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Abstract: This paper solved the problem of transmitting quantum bits (qubits) in a multi-hop and
bidirectional way. Considering that the Greenberger–Horne–Zeilinger (GHZ) states are less prone
to the decoherence effects caused by the surrounding environment, we proposed a bidirectional
quantum communication scheme based on quantum teleportation and the composite GHZ-GHZ
states. On a multi-hop quantum path, different types of GHZ states are previously shared between
the adjacent intermediate nodes. To implement qubit transmission, the sender and intermediate
nodes perform quantum measurements in parallel, and then send their measurement results and
the types of previously shared GHZ states to the receiver independently. Based on the received
information, the receiver performs unitary operations on the local particle, thus retrieving the original
qubit. Our scheme can avoid information leakage at the intermediate nodes and can reduce the
end-to-end communication delay, in contrast to the hop-by-hop qubit transmission scheme.

Keywords: bidirectional quantum communication; GHZ; quantum teleportation

1. Introduction

Quantum teleportation is a process of transmitting unknown quantum states between two distant
nodes based on entanglement and some auxiliary classical communication. Since Bennett proposed
the concept of quantum teleportation [1], where Einstein–Podolsky–Rosen (EPR) pairs are used as
an entanglement channel, quantum teleportation has been paid extensive attention in recent years.
Some quantum teleportation schemes have been proposed by using Greenberger–Horne–Zeilinger
(GHZ) states, mixed W states, and other entangled states as quantum channels [2–5].

To realize qubit transmission in a quantum communication network, Wang et al. [6] proposed
the idea of quantum wireless multi-hop communication based on arbitrary EPR pairs and
teleportation, where simultaneous entanglement swapping is utilized to reduce the end-to-end quantum
communication delay. To overcome the decoherence effects caused by the surrounding environments
and take advantage of partially entangled EPR pairs efficiently, Yu et al. [7] proposed a wireless quantum
communication scheme. However, hop-by-hop qubit transmission introduces great communication
delay and information leakage at the intermediate nodes. After that, Chen et al. [8] proposed a
wide area quantum communication network via partially entangled EPR states, where sequential
entanglement swapping is exploited. In this scheme, the security of qubit transmission is improved,
while end-to-end quantum communication delay is not reduced to a great extent. Compared to
two-particle entanglement, multi-particle entangled states are equipped with better entanglement
properties, and are more powerful in revealing the nonlocality of quantum physics [9,10]. Zhan and
Zou et al. proposed multi-hop quantum teleportation schemes based on W states and GHZ–Bell
channels [11,12]. Considering that duplex quantum communication between two arbitrary nodes is
crucial to the future quantum networks, Li et al. [13] first proposed the bidirectional controlled quantum
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transmission scheme using a five-qubit entangled state. Since then, some schemes for bidirectional
quantum communication have been proposed [14–21].

To address all the issues mentioned above, such as quantum communication delay, information
leakage, and duplex quantum communication, in this paper we investigate multi-hop bidirectional
quantum communication based on GHZ states, considering that GHZ states are less prone to the
decoherence effects caused by the surrounding environment [22]. The main contribution of this work
is as follows.

We propose a scheme for multi-hop bidirectional quantum communication using the composite
GHZ-GHZ channel, where all the nodes perform quantum measurements in parallel. After that, they
send the measurement results and the types of previously shared GHZ-GHZ states to the sender and
receiver through the classical channel independently. Based on the received information, the sender
and receiver perform appropriate unitary operations to recover the original qubit. Our scheme has
a shorter delay for the end-to-end quantum communication and avoids information leakage at the
intermediate nodes.

The rest of this paper is organized as follows. In Section 2, one-hop bidirectional quantum
communication based on a GHZ-GHZ entangled channel is discussed. In Section 3, we investigate
two-hop directional quantum communication. In Section 4, a scheme for multi-hop bidirectional
quantum communication is proposed. Finally, some discussions and conclusions are given in Section 5.

2. One-Hop Bidirectional Quantum Communication

In this section, we investigate one-hop bidirectional quantum communication through the
composite GHZ-GHZ states. Eight types of GHZ states used in quantum communication are given by∣∣∣ψ1

〉
= 1
√

2
(|000〉+ |111〉),

∣∣∣ψ2
〉
= 1
√

2
(|001〉+ |110〉)∣∣∣ψ3

〉
= 1
√

2
(|010〉+ |101〉),

∣∣∣ψ4
〉
= 1
√

2
(|011〉+ |100〉)∣∣∣ψ5

〉
= 1
√

2
(|000〉 − |111〉),

∣∣∣ψ6
〉
= 1
√

2
(|001〉 − |110〉)∣∣∣ψ7

〉
= 1
√

2
(|010〉 − |101〉),

∣∣∣ψ8
〉
= 1
√

2
(|011〉 − |100〉)

(1)

These GHZ states can be transformed into each other through unitary operations, such as∣∣∣ψ2
〉
= X ⊗X ⊗ I

∣∣∣ψ1
〉
,

∣∣∣ψ3
〉
= I ⊗X ⊗ I

∣∣∣ψ1
〉∣∣∣ψ4

〉
= X ⊗ I ⊗ I

∣∣∣ψ1
〉
,

∣∣∣ψ5
〉
= Z⊗ I ⊗ I

∣∣∣ψ1
〉∣∣∣ψ6

〉
= ZX ⊗X ⊗ I

∣∣∣ψ1
〉
,

∣∣∣ψ7
〉
= Z⊗X ⊗ I

∣∣∣ψ1
〉∣∣∣ψ8

〉
= ZX ⊗ I ⊗ I

∣∣∣ψ1
〉 (2)

where X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
are Pauli matrices, and I =

(
1 0
0 1

)
is the identity matrix.

Assume that Alice intends to transmit an arbitrary qubit |χ〉a to Bob, while Bob intends to transmit
|χ〉b to Alice at the same time, |χ〉a and |χ〉b are given by

|χ〉a= (α|0〉+ β|1〉)a

|χ〉b= (γ|0〉+ δ|1〉)b
(3)

where α, β, γ and δ are complex probability amplitudes satisfying |α|2 +
∣∣∣β∣∣∣2 = 1,

∣∣∣γ∣∣∣2 + |δ|2 = 1.
Without loss of generality, Alice and Bob previously share a six-particle GHZ-GHZ state, given by

|C〉 =
∣∣∣ψ1

〉
A1B1A2

⊗

∣∣∣ψ1
〉

B2A3B3

= 1
2

[
(|000000〉+ |000111〉+ |111000〉+ |111111〉)A1B1A2B2A3B3

] (4)



Appl. Sci. 2020, 10, 5500 3 of 11

where the particles A1, A2 and A3 belong to Alice and particles B1, B2 and B3 belong to Bob, as shown
in Figure 1.
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Figure 1. The composite Greenberger–Horne–Zeilinger (GHZ)-GHZ state previously shared between
Alice and Bob.

The state of the initial eight-particle system |Y1〉 is given by

|Y1〉A1B1A2B2A3B3ab =
∣∣∣ψ1

〉
A1B1A2

⊗

∣∣∣ψ1
〉

B2A3B3
⊗ |χ〉a ⊗ |χ〉b

= 1
2

[
(|000〉+ |111〉)A1B1A2

⊗ (|000〉+ |111〉)B2A3B3

]
⊗ (α|0〉+ β|1〉) a ⊗ (γ|0〉+ δ|1〉) b

(5)

As shown in Figure 2, to achieve bidirectional qubit transmission, Alice and Bob perform
Control-NOT (CNOT) gates and Hadamard gates in parallel, and the state of the entire system becomes

|Y′1〉 = 1
4

{
[|000〉aA1A2(α|0〉+ β|1〉)B1

+ |100〉aA1A2(α|0〉 − β|1〉)B1

+|011〉aA1A2(α|1〉+ β|0〉)B1
+ |111〉aA1A2(α|1〉 − β|0〉)B1

]

⊗[|000〉bB2B3(γ|0〉+ δ|1〉)A3
+ |100〉bB2B3(γ|0〉 − δ|1〉)A3

+|011〉bB2B3(γ|1〉+ δ|0〉)A3
+ |111〉bB2B3(γ|1〉 − δ|0〉)A3

]
} (6)

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 13 

a
χ

b
χ

a
χ

b
χ

a
1A

2A
3A

3B
2B
1B

 

Figure 2. Quantum circuit for one-hop bidirectional quantum communication, where the dashed 
lines represent classical channels and the solid lines represent quantum channels. 
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Figure 2. Quantum circuit for one-hop bidirectional quantum communication, where the dashed lines
represent classical channels and the solid lines represent quantum channels.

After that, Alice and Bob perform quantum measurements (denoted as PM in Figure 2) on the
particles a, A1, A2 and b, B2, B3 under the basis {|0〉, |1〉}, and then inform each other of their measurement
results through classical channel. According to the received measurement results, Alice and Bob
perform appropriate unitary operations on the particle A3 and particle B1 to recover the original
qubit. For example, when Alice’s measurement result is |000〉aA1A2 and Bob’s measurement result
is |011〉bB2B3 , from Equation (6) we can see that the quantum state of the particles A3 and B1 would
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be (α|0〉+ β|1〉)B1
⊗ (γ|1〉+ δ|0〉)A3

. Alice can retrieve the original qubit by performing the identity
operation I on particle B1 and Bob can retrieve the original qubit by performing the Pauli-X operation
on particle A3, respectively. Table 1 lists Alice’s and Bob’s unitary operations corresponding to the
received measurement results.

Table 1. The relations between Alice’s and Bob’s measurement results and unitary operations.

Received Measurement Result Unitary Operation

|000〉 I

|011〉 X

|100〉 Z

|111〉 ZX

Similarly, when other types of GHZ-GHZ states are previously shared between Alice and Bob,
the unitary operations corresponding to Alice’s and Bob’s measurement results are listed in Table 2.
The first row shows the GHZ-GHZ states shared between Alice and Bob, while the first column shows
Alice’s and Bob’s measurement results.

Table 2. The unitary operations to realize one-hop bidirectional quantum communication.

|ψ1〉A1B1A2

|ψ1〉B2A3B3

|ψ2〉A1B1A2

|ψ2〉B2A3B3

|ψ3〉A1B1A2

|ψ3〉B2A3B3

|ψ4〉A1B1A2

|ψ4〉B2A3B3

|ψ5〉A1B1A2

|ψ5〉B2A3B3

|ψ6〉A1B1A2

|ψ6〉B2A3B3

|ψ7〉A1B1A2

|ψ7〉B2A3B3

|ψ8〉A1B1A2

|ψ8〉B2A3B3

|000〉 I X Z ZX

|011〉 X I ZX Z

|100〉 Z ZX I X

|111〉 ZX Z X I

|001〉 I X Z ZX

|010〉 X I ZX Z

|101〉 Z ZX I X

|110〉 ZX Z X I

3. Two-Hop Directional Quantum Communication

Assume that Alice intends to send an arbitrary qubit |χ〉a= (α|0〉+ β|1〉)a to Bob; at the same time,

Bob intends to send |χ〉b= (γ|0〉+ δ|1〉)b to Alice, where |α|2 +
∣∣∣β∣∣∣2 = 1 and

∣∣∣γ∣∣∣2 + |δ|2 = 1, while there
is no GHZ state shared directly between Alice and Bob. Suppose that Candy previously shared a
six-particle GHZ-GHZ state with Alice and Bob, respectively, as shown in Figure 3.
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Without loss of generality, assume that
∣∣∣ψ1

〉
A1C1A2

−

∣∣∣ψ1
〉

C2A3C3
was previously shared between

Alice and Candy, while
∣∣∣ψ4

〉
C4B1C5

−

∣∣∣ψ4
〉

B2C6B3
was previously shared between Candy and Bob. The state

of the initial fourteen-particle system |Y2〉 is given by

|Y2〉 =
∣∣∣ψ1

〉
A1C1A2

⊗

∣∣∣ψ1
〉

C2A3C3
⊗

∣∣∣ψ4
〉

C4B1C5
⊗

∣∣∣ψ4
〉

B2C6B3
⊗ |χ〉a ⊗ |χ〉b

= 1
2

[
(|000〉+ |111〉)A1C1A2

⊗ (|000〉+ |111〉)C2A3C3

]
⊗

1
2

[
(|011〉+ |100〉)C4B1C5

⊗ (|011〉+ |100〉)B2C6B3

]
⊗(α|0〉+ β|1〉) a ⊗ (γ|0〉+ δ|1〉) b

(7)

As shown in Figure 4, to achieve bidirectional two-hop qubit transmission, Alice, Bob, and
Candy perform CNOT, Hadamard operations, and quantum measurements in parallel. After that, the
measurement results of Alice and Candy and the type of the composite GHZ-GHZ channel between
Alice and Candy are transmitted to Bob. Similarly, the measurement results of Bob and Candy and the
type of the composite GHZ-GHZ channel between Bob and Candy are transmitted to Alice. Based on
the received information, Alice and Bob perform appropriate unitary operations on the particles A3

and B1 to recover the original qubit.

|Y2〉
CNOT
→

|Y′2〉 = 1
4αγ|00〉ab[|000101011011〉+ |000000011100〉+ |000101100011〉+ |000000100100〉

+|000010011011〉+ |000111011100〉+ |000010100011〉+ |000111100100〉

+|111101110011〉+ |111000110100〉+ |111101001011〉+ |111000001100〉

+|111010110011〉+ |111111110100〉+ |111010001011〉+ |111111001100〉]A1C1A2C2A3C3C4B1C5B2C6B3

+ 1
4αδ|01〉ab[|000101011110〉+ |000000011001〉+ |000101100110〉+ |000000100001〉

+|000010011110〉+ |000111011001〉+ |000010100110〉+ |000111100001〉

+|111101110110〉+ |111000110001〉+ |111101001110〉+ |111000001001〉

+|111010110110〉+ |111111110001〉+ |111010001110〉+ |111111001001〉]A1C1A2C2A3C3C4B1C5B2C6B3

+ 1
4 βγ|10〉ab[|101101011011〉+ |101000011100〉+ |101101100011〉+ |101000100100〉

+|101010011011〉+ |101111011100〉+ |101010100011〉+ |101111100100〉

+|010101110011〉+ |010000110100〉+ |010101001011〉+ |010000001100〉

+|010010110011〉+ |010111110100〉+ |010010001011〉+ |010111001100〉]A1C1A2C2A3C3C4B1C5B2C6B3

+ 1
4 βδ|11〉ab[|101101011110〉+ |101000011001〉+ |101101100110〉+ |101000100001〉

+|101010011110〉+ |101111011001〉+ |101010100110〉+ |101111100001〉

+|010101110110〉+ |010000110001〉+ |010101001110〉+ |010000001001〉

+|010010110110〉+ |010111110001〉+ |010010001110〉+ |010111001001〉]A1C1A2C2A3C3C4B1C5B2C6B3
Hadamard
→

= 1
16αγ[(|0〉+ |1〉)a(|0〉+ |1〉)b]⊗

[|000101011001〉+ |010101011001〉 − |000101011011〉 − |010101011011〉+ · · · ]A1C1A2C2A3C3C4B1C5B2C6B3

+ 1
16αδ[(|0〉+ |1〉)a(|0〉 − |1〉)b]⊗

[|000111011001〉+ |000111011011〉+ |010111011001〉+ |010111011011〉+ . . .]A1C1A2C2A3C3C4B1C5B2C6B3

+ 1
16 βγ[(|0〉 − |1〉)a(|0〉+ |1〉)b]⊗

[|000101001001〉 − |010101001001〉 − |000101001011〉+ |010101001011〉+ . . .]A1C1A2C2A3C3C4B1C5B2C6B3

+ 1
16 βδ[(|0〉 − |1〉)a(|0〉 − |1〉)b]⊗

[|000111001001〉 − |010111001001〉+ |000111001011〉 − |010111001011〉+ . . .]A1C1A2C2A3C3C4B1C5B2C6B3

= [|000011101001〉abA1A2C1C2C3C4C5C6B2B3
+ . . .+] ⊗ [(γ|0〉+ δ|1〉)A3

⊗ (α|1〉 − β|0〉)B1
]

+[|010011101001〉abA1A2C1C2C3C4C5C6B2B3
+ . . .+] ⊗ [(γ|0〉 − δ|1〉)A3

⊗ (α|1〉 − β|0〉)B1
]

+[|100011101001〉abA1A2C1C2C3C4C5C6B2B3
+ . . .+] ⊗ [(γ|0〉+ δ|1〉)A3

⊗ (α|1〉+ β|0〉)B1
]

+[|110011101001〉abA1A2C1C2C3C4C5C6B2B3
+ . . .+] ⊗ [(γ|0〉 − δ|1〉)A3

⊗ (α|1〉+ β|0〉)B1
]

+ . . .

(8)
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For example, if Bob receives measurement results |000〉aA1A2 and |101〉C1C4C5 , and Alice receives
measurement results |011〉C6C2C3 and |101〉bB2B3 , the quantum state of the particles A3 and B1 would
be (γ|0〉 − δ|1〉)A3

⊗ (α|1〉 − β|0〉)B1
. Alice can retrieve the original qubit by performing the Pauli-XZ

operation on particle B1, and Bob can retrieve the original qubit by performing the Pauli-Z operation
on particle A3.

If the above two-hop qubit transmission is realized hop-by-hop, after Alice performs CNOT,
Hadamard operations, and the projective measurement, the quantum state of Candy’s particle would
be I|χ〉a when she was informed of Alice’s measurement result of |000〉aA1A2 , according to Table 2. After
Candy performs CNOT, Hadamard operations, and the projective measurement, the quantum state of
Bob’s particle would be ZX(I|χ〉a) = ZX|χ〉a when he was informed of Candy’s measurement result of
|101〉C1C4C5 . Similarly, in the other direction, when Bob’s measurement result is |101〉bB2B3 , the quantum
state of Candy’s particle would be ZX|χ〉b. If Candy’s measurement result is |011〉C6C2C3 , the quantum
state of Alice’s particle would be X(ZX|χ〉b) = Z|χ〉b, which is compatible with Equation (8).

4. Multi-Hop Bidirectional Quantum Communication

In this section, we generalize two-hop bidirectional quantum communication to the multi-hop case.

4.1. N-Hop Bidirectional Quantum Communication

Specifically, in the n-hop case, the entanglement channel between the node N1 and the nodes Nn+1

is shown in Figure 5. Assume that the node N1 intends to transmit an arbitrary qubit |χ〉a = α|0〉a + β|1〉a
to the node Nn+1, while the node Nn+1 intends to transmit |χ〉b = γ|0〉b + δ|1〉b to the node N1 at the

same time, where |α|2 +
∣∣∣β∣∣∣2 = 1 and

∣∣∣γ∣∣∣2 + |δ|2 = 1.
To achieve bidirectional n-hop qubit transmission, each node on the quantum path performs

quantum measurements simultaneously. After that, the node N1 and all intermediate nodes send
their measurement results together with the types of the composite GHZ-GHZ states shared between
themselves and the next-hop nodes to the node Nn+1 through classical channels independently.
Similarly, the node Nn+1 and all intermediate nodes send their measurement results together with the
types of the GHZ-GHZ states to the node N1 independently. Based on the received information, the node
N1 and the node Nn+1 perform appropriate unitary operations locally to recover the original qubit.
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According to the analysis in Section 3, the unitary operations of N1 and Nn+1 can be determined in
a hop-by-hop manner. We take the qubit transmission from the node N1 to the node Nn+1 as an example.
Given that node N1 intends to transmit |χ〉a to the node Nn+1, after N1 ’s CNOT, Hadamard operations,
and quantum projective measurement, the quantum state of N2’s particle would be T1|χ〉a, where
Ti(i = 1, 2, · · · , n) is a unitary matrix. After N2 performs CNOT, Hadamard operations, and quantum
projective measurement, the quantum state of N3 ’s particle would be T2(T1|χ〉a). Similarly, after all
the intermediate nodes perform CNOT, Hadamard operations, and quantum projective measurements,
the quantum state of the node Nn+1’s particle would be Tn · · ·T2T1|χ〉a.

To recover the original qubit |χ〉a locally, the node Nn+1 needs to perform the unitary operation U
on his particle N1

n+1, given by

U =
n∏

i=1

Ti (9)

where Ti(i = 1, 2, · · · , n) is determined according to Table 2, based on the measurement results of the
node Ni and the composite GHZ-GHZ state previously shared between the node Ni and Ni+1.

Similarly, for the other direction of qubit transmission, the node N1 can perform the unitary
operation V on its particle N3

1 to recover the original qubit |χ〉b,

V =
1∏

j=n

C j+1 (10)

where C j+1( j = 1, 2, · · · , n) is determined according to Table 2, based on the measurement results of
the node N j+1 and the composite GHZ-GHZ state previously shared between the node N j and N j+1.

4.2. Example of Multi-Hop Bidirectional Quantum Communication

An example is presented to better illustrate the whole process of multi-hop bidirectional quantum
communication. Assume that two nodes named N1 and N5 intend to transmit two qubits |χ〉a and |χ〉b
to each other. We might as well suppose that three intermediate nodes N2, N3 and N4 are involved in
the quantum path ‘N1 → N2 → N3 → N4 → N5 ’, as shown in Figure 6.
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Assume that the composite GHZ-GHZ states
∣∣∣ψ1

〉
N1

1N1
2N2

1
−

∣∣∣ψ1
〉

N2
2N3

1N3
2
,
∣∣∣ψ5

〉
N4

2N1
3N5

2
−

∣∣∣ψ5
〉

N2
3N6

2N3
3
,∣∣∣ψ4

〉
N4

3N1
4N5

3
−

∣∣∣ψ4
〉

N2
4N6

3N3
4
, and

∣∣∣ψ8
〉

N4
4N1

5N5
4
−

∣∣∣ψ8
〉

N2
5N6

4N3
5

were previously shared on the quantum path.

To implement the qubit transmission from N1 to N5, N1 and all the intermediate nodes perform
quantum measurements simultaneously, then they send their measurement results and the type of the
composite GHZ-GHZ states previously shared between themselves and the next-hop nodes to the
node N5 through classical channels. Assume the node N5 receives a group of measurement results
|011〉sN1

1N1
2
, |100〉N1

2N4
2N5

2
, |001〉N1

3N4
3N5

3
, and |001〉N1

4N4
4N5

4
from N1, N2, N3, N4 respectively; the unitary

operation required for recovering the original qubit locally is given by

U =
4∏

i=1

Ti = X · I ·X ·ZX = ZX (11)

where T1 = X, T2 = I, T3 = X, and T4 = ZX are determined according to Table 2.
When it comes to the qubit transmission from N5 to N1, N5 and all the intermediate nodes perform

quantum measurements simultaneously, then they send their measurement results and the type of
the composite GHZ-GHZ state previously shared between themselves and the next-hop node to the
node N1 through classical channels. Assume the node N1 receives a group of measurement results
|011〉N6

2N2
2N3

2
, |100〉N6

3N2
3N3

3
, |101〉N6

4N2
4N3

4
, and |110〉dN2

5N3
5

from N2, N3, N4, and N5 respectively; the unitary
operation required for recovering the original qubit locally is given by

V =
1∏

j=4

C j+1 = I ·ZX · I ·X = Z (12)

where C5 = I, C4 = ZX, C3 = I, and C2 = X are determined according to Table 2.

5. Discussions and Conclusions

5.1. Discussions

In the process of multi-hop quantum communication, the quantum communication delay is
introduced mostly by quantum measurements, unitary operations, and transmission of classical
information. Due to the limited decoherence time in the quantum memory and the demand for QOS
(Quality of Service), a short delay is expected in quantum communication. Assume that each quantum
measurement takes dm milliseconds, unitary operation takes du milliseconds, and one-hop transmission
of classic information through classical channel takes dt milliseconds.

In our scheme, as shown in Figure 7, quantum measurements (CNOT, Hadamard operations,
and projective measurements are included) are performed simultaneously, and classical information
is sent to the destination node independently. Taking Hd

i (i = 1, . . . , n) to denote the hop count of
the classical information transmitted from the i-th node to the destination node, therefore the total
end-to-end quantum communication delay in the n-hop case is given by

dA,total = max
{
Hd

i

}
× dt + du + dm (13)

For hop-by-hop qubit transmission [7], as shown in Figure 8, the total end-to-end quantum
communication delay is given by

dB,total = n(dt + du + dm) (14)

Given that dt = 2du = 2dm = 0.6ms, the end-to-end quantum communication delay in our scheme
and hop-by-hop qubit transmission scheme is demonstrated by Figure 9.
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From Figure 9, it is obvious that our scheme has a shorter end-to-end quantum communication
delay. In a wide-area quantum communication network where the hop count number n is large,
our scheme shows obvious advantage in the end-to-end quantum communication delay.

In addition to the shorter quantum communication delay, our scheme shows other notable
advantages, such as: (i) Duplex quantum communication is available for two arbitrary nodes compared
with other quantum network schemes [6–8,11,12]. (ii) The composite GHZ-GHZ states are used
as the quantum channel, which is less prone to the decoherence effects caused by the surrounding
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environment [22]. (iii) Only quantum projective measurements and unitary operations are needed
to implement qubit transmission. Auxiliary qubits are not required, in contrast to the bidirectional
quantum communication scheme based on GHZ-Bell states [20]. (iv) In our scheme, for an intermediate
node, it is not necessary to recover the original qubit locally and then teleport it to its next-hop node.
Therefore, information leakage can be avoided compared with the hop-by-hop qubit transmission
scheme [7].

5.2. Conclusions

In summary, we propose a bidirectional quantum communication protocol using the composite
GHZ-GHZ state as quantum channel. Two arbitrary nodes in a quantum communication network
can transmit qubits to each other based on quantum measurements performed in parallel by all the
nodes involved. The original qubits can be retrieved locally at the destination site based on the
measurement results and the types of GHZ channel. Information leakage is avoided in our scheme,
and it has a shorter delay for the end-to-end quantum communication, in contrast to the hop-by-hop
qubit transmission scheme.

There are many avenues for future work and extensions. One aspect is the imperfection of
quantum channel, which is crucial for the efficiency and fidelity of qubit transmission. Another
important aspect is the extension to multi-user quantum communication, which is a realistic scenario
for future quantum networks.
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