) [101], the D value
(representing the effective distribution of the neutral and ionic parts of compounds between octanol
and water) could be adjusted according to the pH value of the medium, the pKa of the given chemical
and the Kow values [51].

DAcid = Kow/
(
1 + 10pH−pKa

)
(15)

DBase = Kow/
(
1 + 10pKa−pH

)
(16)

Therefore, Li et al. [51] found that in terms of pH values, the log D values decreased for acidic
pharmaceuticals and increased for basic pharmaceuticals. This phenomenon revealed a positive
relationship between the Rs and log D over the pH range of 3–9 and the higher Rs for neutral substances
than those for ionic substances by POCIS. Using 88 polar organic micropollutants as targets to examine
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the correlation between in situ Rs value and log D, researchers found a slight linear correlation
between the Rs and log D in spite of the low regression coefficient (R2 = 0.37) and existing uncertainty.
In general, polar ionic compounds with low log D had lower Rs values than neutral ones with higher
log D [100]. It was also reported that for some of pharmaceuticals and personal care products (PPCPs)
and endocrine-disrupting substances (EDS) with the log Kow range from 0 to 4, there was a positive
correlation between the Rs and log Kow, whereas for those with log Kow values higher than 4, the upward
trend of the Rs was not significant [50]. This was in agreement with Ibrahim’s research, where, using
a second-order polynomial function to perform a non-linear regression between the Rs and log Kow

value, the author observed an increased Rs value with the hydrophobicity for compounds with log Kow

range from 1.2 to 3.7, reaching a plateau afterwards [25].
The uptake of pollutant in the integrative phase is governed by its diffusion across WBL and

membrane in the POCIS [18]. The diffusion coefficient of a chemical is inversely proportional to
molecular mass; thus, a negative correlation of the Rs values with molecular mass would be expected.
However, Bartelt et al. [26] performed a regression analysis to determine the relationship between
molecular mass of compounds and the Rs for the neutral compounds; unfortunately, no clear linear
correlation was observed between both variables. Additionally, the data summary of the Rs values
of POCIS determined in 23 previous studies [13,21,26,27,41–59] for different chemicals with various
molecular mass was presented in Figure 4. As expected, a large scattering between Rs values and
molecular mass was obtained with a relative weak relationship (R2 = 0.011), which was mainly due to
a combined effect of solute–sorbent–solution on the Rs value, such as the interaction between chemical
function groups of analytes and sorbents.
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3.3. Influence of Sampling Device on Rs

3.3.1. Membrane Properties

The membranes used in passive sampler play a key role in hindering mass transfer of
analytes and preventing direct contact of analytes with the adsorbent material during deployment.
Škodová et al. [102] compared two different passive samplers for the uptake of steroid and the results
showed that the chemcatcher-type sampler without diffusion-limiting PES membrane had a greater Rs

value than the POCIS. However, considering the uncertainties (such as DOM, suspended particles,
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and biofouling) caused by long-term deployment in the water environment, the POCIS with membrane
could be better for monitoring trace contaminants. As a channel connecting the aqueous phase with
sorbent, the exposed surface area of membrane is a crucial effect factor on the number of compounds
accumulated. Zhang et al. [103] found a significant positive relationship between exposure area and
the Rs of the POCIS.

The properties of a membrane are crucial in mass transfer of the target compounds. It has
been indicated that some chemicals have significant sorption onto the membrane, which results in
a slow response for analyte concentrations in fluctuating aqueous phase and exhibits substantial
lag times [29,59,96,104,105]. Satoshi and Yunosuke [106] characterized the sorption and permeation
properties of membranes PES and PTFE by experimental and modelling methods. The results showed
that the PES possessed strong sorption for some compounds, owing to its molecular structure with
phenyl and sulfonate groups, whereas the sorption of those compounds on the PTFE was generally
weak and their mass transfer was controlled by the WBL and the diffusion in membrane pore.
Several sorption mechanisms, for instance, π–π cloud, electrostatic, van der Waals’ force (VDW), and
hydrogen bonding, controlled the behavior of these compounds on both the membrane and internal
surface of sorbent [107,108].

3.3.2. Sorbent

As the enrichment phase in the sampling devices, the sorbent should not be ignored in terms of
its impact on the Rs [10,109]. The hydrophilic lipophilic balance (HLB) sorbent widely used in the
POCIS might adsorb hydrophilic, lipophilic, and amphiphilic molecules in different surface sites; thus,
the competitive sorption appeared when different types of pollutants were enriched at the same time.
The affinities of sorbent for different chemicals would affect the Rs values [18,110].

The environmental factors would also affect the distribution process of pollutants on the sorbent,
for instance, the effect of pH was largely attributed to the increased negative potential of the Oasis
HLB at higher pH values, leading to electrostatic repulsion/attraction [111].

4. Measurement/Calibration of Rs

The calibration of the Rs usually involves the exposure of the sampler to water with a known
concentration of analytes under controlled laboratory conditions, and the application of performance
reference compounds (PRCs) and passive flow monitor (PFM) in field conditions [18]. Each calibration
program has different data requirements.

4.1. Laboratory Calibration

4.1.1. Static Depletion Design

The design of a static depletion experiment was used to monitor a single peak of the target
compounds and subsequent reduction of analyte concentration in the exposure solution [112,113].
Using first-order dissipation kinetics (Equation (1)), researchers detected, with time, the decrease of
analyte concentration in water; thus, the Rs of the passive samplers was estimated [20]. If there was no
competing sorption phase (e.g., particulate or dissolved organic matter) in the exposure system and
the concentration in the sampler was much lower than its equilibrium value, in a short time, Equation
(1) could be converted to Equation (4) for the calibration of the Rs [114].

This calibration method possesses specific advantages, such as simple procedure, low cost, and
easy operation to alter environmental variables. It should be noted that the control experiment in
this calibration had to be performed to avoid the analyte losses in the processes other than sampling
accumulation. For instance, there was evidence that a large amount of analytes might have remained
in the membrane [34,59], which was always ignored in the calibration, causing a measurement error.
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4.1.2. Static Renewal Design

In this calibration mode, the samplers were deployed in a relatively small volume of exposed
water, which was refreshed batchwise. To minimize the reduction of analyte concentration due to
uptake into samplers during each batch exposure, the frequency for refreshing test water should
be high and the solution concentration should be measured at the beginning and the end of each
renewal period [29,87]. When the average aqueous concentrations did not change greatly during
renewals, the uptake curve was generated, allowing for a more straightforward modelling of the Rs by
Equation (4) [71].

There are some strengths in this calibration method, such as simple operation, great feasibility
to test many types of waters, and easy performance to alter environmental variable. However, this
method has some disadvantages, for example, intensive exposure in water sampling and analysis, and
the inability to systematically test the effects of water turbulence [112].

4.1.3. Continuous Flow Design

The aim of continuous flow design was to prevent depletion of aqueous solution by a continuous
supply of freshly contaminated water to the exposure chamber, where multiple samplers were deployed
under identical hydrodynamic conditions and the same aqueous concentration [87,112]. During the
calibration experiment, the sorption of dissolved organic or inorganic matter should be negligible
in order to avoid overestimating the concentration of analytes in solution. Stable concentrations in
solution might be maintained if the flushing rate could be made up for the total sampling rate of
all samplers [16,115]. The samplers were gradually removed from the exposure chamber, followed
by eluting the sorbent to assess the Rs of analyte. It should be noted that with decreasing sampler
numbers, the flushing rate might be reduced if the hydrodynamic condition is kept constant [65,116].
When aqueous concentrations are maintained constant, the relationship of Rs and Cs(t) might be fitted
by Equation (4). If aqueous concentrations are unstable, a second-order polynomial function in time
(Equation (17)) could be used to describe the concentration change in sorbent [87].

Cs(t)
Kmw

=

(
C0 − C1

ke
+

2C2

k2
e

)
[1− exp(−ket)] +

(
C1 − 2C2

ke

)
t + C2t2 (17)

where C0, C1, and C2 are the constants of polynomial function.

4.2. In Situ Calibration

4.2.1. Passive Flow Monitors

Passive flow monitors (PFMs) is based on plaster dissolution that has been successfully used to
assess water movement (flow and turbulence) in a field experiment [117]. At a given salinity and
temperature, the loss of a specific plaster material, such as calcium sulfate, over a given surface area
could be described by an empirical calibration exponent that linked the loss of plaster with the velocity
and/or turbulence of the water.

As a cheap, simple, and reproducible in situ external calibration technique, PFMs have been
successfully used to calibrate the Rs of chemicals, including phosphate and polar or nonpolar herbicides
and pesticides in the phosphate sampler, chemcatcher, POCIS, and SPMD [117–121]. This calibration
explained the change in the Rs with water flow velocity and ionic strength by chemical-involved
and sampler-specified empirical equations, and thus the TWA concentration of chemicals could be
estimated more accurately.

4.2.2. Performance Reference Compounds

The method using PRCs has been proposed to calibrate the Rs values of the POCIS under
in situ conditions [114]. In this calibration, the PRCs, as stable isotope compounds with similar
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physicochemical properties to the target chemicals, were pre-packed into the absorption phase in the
samplers prior to deployment. The synchronization between desorption of PRCs and sorption of
the target chemical was used to calculate the Rs and concentration of target chemicals in an aquatic
environment on the basis of the degree of PRC desorption [46,47,122].

For hydrophobic organic pollutants, the corresponding deuterium substitutes or 13C markers
(absent in the natural environment) and other substances with similar properties to targets have
usually been selected for PRCs. In this case, the sorption of target compounds by receiving phase and
desorption of PRCs from the absorbed phase should be in accordance with first-order kinetics [123–125].
Theoretically, the Rs and concentration of target compound in a water environment might be calculated
at any time point according to the desorption degree and the distribution coefficient of PRCs between
sorbent and water [126,127]. Due to the identical interference of ambient conditions on the sorption of
target compound and desorption of PRCs, the error in calibration could be reduced to a certain extent.
Therefore, this quantitative method has been more widely applied in the POCIS [55,128,129]. However,
many factors should be considered when applying PRCs. Firstly, the application of PRCs would
increase the relative costs for sampler preparation and analysis of the obtained extracts. Secondly, the
selection scope of chemicals as PRC is limited. Finally, the reproducibility obtained by loading the PRCs
into the receiving phase and the possible mass loss should be taken into account by researches [119].

4.3. In Silico Method

The laboratory- or field-based calibration method on the Rs would have some limitations because
the alteration of diverse environment factors caused differences in the Rs data obtained by both
determination methods. Considering the time-intensive nature of experimental determination on the
Rs, computational modelling methods might potentially overcome these limitations if modelling data
were from the in situ calibration method and also provide a solution for the calibration of that Rs value
that cannot be estimated by field experiments due to the poor correlation between concentrations of
compounds in water and on the sampling device [130].

The empirical method has been used to estimate the Rs in some previous investigations.
Stephens et al. [131] applied the dimensionless Sherwood correlation developed for the calculation of
dynamic parameters in laminar flow to estimate the Rs for some passive sampling devices. Li et al. [50]
found a linear relationship (R2 = 0.84) for the laboratory-measured Rs with a log Kow of 0–4, which could
be used to predict the Rs.

In addition to the empirical method, some specific models have been increasingly applied to
estimate related parameters of the Rs. Lin et al. [132], on the basis of a quantitative structure–activity
relationship (QSAR) model, explored the effect of DOM on sampling dynamics. With the development
of machine learning methods, the regression models can be varied from simple linear relation to
complex nonlinear functions. Miller et al. [130] used artificial neural networks (ANNs) for the first
time to model and predict the Rs of organic compounds for the POCIS.

5. Prospects

The POCIS has been identified as the appropriate tool for investigative monitoring studies and
for observing spatial and temporal distribution of polar organic compounds in water environments.
However, the ongoing challenges for the POCIS should be focused on the following aspects before the
POCIS becomes a reliable, robust, and cost-effective approach for many monitoring programs.

The improvement of sampling procedures should be made in the immediate future. Firstly, the
biofilm would be inevitably formed in actual environmental exposures of the sampler. The formation
of biofilm under field conditions caused interfacial reactions among algae, metal oxides, dissolved
substance, and the analytes on biofilm. Thus, the errors in calibration of the Rs under laboratory
and field conditions would be produced due to the differences in the composition of biofilm and the
physicochemical effects on the biofilm surface. To avoid biofilm formation, thereby reducing such
errors in calibration of the Rs, would improve the practical application of the device. Secondly, the
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membrane has been regarded as the channel for pollutant enrichment in sampler. The physicochemical
properties of membrane materials have a significant impact on the Rs. Therefore, the membrane
materials should be selected and optimized to reduce the retention time of pollutants on the membrane
and to enhance the adaptability of the membrane in the environment so as to improve the applicability
of the device in the actual environment.

The accuracy in quantitative analysis by the POCIS should be improved. Accurate Rs data are
crucial factors for a quantitative determination of chemical by the POCIS. Calibrating the Rs by in
silico approaches could provide a new way to improve the calibration accuracy of the Rs and reduce
the uncertainty in the process of operation. Nevertheless, the reasonability of parameter selection for
describing the model and the relationship between these parameters and the influence factors on the
Rs should also be further explored.
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