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Abstract: Peak management and mean management are common ways to manage the quality of
high-speed railway tracks at present. The most popular method for evaluating such tracks is the
track quality index (TQI) method, which can reflect the overall state of the equipment to a certain
extent. However, this method is likely to ignore some potential risks that threaten the operation
of a high-speed train. For more effective risk identification, an incentive factor-based dynamic
comprehensive evaluation (DCE) method was introduced to assess the geometric parameters of
a high-speed railway track. Moreover, the weights of geometric parameters were computed by a
combination of the analytic hierarchy process (AHP) and entropy based on the correlation coefficient.
The proposed method can highlight the sensitivity index of the geometric parameters, which is an
advantage over the TQI method. A case study of a high-speed railway track was performed using
the two methods, and the results were verified with the original data. It was found that the TQI
method identified only one obvious risk while the proposed method identified one obvious risk and
two potential risks. This suggests that the proposed method is more accurate in identifying the risky
sections than the TQI method.

Keywords: high-speed track; geometric parameters; dynamic comprehensive evaluation;
combined weight; incentive factor-based dynamic comprehensive evaluation

1. Introduction

With the rapid development of high-speed railway technology, the dynamic performance
requirements for high-speed trains are becoming increasingly demanding due to the increase in
vehicle speed. This brings a significant challenge to the service quality of high-speed railway tracks.
However, wheel-rail nonlinear interaction leads to a constant deterioration in the service quality of
high-speed tracks, significantly increasing the potential risks to the operation of high-speed trains.
Therefore, the need to improve service quality promotes the development of methods for high-speed
railway track management.

Many studies have provided qualitative evaluation of high-speed railway tracks. The power
spectrum density (PSD) of track irregularity was used to evaluate the railway tracks both qualitatively
and quantitatively [1]. Eric et al. [2] presented a new approach to enhancing the assessment of
track geometry quality and rail roughness using train–track interaction simulation and wavelength
content analysis. The simulations of dynamic track–vehicle interaction were also presented to assess
vertical track geometry quality. It proved an effective tool to analyze the collected track geometry,
and helped track engineers monitor track condition and make better track maintenance plans [3].
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J.M. et al. [4] proposed a new method of track evaluation based on the observation of track’s structural
defects. The method could recognize the causes of track defects along the line and the correlations
between geometric and structural defects in track. Methodologies for inspection and evaluation of
slab-track quality conditions were developed, and correlations between geometry irregularities and
structural conditions were found. The methods have proven to be efficient and practical tools to
evaluate slab-track conditions, prioritize the required repair activities, and then make appropriate
preventive maintenance decisions [5]. Several methods for evaluating track geometrical quality were
presented and compared to each other in reference [6]. The results showed that the rate of track
degradation varied according to the measurement method employed [6]. Tan et al. [7] established
the probabilistic transfer matrix model between dynamic and static TQI. The model verified that the
probabilistic transfer matrix model could be used for quantitative reference in track fine adjustment
and dynamic acceptance tests. Li [8] summarized the methods and criteria available for track geometric
quality assessment. Lv [9] established a risk assessment model for the underpass bridge subgrade
based on a fuzzy comprehensive assessment method. Siddhartha et al. [10] developed a data-driven
condition-based policy for the inspection and maintenance of track geometry and found that the track
with low level of TQI still suffered from the risk of failure due to geometry defects. Track quality
evaluation was based not only on track geometry but also on vehicle performance. A CNN-LSTM
(the combination of the convolutional neural network and short-term memory) model was proposed
to predict vehicle-body vibration, which was helpful in locating potential track geometry defects [11].
Although these evaluation methods can provide better qualitative results, they remain unable to
adequately describe the change in service quality of track based on a single physical quantity.

To tackle this issue, pioneering scientists and engineers have proposed comprehensive
evaluation strategies that evaluate multiple indicators and multiple units at the same time using
a relatively systematic, standardized method, such as DCE and static comprehensive evaluation
(SCE). Previous research has presented various methods of SCE, including subjective weighting
(e.g., AHP, binary fuzzy comparison method (BFCM)), objective weighting (e.g., the technique for
ordering of preference by similarity to ideal solution (TOPSIS), Delphi, entropy weight method [12],
coefficient of variation, factor analysis, principal component analysis (PCA)) and combination weighting
(e.g., AHP-TOPSIS [13], AHP-grey relational analysis process [14], entropy weight-based lower
confidence bounding approach [12]). Saaty [15] first applied the analytic hierarchy process to
determine weight indicators. Charnes et al. [16] proposed the data envelopment analysis (DEA) and
used it to evaluate intellectual capital [17], railway [18], etc. Xu et al. [19] combined the AHP and the
DEA to evaluate the economic benefits of energy-saving technology applications. Besides, there are
other methods of comprehensive evaluation, such as the fuzzy comprehensive evaluation method,
artificial network neural evaluation, and grey comprehensive evaluation. Du et al. provided an
overview of the concepts, advantages, and disadvantages of these methods [20]. Because of subjectivity,
the evaluation of the same object based on different evaluation criteria would lead to different results.
Moreover, objective weighting is affected by random data error or the lack of data even though the
method avoids the influence of subjectivity. To overcome these limitations, combination weighting
methods have been proposed, which can be divided into three categories: Combination of the evaluation
process, combination of the evaluation results, and combination of the evaluation method itself [21].
If a time series is added to SCE, the evaluation problem becomes DCE. Guo [22] used a time series solid
data table to record the comprehensive evaluation results for the evaluated object over a sustained
period of time. Xu et al. [23] evaluated the livable city using a combination of the dynamic information
entropy and fuzzy comprehensive evaluation. The positive and negative incentive lines were set up
according to the evaluation of the objects, and the predicted values were obtained based on a first-order
one-variable grey model. The rewarded and punished incentive lines were introduced to evaluate the
objects [24]. Ma et al. [25] proposed a method of DCE based on the gain level incentive, which played
a role in stimulating and guiding the dynamic development of evaluated objects. Zhang et al. [26]
presented a mapping algorithm for weight determination and introduced acceleration and acceleration
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index to reflect the variation in index values over time. This algorithm could better determine the weight
information’s ranges caused by fluctuations in the index in different stages, and it could coordinate the
adjustments of evaluation index values and weight information. The existing literature also provides
other methods, including double incentives dynamic comprehensive [27], dynamic evaluation method
based on TOWA operator, dynamic evaluation method integrating SOM and K-means clustering
algorithm [28], and dynamic comprehensive evaluation method based on the accelerated genetic
algorithm [29].

A review of the literature shows that a large number of studies have focused on SCE methods.
The TQI [30,31] is the primary method for comprehensive evaluation of high-speed railway lines.
This method evaluates the average quality of track segments based on statistical characteristic value,
and it is used as the key index to evaluate the state of track geometry [8], This paper describes the TQI
method in detail in the third section. TQI is calculated as the ratio of the traced space curve length
to the track segment length in the U.S. [10]. In other countries, TGI and J are another two common
indexes used to evaluate track geometry [32]. Other computing modes used in a different country
have been described by the authors of [6]. The track geometric parameters considered in the present
paper were the surface (Ppr f ), track alignment (Paln), track gauge (Pgage), cross-level (Pxlvl), and twist
(Pwarp). Without loss of generality, this paper investigated only five prevailing track geometry measures:
(1) Surface: The deviation of rail top surface from its design position in the vertical direction. It is
divided into left surface and right surface; (2) Alignment: The deviation of the gauge point inside
the rail from its design position in the transverse direction. It is divided into left alignment and right
alignment; (3) Cross-level: The difference in height between the top surfaces of the left and right rails in
the same rail cross-section; (4) Gauge: The shortest distance between the left and right steel rails within
the same rail cross-section; (5) Twist: The horizontal algebraic difference between two points that are
3-m apart in the longitudinal direction. Peak management was used to evaluate these parameters,
and the standard deviation management (mean management) was used to evaluates the sum of the
parameters’ standard deviations. This method can reflect the overall state of the equipment, but it still
deals with SCE and is ineffective in identifying potential risks in the results.

The remainder of this paper is arranged as follows. In the second section, the background
of literature research is provided, along with the purpose of this paper. In the third section,
the research methodology is discussed in detail. The fourth section gives a case analysis and
discussion. Conclusions and future work are discussed in the fifth section.

2. Background

This paper analyzed the geometric data for the period from July 2011 to December 2018 supplied
by an infrastructure management department. The analysis results are shown in Figure 1. The traffic
speed was between 200–250 km/h. In China, the TQI is usually calculated for 200-m sections and
track irregularities are measured using track inspection cars. The length of the track studied in this
paper was from K997 to K1075, with K997 referring to the location at a distance of 997 km on the
high-speed track and K1075 the location at a distance of 1075 km. The TQI and the track geometry
parameters were all below the corresponding management values: Ppr f was 1.4 mm, Paln was 1.0 mm,
Pxlvl was 1.1 mm, Pgage was 0.9 mm, and Ptwist was 1.2 mm (Table 1) [33]. Moreover, Ppr f ,L and Ppr f ,R
had a strong influence on TQI, as shown in Figure 1a. Sometimes, Ppr f ,L and Ppr f ,R determine the trend
of TQI. As can be seen in Figure 1b, the variation of vertical standard deviation caused the seasonal
variation and increasing trend of track quality index.
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Figure 1. (a) Track quality index (TQI) and track geometric parameters and (b) elevation and 
horizontal variation. P , , P , , P , , and P ,  are the left surface irregularity, right surface 
irregularity, left track alignment irregularity, and right track alignment irregularity, respectively; P  is the sum of P , , P , , P , and P ; P  is the sum of P , , and P , ; and P  is the 
sum of P , , P ,  and P .  

The original values of these geometric parameters were collected and analyzed in detail (Table 
2). It was found that the values of some parameters exceeded the management values along the 
segment between K1006~K1023 (K1006 and K1023 represent the locations at distances of 1006 km and 
1023 km, respectively, on the high-speed track), which cannot be identified in Figure 1. Furthermore, 
for each section, the TQI values based on the track geometric parameters were equal, and the 
influence of vertical standard deviation was not remarkable. 

Table 2. Value of the TQI and geometric parameters (unit: mm). 

KM P ,  P ,  P ,  P ,  P  P  P  TQI Overrun 
1022.8 1.59 0.78 0.81 0.86 0.5 3.26 0.53 8.32 Y 

Figure 1. (a) Track quality index (TQI) and track geometric parameters and (b) elevation and horizontal
variation. Ppr f ,L, Ppr f ,R, Paln,L, and Paln,R are the left surface irregularity, right surface irregularity,
left track alignment irregularity, and right track alignment irregularity, respectively; Pelev is the sum
of Ppr f ,L, Ppr f ,R, Pxlvl, and Ptwist; Paln is the sum of Paln,L, and Paln,R; and PL is the sum of Paln,L, Paln,R

and Pgage.

Table 1. Management standards for TQI and single parameter’s standard deviation for 200-m track
segment for different speed classes (unit: mm).

Speed Paln,L Paln,R Pprf,L Pprf,R Pxlvl Pgage Ptwist TQI

200 < V ≤ 250 1.0 1.0 1.4 1.4 0.9 1.1 1.2 8

The original values of these geometric parameters were collected and analyzed in detail (Table 2).
It was found that the values of some parameters exceeded the management values along the segment
between K1006~K1023 (K1006 and K1023 represent the locations at distances of 1006 km and 1023 km,
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respectively, on the high-speed track), which cannot be identified in Figure 1. Furthermore, for each
section, the TQI values based on the track geometric parameters were equal, and the influence of
vertical standard deviation was not remarkable.

Table 2. Value of the TQI and geometric parameters (unit: mm).

KM Paln,L Paln,R Pprf,L Pprf,R Pxlvl Pgage Ptwist TQI Overrun

1022.8 1.59 0.78 0.81 0.86 0.5 3.26 0.53 8.32 Y
1023 1.45 0.69 0.7 0.8 0.62 3.19 0.59 8.03 Y
1025 1.67 0.6 0.37 0.37 0.56 3.29 0.5 7.36 Y

...
...

...
...

...
...

...
...

...
1006.2 0.63 0.62 0.87 0.82 0.81 0.59 0.99 5.33 N

To overcome the abovementioned limitations, the weights of the geometric parameters should be
determined by the combination weighting method based on the correlation coefficient. The combination
of AHP and entropy weight method was used in this paper. Moreover, an incentive factor-based DCE
and time series were combined for effective management of high-speed railway tracks. The method can
be used by rail administrations for safety control and track maintenance, inspection, and rehabilitation.

3. Evaluation Methods

3.1. Traditional TQI Method

The TQI [34] method is to calculate the standard deviations of the seven geometric parameters
for a 200-m track section, including the left surface irregularity (Ppr f ,L), right surface irregularity
(Ppr f ,R), left track alignment irregularity(Paln,L), right track alignment irregularity (Paln,R), track gauge
irregularity(Pgage), cross-level irregularity (Pxlvl), and twist (Ptwist). The TQI value indicates the degree
of dispersion of irregularity along the 200-m section [34]. It is calculated using the formula below:

TQI =
∑7

i=1
σi, (1)

whereσi(i = (1, 2, 3, 4, 5, 6, 7)) represents the standard deviation of each geometric parameter, which can
be expressed as

σi =

√
1
n

∑n

j=1
(x2

i j − x2
i ), (2)

where xi j is the monitoring value of each geometric parameter; and xi represents the mean value of the
ith geometric parameter and can be expressed as

xi =
1
n

∑n

j=1
xi j, (3)

where n is the number of the monitoring points along the 200-m section. n was set to 800 in this study.

3.2. Combination Weighting Method

As discussed in Section 1, the combination weighting method can overcome subjectivity and
random data error or the lack of data to some extent. The combined weight can be formulated as

ω = αω1 + βω2, (4)

where α and β are the subjective and objective weights, respectively. They are unknown parameters,
and have the following relationship:

α > 0, β > 0,α2 + β2 = 1. (5)
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The value of the unknown parameters α, β can be obtained by the constrained maximization
equation as follows:

maxω = αω1 + βω2

s, t :
{
α > 0, β > 0
α2 + β2 = 1

(6)

Then, Equation (3) can be solved by the maximum likelihood estimation (MLE)-Lagrange
conditioned extreme value. Then, α and β can be expressed as

α =
ω2

1√
ω2

1+ω
2
2

β =
ω2

2√
ω2

1+ω
2
2

, (7)

where α′ and β′ are obtained by the normalization and standardization of α and β, respectively. The
weight of indexes ω′ can be expressed as

ω′ = α′ω1 + β′ω2. (8)

3.3. An Incentive Factor-Based DCE Method

Suppose there are n evaluated objects and m evaluation indexes. The multidimensional time
series can be expressed in the forms shown in Table 3.

Table 3. Multidimensional time series.

Time t1 · · · tT

- x1 x2 · · · xm · · · x1 x2 · · · xm

C1 x′11(t1) x′12(t1) · · · x′1m(t1) · · · x′11(tT) x′12(tT) · · · x′1m(tT)

C2 x′21(t1) x′22(t1) · · · x′2m(t1) · · · x′21(tT) x′22(tT) · · · x′2m(tT)
...

... · · ·
...

Cn x′n1(t1)x′n2(t1) · · · x′nm(t1) · · · x′n1(tT) x′n2(tT) · · · x′nm(tT)

In this table, x′i j(tk) represents the standard deviation of each geometric parameter of the ith evaluation object
i(i = 1, 2, 3, · · · , n) at time tk(k = 1, 2, 3, · · · , T); and Ci represents the ith evaluation object.

The parameters above should be nondimensionalized through normalization and standardization.
In other words, they should be converted to maximized standard data by a method which involves the
following two steps.

Step 1: Nondimensionalization process:
There are many methods to realize nondimensionalization, such as z-score, min-max,

and normalization. The min-max method was applied to remove the unit limit on each parameter and
convert it to a dimensionless quantity in this paper.

Firstly, the standard deviation of each geometric parameter can be expressed as

Zi j(tk) =


x′11(t1) · · · x′1m(t1)

· · ·
. . . · · ·

x′11(t1) · · · x′nm(t1)

· · · x′11(tT) · · ·

· · · · · ·
. . .

· · · x′n1(tT) · · ·

x′1m(tT)

· · ·

x′nm(tT)

. (9)
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Then, the values are set between 0 and 1 by the linear transformation of the original data.
Furthermore, the function can be expressed as

Z′i j(tk) =
x′i j(tk) −min

(
x′1 j(tk) x′2 j(tk) · · · x′nj(tk)

)
max

(
x′1 j(tk) x′2 j(tk) · · · x′nj(tk)

)
−min

(
x′1 j(tk) x′2 j(tk) · · · x′nj(tk)

) . (10)

Step 2: Maximization process:
The key is to identify whether the type of data is minimal, intermediate, or interval. The data in

this paper were classified as intermediate. Therefore, we utilized the forward function to describe it as

max− x̃′i j(tk). (11)

The matrix obtained after the data preprocessing had the following form:

Z̃i j(tk) =


x̃′11(t1) · · · x̃′1m(t1)

· · ·
. . . · · ·

x̃′11(t1) · · · x̃′nm(t1)

· · · x̃′11(tT) · · ·

· · · · · ·
. . .

· · · x̃′n1(tT) · · ·

x̃′1m(tT)

· · ·

x̃′nm(tT)

. (12)

SCE matrix Y was obtained by the combination of the AHP and entropy method in this paper.

Y =


y1(t1) y1(t2) · · · y1(tT)

y2(t1) y2(t2) · · · y2(tT)
...

yn(t1)

...
yn(t2)

. . .
...

· · · yn(tT)

, (13)

where yi(tk) is the static evaluation value for the ith evaluated object at time tk. The evaluation value
for the evaluated object is then enlarged by an incentive model, where the optimal incentive v+i (tk)

and the negative incentive v−i (tk) can be expressed as

v+i =

{
y+i (tk) − yi(tk) y+t (tk) > yi(tk)

0 others
, (14)

v−i =

{
yi(tk) − y−i (tk) yi(tk) > y−t (tk)

0 others
, (15)

where y+i (tk) and y−i (tk) are the optimal incentive point and the negative incentive point, respectively,
for the ith evaluated object at time tk. Here, the data are weighted again based on incentive so that the
risk, obvious or potential, can be highlighted. Suppose there is no motivation at the initial moment t1.
Then v+i (tk) and v−i (tk) are both zero. From the values of v+i (tk) and v−i (tk), average maximum gain
ηmax, average minimum gain ηmin, average gain η, optimal gain level η+, and inferior gain level η− can
be obtained by the following formulas:

ηmax = max
i

( 1
T−1

∑T−1
k=1(yi(tk+1) − yi(tk)))

ηmin = min
i
( 1

T−1
∑T−1

k=1(yi(tk+1) − yi(tk)))

η = 1
n(T−1)

∑n
i=1

∑T−1
k=1(yi(tk+1) − yi(tk))

, (16)

η+ = η+ k+(ηmax
− η)

η− = η− k−
(
η− ηmin

) , (17)
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where k+ and k− represent the floating coefficients of the evaluated object. Their values can be set
based on specialist experience at between 0 and 1. Generally, specialists in this field have certain
expectations about the overall development status of a given evaluated object. For example, when the
evaluated object is in its best, normal, or worst status, this psychological expectation can be realized by
setting the floating coefficients k+ and k−. Then, y+i (tk) and y−i (tk) can be obtained as follow

η+ = y+i (tk) − yi(tk−1)

η− = y−i (tk) − yi(tk−1)
, (18)

where k = (1, 2, 3, · · ·T).
By substituting y+i (tk), y−i (tk) and SCE matrix Y into Equations (14) and (15), v+i (tk) and v−i (tk)

are obtained. Then the DCE value can be expressed as

Zi(tk) = h+v+i (tk) + yi(tk) − h−v−i (tk), (19)

where h+ and h−(h+, h− > 0) are the optimal incentive factor and the negative incentive factor,
respectively; and h+v+i (tk)) and h−v−i (tk)) are the optimal incentive value and the negative incentive
value, respectively.

The incentive factors h+ and h− are determined by the following two rules:
Rule 1: Incentive total proportionality rule: The total proportionality of the optimal incentive and

negative incentive is the direct proportion for all the evaluation objects, which can be expressed as

r =
h+

∑n
i=1

∑T
k=1 v+i (tk)

h−
∑n

i=1
∑T

k=1 v−i (tk)
, (20)

where r(r ∈ R+) is the proportionality value, which reflects the intention of the evaluator to highlight
a decision. When r > 1, it means the total proportion of optimal incentive is higher than that of
negative incentive. When r < 1, it means the total proportion of optimal incentive is less than that of
negative incentive. When r = 1, it means the total proportion of optimal incentive is equal to that of
negative incentive.

Rule 2: Balanced incentive rule: The sum of optimal incentive and negative incentive factors
is 1, i.e.,

h+ + h− = 1. (21)

Based on Equations (20) and (21), h+, h− are obtained. The total DCE value for the ith evaluated
object at time T after a given incentive can be obtained as follow:

Zi =
∑n

k=1
λkZi(tk), (22)

where λk represents time factors. Suppose λk = ek/2n in this paper, which means the parameter values
increase as time goes on. Besides, λk is 1 if the influence of time is disregarded.

4. Case Study

A set of geometric data supplied by an infrastructure management department was used here.
The data were collected every half month from January 2020 to March 2020, so T was 6. The speed
was between 200~250 km/h and the test section was from K997 to K1075. A total of 395 objects
were evaluated.

4.1. Data Processing

1. The basic data were standardized and normalized according to Equations (10) and (11). Due to
the large amount of data, only part of the results was presented in the paper (see Table 4).
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Table 4. Results of data standardization and normalization (unit: mm).

t1 tk t1

Pprf,L Pprf,R Paln,L Paln,R Pgage Pxlvl Ptwist . . . Pprf,L Pprf,R Paln,L Paln,R Pgage Pxlvl Ptwist

0.9951 0.9948 0.9967 0.9965 0.9976 0.9787 0.9586 . . . 0.9935 0.9956 0.9965 0.9970 0.9976 0.9787 0.9301
0.9937 0.9951 0.9975 0.9968 0.9992 0.9916 0.9845 . . . 0.9941 0.9974 0.9978 0.9975 0.9988 0.9951 0.9900
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.9986 0.9980 0.9965 0.9969 0.9981 0.9903 0.9918 . . . 0.9912 0.9961 0.9969 0.9971 0.9980 0.9906 0.9905
0.9929 0.9869 0.9964 0.9954 0.9981 0.9941 0.9873 . . . 0.9909 0.9924 0.9967 0.9967 0.9980 0.9951 0.9872
0.9998 0.9964 0.9959 0.9950 0.9984 0.9984 0.9959 . . . 0.9922 0.9937 0.9970 0.9958 0.9968 0.9971 0.9942
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. The Spearman’s correlation coefficients between the geometric parameters were calculated and
the results are presented in Table 5. This step is the basis for determining the parameters’ weights.
Especially when subjective weighting is applied, the experts can give an appropriate relative
importance to the parameters in terms of the correlation coefficient.

Table 5. The correlation coefficient between geometric parameters (unit: mm).

Correlation Coefficient Pprf,L Pprf,R Paln,L Paln,R Pgage Pxlvl Ptwist TQI

Ppr f ,L 1.000 0.934 *** 0.195 0.185 0.183 0.619 * 0.531 0.841 **
Ppr f ,R 0.934 *** 1.000 0.189 0.181 0.236 0.6483 * 0.561 0.86 **
Paln,L 0.195 0.189 1.000 0.775 * 0.353 0.223 0.225 0.420
Paln,R 0.185 0.181 0.775 * 1.000 0.378 0.191 0.194 0.425
Pgage 0.183 0.236 0.353 0.378 1.000 0.247 0.194 0.464
Pxlvl 0.619 * 0.6483 * 0.223 0.191 0.247 1.000 0.924 *** 0.797 **
Ptwist 0.531 0.561 0.225 0.194 0.194 0.924 *** 1.000 0.729 **
TQI 0.841 ** 0.86 ** 0.420 0.425 0.464 0.797 ** 0.729 ** 1.000

Note: ‘*’ represents the strength of the correlation between different indicators. ‘***’ means the strongest; ‘**’ means
stronger; ‘*’ strong.

3. The weights of the geometric parameters were determined using a combination of AHP and
entropy weight method. AHP is a subjective weight determination method, and the weight of
each parameter in this paper was determined based on the experts’ opinions [35]. Experts usually
assign importance to a parameter on a scale of 1 to 9. The entropy weight method is an objective
weight determination method and a detailed mathematical calculation process can be found
in [36,37]. The final step was to calculate index weight using Equations (3) through (8), and the
results are shown in Table 6.

Table 6. Weight of each geometric parameter (unit: mm).

Indicators AHP Entropy Combination

Ppr f ,L 0.277 0.1101 0.1994
Ppr f ,R 0.277 0.1165 0.2023
Paln,L 0.057 0.1487 0.0994
Paln,R 0.057 0.1937 0.1202
Pgage 0.057 0.1884 0.1178
Pxlvl 0.151 0.1105 0.1324
Ptwist 0.125 0.1321 0.1285

Note: α′ = 0.5363, β′ = 0.463, which were determined using Equations (1)–(5).

The correlation coefficient presented in Table 5 suggests that left surface irregularity and
right surface irregularity had the most significant influence on the values of TQI parameters,
with the correlation coefficient being 0.841 and 0.86, respectively. Cross-level irregularity and
twist irregularity had the second strongest influence, with the correlation coefficient being 0.797 and
0.729, respectively. The number of the symbol ‘*’ represents the strength of the correlation between
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different indicators. According to Table 6, these parameters were ranked in order of weight as follows:
Ppr f ,R > Ppr f ,L > Pxlvl >Ptwist > Paln,R > Pgage > Paln,L. The rankings suggest that surface irregularity had
the strongest influence on TQI. Furthermore, the cross-level irregularity and twist irregularity had the
second strongest influence. The results are also consistent with Figure 1, which shows that Ppr f ,L and
Ppr f ,R had a strong influence on TQI. The results above can lead to a conclusion that the weights given
to the seven parameters are reasonable.

4.2. An Incentive Factor-Based DCE

Based on the method described in Section 2 and the processed data obtained in Section 4.1, the SCE
matrix can be calculated, and the results are shown in Table 7. The values of the incentive factor-based
DCE parameters are shown in Table 8. Moreover, Table 9 shows the values of the optimal incentive
point and the negative incentive point.

Table 7. Static comprehensive evaluation (SCE) matrix (unit: mm).

Time yi(t1) yi(t2) yi(t3) yi(t4) yi(t5) yi(t6)

C1 0.98877 0.93517 0.99274 0.941 0.98782 0.98499
C2 0.99389 0.96277 0.99492 0.95289 0.99579 0.99565
C3 0.98738 0.92913 0.98881 0.91674 0.98675 0.98954
Ci · · · · · · · · · · · · · · · · · ·

C394 0.99233 0.94992 0.99302 0.92156 0.99355 0.99337
C395 0.99724 0.98378 0.99784 0.95515 0.99692 0.99482

Table 8. The values of the incentive factor-based dynamic comprehensive evaluation (DCE) parameters.

Parameters ηmax ηmin _
η η+ k+,k− r

Value 0.0294 −0.0259 −0.0012 0.00795 0.3 1

Table 9. Value of the optimal and negative incentive points (unit: mm).

t2 t3 t4 t5 t6

OIP
y+

i (t2)
BIP

y−i (t2)
OIP

y+
i (t3)

BIP
y−i (t3)

OIP
y+

i (t4)
BIP

y−i (t4)
OIP

y+
i (t5)

BIP
y−i (t5)

OIP
y+

i (t6)
BIP

y−i (t6)

0.99672 0.98015 0.94312 0.92655 1.00069 0.98412 0.94895 0.93238 0.99577 0.9792
1.00185 0.98526 0.97072 0.95415 1.00288 0.98630 0.96084 0.94427 1.00374 0.98717
0.99533 0.97876 0.93708 0.92051 0.99676 0.98019 0.92469 0.90812 0.99470 0.97813

...
...

...
...

...
...

...
...

...
...

1.00178 0.98521 0.96024 0.94367 1.00133 0.98476 0.92489 0.90832 0.99912 0.98255
0.99106 0.97449 0.85593 0.83936 0.97400 0.95743 0.77636 0.75979 0.98538 0.96881

Note: OIP and BIP are the abbreviations for optimal incentive points and negative incentive points.

Table 10 shows the optimal incentive and the negative incentive control module values. The values
h+ and h− calculated by Equations (20) and (21) were 0.5063 and 0.4937, respectively. Then we can
get the DCE value (Table 11) and the total DCE value based on the time factor (λk = ek/2n) (Table 12).
The value of TQI for each track section obtained by the traditional method is shown in Table 13.
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Table 10. Optimal and negative incentive control module value.

t1 t2 t3 t4 t5 t6

OIV
v+

i (t1)
BIV

v−i (t1)
OIV

v+
i (t2)

BIV
v−i (t2)

OIV
v+

i (t3)
BIV

v−i (t3)
OIV

v+
i (t4)

BIV
v−i (t4)

OIV
v+

i (t5)
BIV

v−i (t5)
OIV

v+
i (t6)

BIV
v−i (t6)

0.00000 0.00000 0.06156 0.00000 0.00000 0.06620 0.05969 0.00000 0.00000 0.05544 0.01079 0.00579
0.00000 0.00000 0.03906 0.00000 0.00000 0.04077 0.04999 0.00000 0.00000 0.05153 0.00810 0.00848
0.00000 0.00000 0.06620 0.00000 0.00000 0.06830 0.08002 0.00000 0.00000 0.07863 0.00516 0.01141

...
...

...
...

...
...

...
...

...
...

...
...

0.00000 0.00000 0.04949 0.00000 0.00000 0.04971 0.08439 0.00000 0.00000 0.08284 0.01272 0.00386
0.00000 0.00000 0.14308 0.00000 0.00000 0.12669 0.20559 0.00000 0.00000 0.21764 0.00997 0.00661

Note: OIV and BIV are the abbreviations for optimal incentive value and negative incentive value, respectively.

Table 11. The DEC value (unit: mm).

Zi(t1) Zi(t2) Zi(t3) Zi(t4) Zi(t5) Zi(t6)

0.98877 0.96633 0.96006 0.97123 0.96045 0.98759
0.99389 0.98255 0.97480 0.97820 0.97036 0.99556
0.98738 0.96265 0.95509 0.95726 0.94793 0.98652

...
...

...
...

...
...

0.99383 0.97735 0.96884 0.95967 0.95027 0.99094
0.98311 0.92043 0.90350 0.87250 0.86999 0.97720

Table 12. The DCE value based on time factors λk.

Time t1 t2 t3 t4 t5 t6 Value

λk = ek/2n 1.0014 1.0028 1.0042 1.0056 1.007 1.0084 -
C1 0.99016 0.96904 0.96410 0.97667 0.96718 0.99589 5.86302
C2 0.99528 0.98530 0.97889 0.98368 0.97715 1.00393 5.92422
C3 0.98876 0.96534 0.95910 0.96262 0.95457 0.99481 5.82520

Ci
...

...
...

...
...

...
...

C394 0.99522 0.98009 0.97291 0.96505 0.95692 0.99926 5.86945
C395 0.98449 0.92300 0.90730 0.87739 0.87608 0.98541 5.55367

Table 13. TQI of each high-speed track section evaluated (unit: mm).

C C1 C2 C3 Ci C394 C395

TQI 0.99381 0.99834 0.99287 . . . 0.99585 0.98349

For a comparison of the two methods, the values shown in Tables 12 and 13 are plotted in Figure 2.
The curve representing the time factor-based DCE showed fluctuations on C254 ∼ C269, C338 ∼ C369,
and C30 ∼ C52, which suggests that there may be three risky sections. The corresponding sections
were K1023~K1024, K1004~K1005, K1067~K1068, which are partly shown in this paper. However,
the curve representing TQI just revealed one risky section, which was C254 ∼ C269, and the TQI
values of other parts were so stable that we could not identify any risk at all. To verify the result,
each geometric parameter was analyzed, and the corresponding trend lines for the risky sections are
given in Figures 3–5. The limit values for the geometric parameters are shown in Table 14.
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Figure 3. Trend in the geometric parameters from K1023 to K1024 (unit: km): (a) Left surface irregularity,
(b) right surface irregularity, (c) left track alignment irregularity, (d) right track alignment irregularity,
(e) cross-level irregularity, (f) twist irregularity, (g) track gauge irregularity, and (h) the rate of track
gauge irregularity.

Figure 3 shows the variation in each geometrical parameter between K1023 and K1024. The values
of Ppr f ,L and Ppr f ,R exceeded the upper and lower limits between K1023.6~K1023.7, as shown in
Figure 3a,b. Paln,L and Paln,R between K1023.4~K1023.6 exhibited significant fluctuations and exceeded
the upper and lower limits at some positions, as shown in Figure 3c,d. This had a substantial impact on
passenger comfort and should be considered a risk for the high-speed track. Such risk is also noticeable
in Figure 3g,h. Figure 3e,f show that the values of Pxlvl and Ptwist were below the lower limit. Therefore,
as a whole, this section of the track was risky. The TQI in Figure 2 did not exceed the management
value, at 8 mm. This leads to inaccurate risk judgment. The time factor-based DCE can clearly show
the obvious risk. Moreover, it can also indicate the potential risk, as illustrated in Figures 4 and 5.
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Figure 5. Trend in the geometric parameters from K1067 to K1068 (unit: km): (a) Left surface irregularity,
(b) right surface irregularity, (c) left track alignment irregularity, (d) right track alignment irregularity,
(e) cross-level irregularity, (f) twist irregularity, (g) track gauge irregularity, and (h) the rate of track
gauge irregularity.
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Table 14. Peak management standard-I levels for the geometric parameter for the speed of 200~250 km/h.

Parameters Paln Pprf Pxlvl Pgage Ptwist Rate of Pgage

value 6 6 5 +4
−3 4 1.2

It is clear from Figures 4 and 5 that all the parameters did not exceed the management values.
However, the twist and gage rate were very close to the upper and lower limits (see Table 14) on the
segment from K1004.9 to K1005, as shown in Figure 4g,h, indicating potential risk. The fluctuations in
Ppr f ,L and Ppr f ,R imply that the section was dangerous. Another potential risk can be identified from
the trend lines of Ppr f ,L, Ppr f ,R, and Pgage, which are shown in Figure 5a,b,g. The minimums of Ppr f ,L
and Ppr f ,R were close to the limit value on the section between 1067.3 and 1067.4, while the minimum
of Pgage was close to the limit value on the section between 1067 and 1067.2. The peaks and valleys of
the curves in Figures 4 and 5 did not exceed the limit values, but significant fluctuations appeared.
This indicates that the section may have been deteriorating, which is dangerous.

All the trend lines in Figures 3–5, especially Figure 3, had an apparent peak and valley. Meanwhile,
Figure 3 contains parameter values exceeding the limits, which indicate obvious risk. In Figures 4 and 5,
some parameters had values very close to the limits, which suggest potential risks. These potential
risks could not be identified in Figure 1, confirming that the incentive factor-based DCE method is
much more accurate in identifying the risky sections than the TQI method. The results can be used by
rail administrations for safety control and track maintenance, inspection, and rehabilitation.

5. Conclusions

TQI is the primary method for comprehensive evaluation of high-speed railway tracks.
The methods used to calculate TQI vary from country to country. In China, TQI is calculated
as the sum of the standard deviations of seven common track geometry measures. This method is
described in detail in the third section. In the U.S., TQI is calculated as the ratio of the traced space
curve length to the track segment length [10]. Other computing modes used in a different country
can be found in reference [6]. TQI assesses the average quality to track segments using statistical
characteristic value, and it is also the key index to evaluate the state of track geometry. This method
can reveal the degree of smoothness of track and the position of obvious risk to some extent. However,
some potential risks cannot be reflected because the collection of basic data is lagging. In other words,
the track geometric parameters have not reached the peak level or just reached the limit when the scene
changes have taken place on a large scale. The hysteresis in peak management is very dangerous.

In this paper, in order to ensure timely detection of track disease in its early stages of development,
an incentive factor-based DCE method was introduced to evaluate the geometric parameters of
high-speed tracks. Furthermore, the AHP-entropy method was used to determine the weights of
geometric parameters based on the correlation coefficients between parameters. This step was essential
to highlight the influence of different parameters on TQI. In the case study, the proposed method
revealed one obvious risk and two potential risks in the test section (Figures 3–5). The geometrical
parameters between K1023 and K1024 showed significant fluctuations, with some values exceeding
the upper and lower limits (Figure 3). This suggests that the section needed to be repaired. The values
of geometrical parameters shown in Figures 4 and 5 were within the limit ranges, but the twist Ptwist
and gage rate Figure 4 and Ppr f ,L, Ppr f ,R, and Pgage in Figure 5 were very close to the limit values. So,
this section needed to be closely watched or maintained. The results also prove the DCE is more
effective in risk identification. Based on the findings of the study, proper maintenance guidelines can
be made.

Based on the research work presented in this paper, we can further develop the proposed method
by introducing more sensitivity indexes. This paper only considered the geometric parameters,
but other parameters exist affecting high-speed tracks, such as acceleration parameters. These also
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play an essential role in evaluating the risk in the high-speed track industry. In addition, there is a
hidden relationship between these parameters and railway structural. For example, the settlement of
high-speed railway subgrade may be the main reason for the fluctuations in Ppr f ,L and Ppr f ,R, shown in
Figure 2. Therefore, it is essential to study these hidden reasons. We hope to continue this work and
develop the DCE method further.
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