
applied  
sciences

Article

Rolling Bearings Fault Diagnosis Based on Improved
Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise, Nonlinear Entropy, and
Ensemble SVM

Rui Li 1, Chao Ran 1, Bin Zhang 2,3,*, Leng Han 2 and Song Feng 2

1 School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
lirui@cqupt.edu.cn (R.L.); ranchaoxp@163.com (C.R.)

2 School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications,
Chongqing 400065, China; hanleng@cqupt.edu.cn (L.H.); fengsong@cqupt.edu.cn (S.F.)

3 The State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China
* Correspondence: zhangbin@cqupt.edu.cn

Received: 21 July 2020; Accepted: 7 August 2020; Published: 11 August 2020
����������
�������

Abstract: Rolling bearings are fundamental elements that play a crucial role in the functioning of
rotating machines; thus, fault diagnosis of rolling bearings is of great significance to reduce catastrophic
failures and heavy economic loss. However, the vibration signals of rolling bearings are often nonlinear
and nonstationary, resulting in difficulty for feature extraction and fault recognition. In this paper,
a hybrid method for multiple fault diagnosis of rolling bearings is presented. The bearing vibration
signals are decomposed with the improved complete ensemble empirical mode decomposition with
adaptive noise (ICEEMDAN) to denoise and extract nonlinear entropy features. The nonlinear
entropy features are further processed to select the more discriminative fault features and to reduce
feature dimension. Then a multi-class intelligent recognition model based on ensemble support vector
machine (ESVM) is constructed to diagnose different bearing fault modes as well as fault severities.
The effectiveness of the proposed method is assessed via experimental case studies of rolling bearings
under multiple operational conditions (i.e., speeds and loads). The results show that our method
gives better diagnosis results as compared to some existing approaches.

Keywords: fault diagnosis; rolling bearing; nonlinear entropy; improved complete ensemble empirical
mode decomposition with adaptive noise; ensemble SVM; rotating machines

1. Introduction

Rolling bearings are fundamental components that are widely used in rotating machinery,
for example, in airplanes, machining centers, and wind turbines. As a vulnerable link in these
machines, rolling bearing faults can result in breakdown of the whole machinery. According to
reference statistics, about 40% (for large machines) to about 90% (for small machines) of failures can be
attributed to bearing faults [1]. Therefore, rolling bearing fault diagnosis has been the research hot
topic in machine health monitoring over the past few decades.

The process of rolling bearing fault diagnosis basically comprises fault feature extraction and fault
classification. To extract the fault features from vibration signals is the first and most essential step.
Traditionally, bearing fault features are extracted with time-domain or frequency-domain analysis
methods [2,3]. However, due to variations such as friction, damping, and operational conditions,
bearing vibration signals often are nonlinear and nonstationary. Thus, bearing fault feature extraction
is now more frequently analyzed through time-frequency/scale methods, including short-time Fourier
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transform (STFT) [4], wavelet transform (WT) [5], and empirical mode decomposition (EMD). Without
requirement of basis functions, EMD [6] is a data-driven method that adaptively decomposes a
nonstationary and nonlinear time series into several approximately stationary time series defined
as the intrinsic mode function (IMF) plus a final monotonic trend. In this way, EMD is complete
and has been widely applied for fault feature extraction [7]. Nevertheless, EMD suffers problems
of mode mixing, false mode, and endpoint effect. In [8], ensemble empirical mode decomposition
(EEMD) was proposed to alleviate the mode aliasing problem of EMD by taking advantage of the
property of frequency uniform distribution of Gaussian white noise. When analyzed with the EEMD
method, the reconstructed signal containing residual noise and different realizations of signal plus
noise may produce different numbers of modes, bringing difficulties to the final average operation.
Then, complementary ensemble empirical mode decomposition (CEEMD) was proposed in [9] to
improve the reconstruction error with EEMD by adding complementary pairs of Gaussian white noise,
but the final averaging problem remained unsolved. This promoted the emergence of the complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN) [10], achieving a negligible
reconstruction error and solving the problem of different numbers of modes at the final average.
Although CEEMDAN has been proven to be effective in fault feature extraction [11,12], it still has some
aspects to be improved: (i) the presence of residual noise in the modes and (ii) the existence of spurious
modes. To address these two issues, an improved CEEMDAN (ICEEMDAN) was further proposed and
modes with less noise as well as more physical meaning can be obtained [13]. Although ICEEMDAN
was originally proposed for biomedical signal processing [13,14], very recently few work [15] has
researched its potential for fault diagnosis.

With the development of nonlinear dynamics theory, many nonlinear parameter estimation
methods provide good alternatives to extracting the fault-related features hidden in vibration signals
stemming from nonlinear systems. Among these parameters, entropy-based ones quantify the
complexity of a time series and have shown very good performances in analyzing nonlinear vibration
signals of mechanical systems. Recently, entropy and its variants attracted increasing attention
in fault diagnosis [16]. The commonly used entropies are sample entropy (SampEn) [17,18] and
permutation entropy (PerEn) [19–21]. Although SampEn is one improved version of approximate
entropy, it still leads to unreliable estimations for short signals and is not fast enough for long signals
in real-time applications. PerEn is much simpler to calculate and considerably faster than SampEn;
however, it considers only the order relations of the signal amplitude values, so some information
regarding the amplitude differences may be lost. To tackle these problems, Rostaghi and Azami [22,23]
recently introduced one new nonlinear parameter, termed dispersion entropy (DisEn), to quantify
the complexity of a time series. DisEn is relatively insensitive to noise and leads to more reliable
estimations. Also, DisEn is simple and computationally fast as PerEn, so it is suitable for applications
of real-time monitoring. Moreover, the mean value of signal amplitudes and differences between
amplitude values are given consideration in DisEn. Li et al. [24] combined DisEn and EMD to extract
the rolling bearing fault feature. In [25], DisEn was calculated with the morphology envelope of the
original signal for multi-fault recognition of rolling bearings. To enhance the stability of multiscale
DisEn [26], Yan et al. [27] further proposed an improved multiscale DisEn for fault diagnosis of rotating
machinery. In view of the facts mentioned above, nonlinear entropy can be good symptom features for
fault diagnosis of rolling bearings.

After the extraction of fault features, fault classification is essentially a problem of pattern
recognition and is often intelligently accomplished with some kind of machine learning models. In [28],
the rolling element bearing fault was diagnosed using a hidden Markov model with the extracted
singular features. Ali et al. [29] detected bearing malfunction with a probabilistic neural network
and then categorized bearing faulty states with a simplified fuzzy adaptive resonance theory map.
Li et al. [30] studied comparisons of four representative fuzzy clustering algorithms for bearing fault
diagnosis. A sparse autoencoder was proposed in [31] both for feature extraction and fault classification
of rolling bearing. Support vector machine (SVM) [32] based on structural risk minimization is
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a promising classification method for small samples and has been successfully applied to many
engineering fields, such as remote sensing, credit scoring, mechanical fault diagnosis, etc. [33–35].
However, many SVMs should be combined for a multi-class classification since SVM is designed for
binary classification problem. Secondly, SVM learning for big data applications is of low efficiency.
To overcome these issues, the ensemble SVM (ESVM) was proposed and has been verified with better
classification performance than a single SVM for multi-pattern recognition [36–38]. ESVM is a collection
of SVMs, and the classification results of these SVMs are combined in some way to output the final
decision; thus, the classifying generalization performance is to be improved by utilizing the difference
of each individual SVM.

Through the above literature analysis, a novel method for multi-fault diagnosis based on
ICEEMDAN, nonlinear dynamics entropy, and ensemble SVM is presented for rolling bearings. In the
proposed method, the nonstationary bearing vibration signal is decomposed by ICEEMDAN, and three
kinds of entropy features are extracted from each of the obtained IMFs. Then, a distance-based
method is formulated for selecting discriminative features, and a multi-class ESVM is constructed and
trained for intelligent classification of multi-fault rolling bearings. The innovative contributions of
this work can be summarized as follows: (1) a hybrid method by the integration of nonstationary
signal adaptive decomposition, nonlinear entropy analysis, and ensemble learning for multi-fault
diagnosis of the rolling bearing is systematically presented; (2) nonlinear entropy features including
DisEn, PerEn, and SampEn of IMFs from ICEEMDAN are extracted to describe the characteristics of
different rolling bearing fault categories; and (3) an ensemble of multi-class SVMs trained with the
selected discriminative entropy features is used to accurately and intelligently classify different faults
and different severities of the rolling bearing.

The remainder of this paper is organized as follows. Section 2 briefly introduces the background
theory knowledge. Section 3 systematically outlines the proposed approach. Section 4 presents
application studies of the presented method to rolling bearing experimental data to verify its
effectiveness and validity. Finally, Section 5 concludes the paper with summaries and future directions.

2. Background Theories

2.1. Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN)

To enhance the performance of the EMD, some noise-assisted improvements have been proposed.
The main idea of these improved versions is to add controllable noise to the signal so that the problems
with the original EMD can be solved to some extent. Most recently, ICEEMDAN was proposed to obtain
less noise and more physical meaning components with a lower computational cost [13]. The basic
principle of ICEEMDAN is reformulated as follows.

Given a univariate signal s = [s1, s2, . . . , sL]T of length L, let w(i) be a realization of zero mean unit
variance white noise vector of the same length, Ek(·) be the operator which produces the kth mode
obtained by EMD, M(·) be the operator which produces the local mean of the signal that is applied to,
and
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be the operator of an ensemble averaging throughout the realizations. Then, the procedures of
ICEEMDAN can be briefly described as follows:

Step 1: Calculate the first residue r1 = M
(
s(i)

)
by EMD with the local means of realizations

s(i) = s + β0E1 (w(i)) (i = 1, 2, . . . , I);
Step 2: Obtain the first mode as d1 = s − r1;
Step 3: Estimate the kth residue rk = M(r k−1 + βk−1Ek(w

(i))) for k = 2, . . . , K.
Step 4: Compute the kth mode as dk = rk−1 − rk.
Step 5: Go to step 4 for next k until K.
Through the ICEEMDAN algorithm, the original signal s is adaptively decomposed into a set of

meaningful intrinsic mode functions (IMFs) and a residual so that useful information can be obtained
by further processing these components.
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2.2. Dispersion Entropy

Similar to PerEn, DisEn is also a symbolic dynamic (i.e., dispersion pattern) entropy to make a
fast and robust measure of time-series complexity. That is, a time series is transformed into a new
signal with only a few different elements, and thus, study of the nonlinear dynamics of a time series
is simplified to the corresponding distribution of symbol sequences. Although some of detailed
information may be lost, some of the invariant and robust dynamic properties can be kept. For the
given time series d = [d1, d2, . . . , dL]T, calculation of its DisEn follows 4 steps.

Step 1: Map each element dj of the signal d to one of the c classes. To do so, first, employ the
normal cumulative distribution function to map dj into yj. Next, yj is assigned to an integer from 1 to c
by a linear algorithm zj

c = round (c*yj + 0.5).
Step 2: Map embedding vectors to dispersion patterns. For each vector zi

m,c = [zi
c, zi+τ

c, . . . , zi

+ (m−1)τ
c]T (i = 1, 2, . . . , L−(m−1)τ) with embedding dimension m and time delay τ, it is mapped to a

dispersion pattern πv0v1 . . . vm−1, where v0 = zi
c, v1 = zi+τ

c, . . . , vm-1 = zi+(m−1)τ
c.

Step 3: Calculate the relative frequency of potential dispersion patterns

p(v0v1...vm−1) =
#(i

∣∣∣i ≤ L− (m− 1)τ, zm,c
i haspatternπv0v1...vm−1)

L− (m− 1)τ
(1)

Step 4: Obtain the DisEn in the normalized form as

DisEn(d, c, m, τ) = −
∑

p(πv0v1...vm−1) ln p(πv0v1···vm−1)/ ln cm (2)

When all the elements of a signal are assigned to one class (i.e., c = 1), the time series d is perfectly
predictable and then its DisEn value is equal to zero. In contrast, if all the possible dispersion patterns
have equal probability, all values of the d are independent and randomly distributed, thus leading to
the maximum value of DisEn.

2.3. Ensemble Support Vector Machine

Support vector machine (SVM), a kind of kernel-based learning algorithm, is a state-of-the-art
approach that learns a discriminating hyperplane to maximize the margin and to produce a good
generalization ability for classification. It works by implicitly mapping original examples into a
high-dimensional space with a kind of nonlinear function and then by optimizing the decision
function with the maximal margin to classify different classes. Actually, SVM is originally designed
for two-class problems. Denoting the n original examples and the corresponding class labels as set
{(xi, yi), i = 1, 2, . . . , n}, where xi εRd is the d-dimensional input features for the i-sample and yi ε {+1,−1}
is the label for the positive and negative class and with the decision function f (x) = wTϕ(x) + b (T is
the transpose operator), the primal problem of soft-margin SVM is formulated as

min
w,b

1
2‖w‖

2 + C
∑n

i=1 ξi

s.t. yi
(
wTϕ(xi) + b

)
≥ 1− ξi, with ξi ≥ 0, i = 1, 2, · · · , n

(3)

where w and b are the weight vector and bias, ϕ(x) is the nonlinear function that maps x to the
high-dimensional space, ξi are slack variables, and C is the penalty factor.

Since ||w||2 is convex, the above minimizing problem can be achieved with Lagrange multipliers
method and the dual problem follows:

min
α

1
2
∑n

i=1
∑n

j=1 αiα jyiy jϕ
T(xi)ϕ

(
x j

)
−

∑n
i=1 αi

s.t.
∑n

i=1 αiyi = 0, with 0 ≤ αi ≤ C, i = 1, 2, · · · , n
(4)

where αi is the Lagrange multiplier coefficients.
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The solution of Equation (4) gives w =
∑n

i=1 αiyiϕ(xi) and the estimated bias b, inserting back to
the linear decision function f (x) = wTϕ(x) + b and defining K(xi,xj) = ϕ(xi)Tϕ(xj) as a kernel function to
calculate the inner product; finally, the decision function of soft-margin SVM is represented with the
signature function sgn (·) as

f (x) = sgn
(∑n

i=1
αiyiK(xi, x) + b

)
(5)

In practice, there are abundant multi-class classification applications, so it is required that the
original SVM is extended to multi-category problems. For this purpose, the task has been solved by
decomposing into multiple two-class problems. Initially, the two strategies of one-against-all and
one-against-one have been adopted to construct a number of binary SVMs for discrimination of more
than two classes. However, a single SVM may not learn exact parameters for the global optimum and
SVM learning is time-consuming for a large scale of data. To address these problems, the ensemble
SVM (ESVM) has been proposed and has been verified to improve the classification performance
greatly compared to a single SVM [36].

ESVM is a collection of several SVMs in which individual decisions are combined in some way
to output the classification result. Each individual SVM is independently trained with the randomly
chosen training samples to form one base learner. In such a way, each base learner learns a certain
area of the data samples space and is unlikely to be wrong at the same time, so ensemble of these
base learners provides complementary information and thus more accurate classification results can
be obtained. To ensure the differences among base learners (i.e., SVMs) for enhanced performance,
methods including bootstrap and AdaBoost have been considered for selecting data samples for
training individual SVM [37]. After training, the outputs from the trained base learners are aggregated
in an appropriate manner to decide the final classification result. Majority voting, winner takes all,
and weighted averaging are commonly used aggregating rules in case of the multi-class classification.

3. The Proposed Method

To secure properly operation of the rotary machinery, a hybrid method for multi-fault diagnosis of
rolling bearings is presented in this paper. Figure 1 shows the framework of the method, which includes
signal preprocessing and feature extraction, discriminative feature selection, and intelligent recognition.

3.1. Preprocessing with ICEEMDAN and Feature Extraction

The vibration-based monitoring technique is one of the most effective approaches for fault
diagnosis of rolling bearings. However, vibration signals of rolling bearings are highly nonstationary
and nonlinear, which complicates the process of fault symptom extraction. To address the signal
nonstationarity, the recently developed ICEEMDAN is properly introduced to preprocess the acquired
vibrational accelerator signals, so that each monitoring signal s is decomposed as described in Section 2.1
and a set of IMFs dk (k = 1, 2, . . . , K) is thus obtained. Before the decomposition, some parameters need
to be determined. Firstly, to control the signal-to-noise ratio (SNR) between the added noise and the
residue to which the noise is added, the constants βk (k = 0, 1, . . . , K) should be chosen. To simulate the
same increasing SNR as that in the EEMD, it was suggested in [13] that β0 = 0.2 × std(s)/std(E1(w(i)))
and βk = 0.2 × std(rk) (k ≥ 1), where std(·) is the standard deviation operator. This strategy is also
considered in this work. For the ensemble realizations I of the final averaging, a number of 100 usually
leads to satisfying analysis results for real applications.

To further address the nonlinearity of the vibration signals, the IMFs are processed to extract
nonlinear dynamic features of entropy as rolling bearing fault features in this work. Specifically,
dispersion entropy (DisEn), permutation entropy (PerEn), as well as sample entropy (SampEn) are
considered for their effectiveness and stability. The DisEn features for all the IMFs are obtained as
detailed in Section 2.2, while PerEn and SampEn for each IMF are calculated following the procedures
in Table 1.
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Table 1. Procedures for calculation of PerEn and SampEn.

Steps PerEn SampEn

1 Reconstruct each IMF d into state vector di = (di, di + τ, . . . , di + (m−1)τ) (i = 1, 2, . . . , L−(m−1)τ) with embedding
dimension m, time delay τ, and τ = 1 for SampEn.

2
Sort di in ascending order di = (di1, di2, . . . , dim) and the

ordinal i1i2 . . . im is mapped as a permutation pattern
πu0u1 . . . um-1.

Calculate distance Dij = D(di, dj) = maxl=0,1,m-1(|di+l

− dj+l|) and Cm
i (r) =

∑
j H(r−Di j)

L−m−1 ( j , i), where r is
the tolerance for Heaviside function H(·).

3
Calculate frequency of patterns:

p(πu0u1 . . . um−1)=
#(i

∣∣∣∣i1i2...im has the pattern πu0u1...um−1)

L−(m−1)τ

Summarize across i: Cm(r) =
∑

i Cm
i (r)

L−m and m←m +

1 to repeat Steps 1–2 to further obtain Cm+1(r).

4 PerEn(d,m,τ) =−
∑

p(πu0u1 . . . um-1)lnp(πu0u1 . . . um-1) SampEn(d,m,r) = lnCm(r) − lnCm+1(r)

In entropy-based analyzing methods of time series, as in other types of nonlinear dynamics
analysis, appropriate choice of the related parameters is an important issue. For DisEn, there are three
parameters to be determined, i.e., the number of classes c, embedding dimension m, and time delay
τ. Theoretically, two amplitude values that are far from each other are more likely to be assigned
to the same class if c is too small while a very small disturbance (such as noise) may change the
original classes with a too large c. Additionally, the computational burden increases with the number
of class c. To make a tradeoff between useful information detection and computational efficiency, it is
recommended to choose c from 4–8 for practical uses of DisEn. For the embedding dimension m, if it is
too small, the dynamic changes of the time series might not be detected. In contrast, if m is chosen too
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large, small variations may be unable to be observed. Based on the abovementioned facts, embedding
dimension m is usually set as 2. According to previous studies [23,27], τ has a very small effect on the
estimation of DisEn and aliasing may occur when τ > 1. Hence, τ is usually selected as 1 to guarantee
computational efficiency and to provide a reliable analysis.

From Table 1, two parameters of embedding dimension m and time delay τ should be chosen
in PerEn analysis. For the embedding dimension, it is appropriate to choose m from 3–7 for bearing
vibration analysis based on previous literature [20]. To make full use of the original vibrational signal,
τ is often set to be 1. Also, there are two parameters in the calculation of SampEn: reconstruction
embedding dimension m and similarity comparison tolerance r. Practically, the tolerance r is a value
from 0.1–0.25 std(d) and the parameter m is set to be 2 in SampEn analysis.

3.2. Discriminative Feature Selection

In general, the extracted entropy features can be directly combined into a longer vector to
comprehensively quantify operational status of rolling bearings. However, the high dimensionality
and redundancy of the original features will increase the computation time and decrease the pattern
recognition accuracy. Thus, it is necessary to select the most representative features to form a
low-dimensional discriminative feature vector for fault diagnosis.

The proposed discriminative feature selection is based on the distance principle: the larger
distance between different classes and the smaller distance within the same category of one feature.
This feature is regarded as discriminative for fault diagnosis. To be specific, denote the feature set as
f n ε RJ (n = 1, 2, . . . , N), where N is the total number of samples and J is the feature dimensionality.
The discriminativity of the jth feature is

D
(

f j
)
=

Disinter
(

f j
)

Disintra
(

f j
) (6)

where Disinter and Disintra are the interclass distance and the intraclass distance for the jth feature,
respectively, calculated as Equation (7).

Disinter
(

f j
)
= 1

Q(Q−1)
∑Q

q,p=1;q,p

∣∣∣∣ 1
Nq

∑Nq

i=1 fi, jq − 1
Np

∑Np

i=1 fi, jp
∣∣∣∣

Disintra
(

f j
)
= 1

Q
∑Q

q=1

(
1

Nq(Nq−1)

∑Nq

i,k=1;i,k

∣∣∣ fi, jq − fk, j
q
∣∣∣) (7)

where fi,jq are samples for the qth (q = 1, 2, . . . , Q) class and Nq is its number.
The discriminativity D(f j) measures ease of classifying the Q classes using the jth feature. A larger

discriminativity is, the easier to classify the Q classes that a feature is. Thus, D(f j) (j = 1, 2, . . . , J) is sorted
in descending order, and the number of features for fault diagnosis is increased one by one. When the
desired accuracy is achieved, the first few features are selected as the most discriminative features.

3.3. ESVM for Multi-Fault Diagnosis

After the discriminative feature selection, one ESVM is constructed and trained for multi-fault
intelligent diagnosis of rolling bearings. To be consistent, denote the training samples and the
corresponding labels set as TR = {(xi, yi), i = 1, 2, . . . , N}, where xi =(fi,1, fi,2, . . . , fi,d) is the d-dimensional
discriminative features for the i-sample and yi ε {1, 2, . . . , Q} is the label from the Q fault conditions of
rolling bearings. From the statistical view, the training sample sets of each individual SVM (i.e., base
learner) should be as different as possible to obtain higher improvement of the ensemble aggregation.
Thus, the bagging technique is considered to construct an individual SVM classifier in this paper.
Suppose the ensemble number of SVM is P; bootstrapping then builds replicated data sets TRp

(p = 1, 2, . . . , P) by randomly resampling with replacement from the original training data set TR.
In this way, each pair xi and yi in the N given training set may appear repeated or not at all in any
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particular replication. With the replicated data sets TRp, an individual SVM is independently trained
to act as one classifier as in Equation (5) by the one-against-one strategy.

For one test sample x = (f 1, f 2, . . . , fd), it is input to the trained SVMs to output a total of P
fault labels. To obtain the fault class label of the new sample, some kind of aggregating rule should
be designed. Among the frequently used ensemble rules, majority voting is the simplest one for
combining several SVMs and is also utilized here. Let fp(x) be the decision function for the pth SVM in
the ESVM and #(p|(fp(x) = q)) be the counted number of SVMs in which the decisions are made to the
qth class label. Then, final fault class label of the ESVM for the test sample x is

fensemble(x) = max
q

(
#
(
p
∣∣∣ fp(x) = q

))
(8)

4. Application to Rolling Bearings Fault Diagnosis

In this section, the proposed multi-fault diagnosis method is applied to the rolling bearing
experiments under different operational conditions and is also compared with some existing methods.

4.1. Description of the Experimental Setup

To validate our proposed multi-fault diagnosis method, the publicly available rolling bearing
vibration data shared by the bearing data center of Case Western Reserve University (CWRU) [39] is
researched in this paper. Since its availability, this data set has been intensively studied for bearing
fault diagnostics [40,41]. The test stand of the rolling bearing experiment is illustrated in Figure 2,
and the motor shaft (on the left side) support bearings were designed as the testing bearings, which are
SKF deep groove ball bearings of 6205-2RS JEM. During the experiments, single point faults ranging
from 0.007 to 0.028 inches were introduced to the bearing elements (i.e., ball, and inner and outer
raceway) using electro-discharge machining (EDM). Faulted bearings were then reinstalled into the
test motor, and vibration data were recorded for motor loads of 0 to 3 horsepower (approximate motor
speeds of 1797–1720 rpm).
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Figure 2. The rolling bearing experiment test stand of Case Western Reserve University (CWRU)
bearing data center.

Specifically, the accelerator signals of the drive-end bearing were recorded with the sampling
frequency 12 kHz and a duration of one second. In this scenario, there are a total of ten bearing fault
classes. Besides the normal state, three defect severities are respectively simulated for the ball, inner
raceway, as well as outer raceway. For each class, the original vibration signal is divided into a number
of training and testing samples with a length of 2048 data points (about 0.171 s). Details of the analyzed
multi-fault bearing data set are listed in Table 2.
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Table 2. Description of the bearing multi-fault conditions and their class labels.

Fault Mode Fault Size in
Inches Class Labels

Number of
Training
Samples

Number of
Testing Samples

Ball
0.007 1 47 12
0.014 2 47 12
0.021 3 47 12

Inner Raceway
0.007 4 47 12
0.014 5 47 12
0.021 6 47 12

Outer Raceway
0.007 7 47 12
0.014 8 47 12
0.021 9 47 12

Normal state 0 10 95 24

4.2. Results and Analysis

After the above experimental configuration, training and testing vibrational samples for different
bearing conditions under four motor loads are prepared. One vibration signal sample for each of the
ten fault classes under 0 horsepower motor load is illustrated in Figure 3, which demonstrates that it is
problematic to discern each bearing fault class directly from the time waveforms, especially for the ball
and inner raceway fault modes.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 21 

Fault Mode 
Fault Size 

in Inches 

Class 

Labels 

Number of 

Training 

Samples 

Number of 

Testing 

Samples 

Ball 

0.007 1 47 12 

0.014 2 47 12 

0.021 3 47 12 

Inner Raceway 

0.007 4 47 12 

0.014 5 47 12 

0.021 6 47 12 

Outer Raceway 

0.007 7 47 12 

0.014 8 47 12 

0.021 9 47 12 

Normal state 0 10 95 24 

4.2. Results and Analysis 

After the above experimental configuration, training and testing vibrational samples for 

different bearing conditions under four motor loads are prepared. One vibration signal sample for 

each of the ten fault classes under 0 horsepower motor load is illustrated in Figure 3, which 

demonstrates that it is problematic to discern each bearing fault class directly from the time 

waveforms, especially for the ball and inner raceway fault modes. 

 

Figure 3. One vibration signal sample for each of the ten bearing fault classes. 

0 0.05 0.1 0.15
-0.5

0

0.5
Class 10

Time(s)

A
m

p
li

tu
d
e(

m
/s

2
)

0 0.05 0.1 0.15
-2

0

2
Class 4

Time(s)

A
m

p
li

tu
d
e(

m
/s

2
)

0 0.05 0.1 0.15
-2

0

2
Class 5

Time(s)

A
m

p
li

tu
d
e(

m
/s

2
)

0 0.05 0.1 0.15
-5

0

5
Class 6

Time(s)

A
m

p
li

tu
d
e(

m
/s

2
)

0 0.05 0.1 0.15
-5

0

5
Class 7

Time(s)

A
m

p
li

tu
d
e(

m
/s

2
)

0 0.05 0.1 0.15
-0.5

0

0.5
Class 8

Time(s)

A
m

p
li

tu
d
e(

m
/s

2
)

0 0.05 0.1 0.15
-5

0

5
Class 9

Time(s)

A
m

p
li

tu
d
e(

m
/s

2
)

0 0.05 0.1 0.15
-0.5

0

0.5
Class 1

Time(s)

A
m

p
li

tu
d
e(

m
/s

2
)

0 0.05 0.1 0.15
-1

0

1
Class 2

Time(s)

A
m

p
li

tu
d
e(

m
/s

2
)

0 0.05 0.1 0.15
-0.5

0

0.5
Class 3

Time(s)

A
m

p
li

tu
d
e(

m
/s

2
)

Figure 3. One vibration signal sample for each of the ten bearing fault classes.

Then, the ICEEMDAN algorithm is utilized to preprocess time waveform signals with the
parameters chosen as detailed in Section 3.1, and the results for one sample of bearing fault class 7 (i.e.,
outer raceway fault mode with fault size of 0.007 inches) under 0 horsepower motor load are displayed
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in Figure 4. For comparison purposes, the decompositions by CEEMDAN and EEMD are performed
with the same parameters. It can be observed from Figure 4 that the periodic impulses generated by an
outer raceway point fault are successful detected by all three algorithms. However, there are ten IMFs
using CEEMDAN and EEMD algorithms while nine IMFs using ICEEMDAN. Similar results are also
found for other vibration samples. Thus, more compact decomposition results can be obtained with
the ICEEMDAN algorithm. In the following, the obtained IMFs are further processed to extract fault
features of the rolling bearing.
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Figure 4. Decomposition results for one vibration signal sample of bearing fault class 7 by (a) ensemble
empirical mode decomposition (EEMD), (b) complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN), and (c) improved CEEMDAN (ICEEMDAN).

Specifically, nonlinear entropy features of DisEn, PerEn, and SampEn are extracted for fault
diagnosis of rolling bearings. Before calculation of the three entropy features, the related parameters
are to be set. Based on the analysis in Section 3.2 and with some initial trials, the parameters are
finally chosen for all cases of bearing conditions under four motor loads as c = 8, m = 2, and τ = 1 for
DisEn; m = 6 and τ = 1 for PerEn; and m = 2 and 0.2std(d) for SampEn. Actually, the parameters of
DisEn and SampEn show limited effects on the extracted features; the embedding dimension has a
relatively greater influence on PerEn. To compromise between calculating complexity and effectiveness,
these parameters are determined as mentioned above.

The scatter plots of entropy features under 0 horsepower motor load are shown in Figure 5.
In previous studies, the IMF1 from such decomposition is usually selected as the components for further
analysis; thus, the three kinds of entropy features of IMF1 are also plotted in Figure 5. Some observations
can be made. Firstly, different bearing conditions are easier to be discerned in the extracted entropy
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feature space than the original time waveforms (refer to Figure 3). This is especially evident for the
fault mode of the inner raceway, since the three classes with increasing fault sizes are well clustered
and demarcated from the remaining seven classes. Nevertheless, such improvements are limited for
the cases of the three ball fault sizes because of their large dispersion. Secondly, the different fault
sizes of the rolling bearing outer raceway are both well clustered with and without discriminative
feature selection of the extracted nonlinear entropies. Additionally, the proposed discriminative feature
selection method can better cluster and demarcate the normal as well as the three ball-fault-bearing
conditions compared to that of the results of IMF1.
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Figure 5. Scatter plots for nonlinear entropy features of the ten bearing fault classes: (a) selected
discriminative features and (b) DisEn, PerEn, and SampEn of IMF1.

To have a sense of the effect of the number of selected features on the classifying accuracy,
a multi-class ESVM of ensemble number ten is constructed and trained with the extracted nonlinear
entropy of the ten bearing conditions. Specifically, the kernel function is a radial basis function with
unit bandwidth and the penalty factor C = 10,000. The results for class 3 (i.e., ball fault mode with fault
size of 0.021 inches) are depicted in Figure 6.
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Figure 6. Training classification accuracy for the bearing fault class 3.

Although the accuracy under the four motor loads (i.e., 0 to 3 horsepower) varies differently
with the increased number of features, a perfect recognition can be obtained based on the first three
discriminative entropy features for this bearing fault class. Furthermore, a detailed analysis of the
other nine bearing status shows that more than 85% training accuracy can be obtained if the number
of discriminative features is set to be three. Therefore, the first three extracted entropy features are
selected as the discriminative features for each class to diagnose rolling bearing faults.
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With the above analysis, a multi-fault diagnosis of rolling bearings can then be performed online.
To validate the performance of the proposed approach, training and testing diagnostic results of the
method as well as the non-discriminative features scenario (i.e., DisEn, PerEn, and SampEn of IMF1)
under 0 horsepower motor load are summarized in Table 3. Interestingly, both the compromised
training and testing accuracy for the two scenarios are in cases of ball fault mode (i.e., bearing fault
classes 1, 2, and 3), which was highlighted for further research in the benchmark literature [41]. For the
proposed method with the selected discriminative features, the training and testing accuracies are
respectively compromised in fault classes 2 and 3 while the training accuracy is compromised in all
three fault classes of ball fault mode and the testing accuracy is compromised in fault classes 2 and 3
for the non-discriminative features scenario.

Table 3. The bearing fault diagnosis results using non-discriminative and selected discriminative features.

Fault Class

Non-Discriminative Features Discriminative Features

Training Accuracy
(%)

Testing Accuracy
(%)

Training Accuracy
(%)

Testing Accuracy
(%)

1 95.74 100 100 100
2 87.23 91.67 85.11 100
3 93.62 91.67 100 91.67
4 100 100 100 100
5 100 100 100 100
6 100 100 100 100
7 100 100 100 100
8 100 100 100 100
9 100 100 100 100
10 100 100 100 100

The corresponding misclassified testing samples for the proposed method and the
non-discriminative features scenario under 0 horsepower motor load are plotted in Figure 7. It is
observed that one testing sample in fault classes 2 and 3 is respectively classified into fault classes 6
and 8 for the non-discriminative feature scenario. However, only one testing sample from fault class 3
is misclassified into fault class 8 with the selected discriminative features. The above results can be
partially explained by the entropy feature scatters as in Figure 5, where the related cluster boundaries
are somehow overlapped. To draw comprehensively comparisons between the non-discriminative
features (NDF) and the proposed discriminative features (DF) scenarios, testing results of all the
bearing fault classes under four motor loads are averaged.
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From the average recognition rates in Figure 8, only classes 2 and 3 do not have 100% accuracy.
The recognition rates for class 2 (i.e., ball fault mode with fault size of 0.014 inches) are especially
low. For both classes, a higher average recognition rate is obtained with the discriminative features.
Thus, the proposed method with discriminative feature selection is validated to demonstrate much
better performance.
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4.3. Comparisons and Discussions

In this subsection, our proposed method is further compared with some other related methods.
For vibration signal preprocessing, the ICEEMDAN algorithm is encapsulated in our method.

The two algorithms of CEEMDAN and EEMD have also been frequently utilized in literature for
bearing signal decomposition. So, to study the preprocessing algorithm for multi-fault diagnosis
performance, fault feature extraction and selection are also performed with the IMFs from CEEMDAN
and EEMD to classify the ten bearing fault conditions.

The results under 0 horsepower motor load are listed in Table 4. The three algorithms all
successfully classify the nine classes except class 3 from the ball fault mode. For this bearing state class
under 0 horsepower motor load, two testing samples are misclassified with EEMD and only one is
misclassified with CEEMDAN and ICEEMDAN. From the misclassified testing samples in Figure 9 for
EEMD and CEEMDAN and in Figure 7b for ICEEMDAN, all the off-target samples of class 3 are labeled
class 8 (i.e., outer raceway fault mode with fault size of 0.014 inches). Actually, the time waveforms of
classed 3 and 8 in Figure 3 are very similar to each other, which complicates the correct classification of
class 3. In addition, the average recognition rates by the three preprocessing algorithms for the ten
bearing fault classes under four motor loads are summarized in Figure 10. It is also observed that only
classes 2 and 3 do not have perfect recognition and that the best performance is obtained with the case
of the ICEEMDAN algorithm, which further verifies the effectiveness of the proposed hybrid method.



Appl. Sci. 2020, 10, 5542 14 of 18

Table 4. The bearing fault diagnosis results by the three preprocessing algorithms.

Fault Class
Classification Accuracy (%)

EEMD CEEMDAN ICEEMDAN

1 100 100 100
2 100 100 100
3 83.33 91.67 91.67
4 100 100 100
5 100 100 100
6 100 100 100
7 100 100 100
8 100 100 100
9 100 100 100

10 100 100 100
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Figure 9. Misclassified testing samples with preprocessing by (a) EEMD and (b) CEEMDAN.
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fault classes.

In the proposed method, the classifier is a multi-class ESVM. To evaluate the performance of the
ESVM, three other pattern recognition models of neural network (NN), k-Nearest Neighbor (kNN),
and plain multi-class SVM are also tested. For related settings, the SVM uses the same parameters as
ESVM, k = 1 for the kNN classifier, and NN is of multilayer perceptron type with the hidden node of
25. The classification results under 0 horsepower motor load are listed in Table 5. It can be concluded
that NN has the worst performance with misclassifications in four bearing conditions while the other
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three classifiers miss the target in the hardest ball fault mode. To be specific, the kNN misclassifies two
testing samples both in classes 2 and 3, SVM misses two targets in class 3, and ESVM only misclassified
one testing sample in class 3.

Table 5. The bearing fault diagnosis results by different classifiers.

Fault Class
Classification Accuracy (%)

SVM NN kNN ESVM

1 100 83.33 100 100
2 100 75.00 83.33 100
3 83.33 83.33 83.33 91.67
4 100 100 100 100
5 100 100 100 100
6 100 91.67 100 100
7 100 100 100 100
8 100 100 100 100
9 100 100 100 100
10 100 100 100 100

Detailed analysis can be seen from Figure 11, where the misclassifications are marked. For the
multi-class SVM, the testing samples are erroneously classified into not only class 8 but also class 2,
which is of poor performance compared to ESVM in Figure 7b. As regards the NN model, eight testing
samples are misclassified, resulting in the poorest recognition rates. Finally, kNN classifies two testing
samples from class 2 to class 6 and from class 3 respectively to class 8 and class 1. To further evaluate
the average performance of the classifiers, the recognition rates under four motor loads are averaged
and shown in Figure 12.
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Figure 11. Misclassified testing samples by the classifier: (a) support vector machine (SVM), (b) neural
network (NN), and (c) k-Nearest Neighbor (kNN).
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From Figure 12, similar conclusions can be drawn: the NN classifier obtains the lowest
classifications. Generally, the reduced recognition rates are also with fault classes 1–3 (i.e., ball
fault mode). The classification accuracy is the highest with ESVM, which further highlights the
performance of the proposed method.

5. Conclusions

For improved fault diagnosis of rolling bearings, a hybrid method based on ICEEMDAN, nonlinear
dynamics entropy, and ESVM for multi-fault diagnosis is presented in this paper. The ICEEMDAN
algorithm is utilized to decompose the nonlinear and nonstationary bearing vibration signals, and
three kinds of entropy features are extracted from the obtained IMFs. Then, the discriminative
features are selected based on the interclass and intraclass distances, and the multi-fault conditions
of rolling bearings are intelligently recognized using the multi-class EVSM. The effectiveness of the
proposed method is validated with extensive experimental case studies of rolling bearings with
different fault modes as well as fault severities under multiple operational conditions (i.e., speeds and
loads). Comparisons with some other decomposition algorithms and classifiers further demonstrate
the performance of the proposed approach. In the future, the above method for multi-fault rolling
bearing diagnosis across different operational conditions will be addressed to bridge the gap between
research and real applications.
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