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Abstract: One of the primary tasks for commercial recommender systems is to predict the
probabilities of users clicking items, e.g., advertisements, music and products. This is because
such predictions have a decisive impact on profitability. The classic recommendation algorithm,
collaborative filtering (CF), still plays a vital role in many industrial recommender systems. However,
although straight CF is good at capturing similar users’ preferences for items based on their
past interactions, it lacks regarding (1) modeling the influences of users’ sequential patterns from
their individual history interaction sequences and (2) the relevance of users’ and items’ attributes.
In this work, we developed an attention-based latent information extraction network (ALIEN)
for click-through rate prediction, to integrate (1) implicit user similarity in terms of click patterns
(analogous to CF), and (2) modeling the low and high-order feature interactions and (3) historical
sequence information. The new model is based on the deep learning, which goes beyond the
capabilities of econometric approaches, such as matrix factorization (MF) and k-means. In addition,
the approach provides explainability to the recommendation by interpreting the contributions of
different features and historical interactions. We have conducted experiments on real-world datasets
that demonstrate considerable improvements over strong baselines.

Keywords: recommender systems; collaborative filtering; click-through rate prediction; high-order
feature interactions; attention mechanism; explainable recommendation

1. Introduction

In recent years, recommender systems have improved substantially and are now widely adopted
by many online services in domains such as news, e-commerce and social media, among many others.
The key to a personalized recommendation for a target user is in modeling similar users’ preferences
for items in a domain based on those similar users’ past interactions and the similarity of their patterns
to those of the target user (e.g., in ratings and clicks). In a broader sense, any use of such user similarity
(sometimes called “nearest neighbors”) is an umbrella concept known as collaborative filtering [1,2].

With the inclusion of time-stamp and sequence, collaborative filtering is being merged with
history sequences to play a vital role in many industrial recommender systems. The most well-known
collaborative filtering technique, matrix factorization [3–5], projects users and items into a shared
latent space and utilizes a vector of latent dimensions to represent a user or an item. Thereafter
a user’s interaction with an item is modeled as the inner product of their latent vectors. Recently,
researchers have been embracing deep-learning neural architectures that can learn very complicated
functions from data, to replace the inner product applied in matrix factorization [6,7] and also include
information from history sequences [8,9].
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However, even with (a) user-user similarity (based on, e.g., clicks), and (b) history sequences,
there is still another source of information which emerges from (c) the “attributes”
(sometime called “features”) of users and items, and the interactions of these attributes, originally at
the main effect level, but that is now moving to the second, third and even higher-order interactions.
This is the landscape on which our model operates (attention-based latent information extraction
network (ALIEN) for high-order feature interactions).

The user’s attributes include demographic factors, e.g., age, gender, occupation and educational
background [7,10–14]. In addition, item attributes such as the category of a product, the genre of
a movie and the release date of an album, not only render the basic information about the item,
but also provide clues as to why the user is interested in it [10,15]. For example, it is reasonable to
recommend Toy Story, a famous cartoon movie, to an eight-year-old boy Peter when he enters a video
streaming website. Therefore, a third-order feature interaction, <gender = male, age = 8, movie’s genre
= (animation, children’s, comedy)>, can be an informative description of this scenario for prediction.
Existing works which focused on modeling low-order feature interactions from user and item attributes
have been proposed for click-through rate (CTR) prediction [16–19], whose primary task is to predict the
probabilities of users clicking items, e.g., advertisements, music and products. However, although the
problem of feature engineering has been automated beyond manual feature selection, these models
still lack the capability of extracting latent information from high-order feature interactions, which
usually increases the dimensions and sparsity of the input features exponentially, leading to a more
serious problem of model overfitting [20].

In addition, Peter may be curious about the reason why Toy Story was recommended to him.
A possible assumption is, on the one hand, that it was recommended because he watched Lion King
last week, whose genres are (animation, children’s, musical), similar to Toy Story’s, and welcomed
by children as well. On the other hand, the third-order feature interaction <gender = male, age = 8,
movie’s genre = (animation, children’s, musical)> has a greater impact on the recommendation of Toy
Story than any other feature interactions, e.g., <zipcode = 48067 and movie’s year of release = 1994>.
To meet his expectations, it is appropriate to design a recommender system which not only provides
a precise recommendation, but also is capable of finding out the exact feature interactions and
history items which have greater influences on this recommendation. Thus, we propose a novel
model, the attention-based latent information extraction network (ALIEN), to solve the CTR problem
mentioned above. It has been demonstrated that the self-attention mechanism [15,21,22] is able
to investigate the internal relationships between words within a sentence in the natural language
processing task. Similarly, it enables ALIEN to provide explanations of recommendations by capturing
comprehensive relationships between feature interactions from user and item attributes. In order to
resolve the issues of modeling high-order feature interactions and providing explainability at the same
time in a unified way, we built two attention-based layers from both micro and macro perspectives.
The main contributions of this paper include:

• An attention-based latent information extraction network (ALIEN) is proposed which takes user
and item attributes and the user’s history interactions as features; two attention-based layers are
applied in both macro and micro perspectives: (1) the macro one learns the latent information
by modeling the low and high-order of feature interactions, and interprets the contribution of
each feature interaction; (2) the micro layer investigates the different impact which each history
interaction has on the candidate item.

• Dice [8] is introduced as the activation function, to standardize the input data and place the mean
at the inflection point of the sigmoid.

• We conducted empirical evaluations and validated the effectiveness of the model on two
real-world datasets.

• We demonstrate the effectiveness of the approach in providing the explainability of the model.
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2. Related Work

CTR prediction models have been successfully developed in both academia and industry [8,16,23–27].
Until fairly recently, feature selection from attributes was mainly hand-crafted by experts [28]. However,
it was a tedious task, and experts’ experience and expertise were highly required [28]. Therefore,
there were works proposed [16–19] to model feature interactions automatically. Among these works,
factorization machines (FM) [19] is a representative model, which was built to capture the first and
second-order feature interactions in a linear way, and its effectiveness has been demonstrated in
many recommendation tasks [29,30]. However, these models only focused on modeling low-order
feature interactions, and lacked the capability of extracting latent information from high-order
feature interactions, which tends to be combinatorially explosive.

To solve the problem of modeling high-order feature interactions, approaches were made
which utilized feed-forward neural networks. He et al. [31] proposed neural factorization machines
(NFM) to seamlessly combine the linearity of FM and the non-linearity of neural networks in
modeling second-order and higher-order feature interactions, respectively. Qu et al. [32] proposed a
product-based neural network (PNN), wherein a product layer is used to explore high-order feature
interactions after an embedding layer. Lian et al. [33] proposed a novel compressed interaction
network (CIN), which aimed to generate feature interactions at the vector-wise level. In addition to
models for academia, Internet companies proposed several representative deep models which aimed
to learn non-linear feature interactions from large-scale data. Cheng et al. [23] from Google proposed
“Wide & Deep” for app recommendation, wherein the multi-layer perceptron (MLP) was used on
the concatenation of feature embedding vectors, to learn feature interactions. Shan et al. [34] from
Microsoft proposed DeepCross which utilized a deep residual MLP [35] to learn feature interactions.
However, these methods were not capable of interpreting the contribution of each feature interaction.

To deal with the problem of explainability, Xiao et al. [36] applied the attention mechanism [15,22]
to learn the importance of each feature interaction. Song et al. [20] moved a step further by combining
a multi-head self-attentive neural network with residual connections, to model the importance of
feature interactions with different orders. To solve these two issues at the same time in a unified way,
we make the following contributions based on the improvements over the existing techniques:

(1) For the macro domain, we developed a novel self-attention-based layer named the
attributes-driven latent information extraction layer (which is denoted USER × CANDIDATE),
to learn the latent information from the user and item attributes by modeling the low and
high-order of feature interactions, and interpret the contribution of each feature interaction.
Our approach evolved from the existing techniques of the synthesizer [37] and the compressed
interaction layer (CIN) [33]. Contrary to the role the synthesizer played in the natural language
processing (NLP) task, for the first time to our best knowledge, it was transformed by us into
the approach which is able to model feature interactions and interpret their contributions for the
recommendation task.

(2) In addition, by adding the capability of modeling from a user’s history interactions from the
micro perspective, we solve the issue of CIN only modeling static feature interactions without
having the ability to capture the user’s diverse interests. Therefore, another novel attention-based
layer named user behavior-driven latent information extraction layer (HISTORY) was developed
to learn the latent information from user’s historical behavior by modeling the items in the user’s
history interactions, and investigating the different impact which each history interaction has
on the candidate item. Our approach evolved from the existing technique of the deep interest
network (DIN) [8]. Unlike the items’ embedding method utilized in DIN, we propose a different
approach described in Section 3.3, to better suit ALIEN’s architecture. Moreover, since DIN lacks
the modeling of feature interactions, the attributes-driven latent information extraction layer
(USER × CANDIDATE) described above compensates for that disadvantage.
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3. The ALIEN Architecture

In this section, we first present the main idea of the attention-based latent information
extraction network (ALIEN) proposed in this paper, and formulate the description of the problem, as
explained above. Afterwards, we elaborate with a diagram of the architecture of ALIEN.

3.1. Main Idea

Our notation is summarized in Table 1. In the ALIEN model, there are three layers:

(1) The attributes-driven latent information extraction layer (USER × CANDIDATE);
(2) The user behavior-driven latent information extraction layer (HISTORY);
(3) The latent information digestion and prediction layer (PREDICTION).

Table 1. Notation descriptions.

Notation Description

U ,V the sets of users and items
u ∈ Rm×k, v ∈ Rn×k user u’s and v’s k-dimensional embeddings
Svc

u the embedding set of u’s history items related to u’s candidate item vc
ũ f , ṽ f u’s and v’s high-dimensional and sparse one-hot encodings which contain

all the fields of attributes
Wũ(i) ∈ Rk×|ũ(i) |, Wṽ(j) ∈ Rk×|ṽ(j) | the weights assigned to ũ(i) and ṽ(j) for latent space projection
`F u,vc

(i)
, `F u,vc the numbers of feature interactions of the i-order and all the orders

mentioned
Fu,vc ∈ R`Fu,vc×k the complete representation vector of feature interactions of all the orders

mentioned

F̂u,vc ∈ R
`Fu,vc

(1)
×k

the output vector of the Synthesizer module
X l

h the h-th feature vector of the l-th layer in the CIN module
αsyn the feature interaction-level attention score matrix for Fu,vc

(1)

ψ·(·) ∈ R
`Fu,vc

(1)
×`Fu,vc

(1) the Multi-Layer Perceptron units in the Synthesizer module
σ(·) the Dice activation function

Wsyn ∈ R
`Fu,vc

(1)
×`Fu,vc

(1) the randomly initialized matrix utilized in the Synthesizer module
Ivc

u the intensity of u’s interest in vc
wci the correlation score between vc and vi
Pvc

u u’s preference vector for vc

Our model is illustrated in Figure 1. ALIEN performs two tasks in the macro and micro
perspectives, and then merges those in the PREDICTION layer:

Attributes-driven latent information extraction layer (USER× CANDIDATE): This layer performs
a macro task of learning the latent information from modeling the low and high-order feature
interactions, thereby establishing the contribution of each feature interaction to the user u’s interest.
Modeling low and high-order feature interactions from user and item attributes is overlooked by
many recommendation models [7,10]. In addition, in their models, user and item embeddings u
and v are initialized only with indices of u and v, which have vague meanings and converge slowly.
However, user and item attributes are very important and provide key features which describe u’s
and v’s basic characteristics. In our model, user and item attributes are used to initialize u and v via
an embedding method, in order to render a clearer meaning with the side information and make the
model converge faster. The embedding method is discussed in Section 3.3. Moreover, taking into
consideration the exhaustive volume of calculations for generating high-order feature interactions,
which grows exponentially when the order of interactions increases, we propose a novel architecture
to reduce the computational complexity and parameter costs.

User behavior-driven latent information extraction layer (HISTORY): This layer finishes the micro
task and investigates the different impact which each history interaction has on the candidate item.
Obviously it is not enough to build user profile with only stationary attributes. User behavior not only
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implies u’s historical interests, but also provides clues as to why u will choose to click the candidate
item vc (or not). Given vc, a user’s interest related to vc can be locally activated, and therefore its
intensity is available for measurement, which is regarded as one important factor to improve the CTR
prediction in our work.

Latent information digestion and prediction layer (PREDICTION): This layer concatenates
the outputs of the first two layers and feeds them into a fully connected layer with the Dice
activation function to generate the CTR prediction of vc for u. Dice standardizes the input data
and puts the mean at the inflection point of the sigmoid, which is important when the inputs of each
layer follow different distributions.

The detailed work flow of these three layers is discussed in Section 3.4. The main idea of our
approach is to:

(1) Build a basic user profile by constructing the low and high-order feature interactions from user
and item attributes, and assign them different weights, to automatically learn the different
influences on the candidate item.

(2) Enrich the user’s profile comprehensively by locally activating u’s interest related to vc with
u’s corresponding history items Svc

u , and measure the intensity of u’s locally activated interest,
to enhance the performance of CTR prediction.

u
′
s F ield 1 · · · u

′
s F ield m︸ ︷︷ ︸

User Attributes
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′
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′
s F ield n
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Figure 1. ALIEN architecture. The dark-green dashed box on the left side illustrates the
attributes-driven latent information extraction layer (USER × CANDIDATE); the purple dashed
box on the right, the user behavior-driven latent information extraction layer (HISTORY); and the blue
dashed box at the top, the latent information digestion and prediction layer (PREDICTION).
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3.2. Problem Formulation

We formulate the problem of CTR prediction. Let U denote a set of users and V denote a set
of items, where |U | and |V| are the total numbers of users and items, respectively. The user-item
interaction matrix Y ∈ R|U |×|V| is defined according to users’ implicit feedback, where binary yuv = 1
indicates that there is an implicit interaction between user u and item v, e.g., behaviors of clicking,
watching and browsing. Otherwise, there is no interaction between u and v when yuv = 0.
Take the example of user u ∈ U and item v ∈ V . There are m and n fields of features in u’s and
v’s attributes, respectively. u’s and v’s k-dimensional embeddings u = [u(1) u(2) ... u(m)] ∈ Rm×k

and v = [v(1) v(2) ... v(n)] ∈ Rn×k denote the concatenations of u’s and v’s feature embeddings,
where k-dimensional u(i) and v(j) are encoded from the i-th and j-th fields in u’s and v’s attributes,
respectively. The procedure of embedding will be discussed in Section 3.3. The problem of
click-through rate prediction is to predict the probability of u clicking the candidate item vc. Our goal is
to make precise the CTR prediction by modeling u and vc’s low and high-order feature interactions and
u’s history interactions. u’s history interactions consist of u’s history items before he or she interacts
with vc, and the embedding set of u’s history items is denoted as Svc

u = {v1, v2, ..., v|Svc
u |}.

3.3. Embedding Procedure

Differently from the embedding procedure used in [8], u and v are built with their attributes,
respectively. We follow the feature embedding method applied in [32]. Take as an example the
procedure of constructing item embeddings only, to conserve space. It consists of three steps. Firstly,
all the numerical and categorical fields of item attributes are transformed into high-dimensional
and sparse one-hot encodings, i.e., ṽ f = [ṽ(1) ṽ(2) ... ṽ(n)]. Since each field ṽ(i) is a different type
of attribute, apparently its one-hot encoding has a different dimension, denoted as |ṽ(i)|. To reduce
and unify dimensions, secondly, each encoding ṽ(i) is assigned a weight Wṽ(i) ∈ Rk×|ṽ(i) | and projected
into a low-dimensional latent vector space with Wṽ(i) :

v(i) = Wṽ(i) ṽ(i), (1)

where the k-dimensional dense vector v(i) ∈ Rk is the representation of ṽ(i). Finally, the item
embedding v = [v(1) v(2) ... v(n)] ∈ Rn×k is generated by concatenating all fields of vectors.
The generation of u = [u(1) u(2) ... u(m)] ∈ Rm×k is similar to that of v.

3.4. Model Description

In this section, we discuss the ALIEN model’s entire recommendation process and the main
system components with the adopted technologies we introduced.

As illustrated in Figure 1, ALIEN integrates the modeling of attributes-driven and user
behavior-driven latent information into one single architecture. The user behavior-driven latent
information extraction layer (HISTORY) evolved from the deep interest network (DIN) model used
in [8], and the model proposed in it is regarded as a baseline to compare with ALIEN model. The latent
information digestion and prediction layer (PREDICTION) receives the outputs of the attributes-driven
latent information extraction layer (USER × CANDIDATE) and the user behavior-driven latent
information extraction layer (HISTORY), and generates the final prediction.

3.4.1. Attributes-Driven Latent Information Extraction Layer (USER × CANDIDATE)

In terms of building a comprehensive user profile, making good use of user and item attributes is
an indispensable task. However, issues such as the enormous sparsity and high dimensions of one-hot
feature vectors hinder the recommender systems from precisely modeling user’s characteristics.
In addition, extracting local dependencies and hierarchical structures among fields has been the
challenging work. Qu et al. [32] tried to solve these issues by applying a product layer to capture
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feature interactions from multi-field categorical data after the embedding layer, but the model has
the limitation that it only deals with 1 and 2-order feature interactions, and lacks the ability to
model higher-order feature interactions, i.e., the 3-order and higher ones. However, the complexity
of n-order inner product grows exponentially with the order of interactions, which results from
the exhaustive calculations of inter-fields feature interactions. To solve this issue, we follow [32]
and made the following improvements in the attributes-driven latent information extraction layer
(USER × CANDIDATE):

• We introduce a compressed interaction network (CIN) [33] to model higher order feature interactions,
which solves the high complex and time-consuming issue by compressing the high-order interaction
vectors to a fixed value.

• Taking both low and high-order feature interactions into consideration, we utilize synthesizer [37] to
interpret the contribution of each feature interaction to the candidate item. To our best knowledge,
our model is the first one proposed to apply synthesizer in the field of recommender systems.

The graph inside the dark-green box in Figure 1 illustrates the work flow of the attributes-driven
latent information extraction layer (USER × CANDIDATE). In the following paragraphs, we state the
functionality and the working procedure of each component in the attributes-driven latent information
extraction layer (USER × CANDIDATE).

The generation of feature interactions. Let f u,vc = [u(1), ..., u(m), v(1)
c , ..., v(n)

c ] , [ f u,vc
1 , f u,vc

2 , ..., f u,vc
m+n]

be the concatenation of u and vc. There are two procedures of generating feature interactions,
i.e., the generations of (1) low-order feature interactions, and (2) high-order feature interactions.
We define low-order as 1-order and 2-order. The representation of 1-order feature interactions
Fu,vc

(1) = [ f u,vc
1 , f u,vc

2 , ..., f u,vc
m+n] is the concatenation of products between f u,vc

i ∈ Fu,vc
(1) and the constant

signal “1.” For 2-order feature interactions, there are
(m + n)(m + n− 1)

2
2-order feature interactions.

The representation of 2-order feature interactions Fu,vc
(2) is defined as:

Fu,vc
(2) = [ f u,vc

1 ◦ f u,vc
2 , f u,vc

1 ◦ f u,vc
3 , ..., f u,vc

i ◦ f u,vc
j , ..., f u,vc

m+n−1 ◦ f u,vc
m+n], (2)

where ◦ denotes the Hadamard product, and i ∈ [1, m + n − 1], j ∈ [i + 1, m + n]. In addition
to low-order feature interactions, we utilize a compressed interaction network (CIN) approach to
generate higher-order feature interactions, whose order is defined to be higher than two in this paper.
In CIN, there are multiple layers, each of which has different feature vectors. The h-th feature vector of
the l-th layer in CIN is:

X l
h =

Hl−1∑
i=1

m+n∑
j=1

wl,h
ij (X l−1

i ◦ X0
j ), (3)

where 1 ≤ h ≤ Hl and X0
j = f u,vc

j ; and wl,h
ij ∈ RHl−1×(m+n) is the parameter matrix for the h-th

feature vector. Hl−1 denotes the number of feature interactions in the l-th layer:

Hl−1 =
(m + n)!

(m + n− l)! l!
, (4)

where 1 ≤ l ≤ O, and O denotes the highest order of feature interactions to be modeled in this paper.
Equation (3) implies that the order of interactions increases with the growth of the layer depth of CIN.
Take as an example the generation of 3-order feature interactions. From Equation (3), we find that the
3-order feature interactions are the output vectors of the second layer in CIN:

Fu,vc
(3) = [X2

1 , X2
2 , · · · , X2

H2
]. (5)
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Similarly, the higher-order feature interactions can be obtained:

Fu,vc
(i) = [X i−1

1 , X i−1
2 , · · · , X i−1

Hi−1
], (6)

where 1 ≤ i ≤ O. We define `Fu,vc
(i)

as the number of i-order feature interactions:

`Fu,vc
(i)

=


m + n, i = 1
(m+n)(m+n−1)

2 , i = 2
Hi−1, i ≥ 3

(7)

The complete representation vector of low and high-order feature interactions is:

Fu,vc = [Fu,vc
(1) ,Fu,vc

(2) ,Fu,vc
(3) , ...,Fu,vc

(O)
]. (8)

Thus, the number of low-order and high-order feature interactions `Fu,vc is:

`Fu,vc =
O∑

i=1

`Fu,vc
(i)

. (9)

From Equations (7) and (9), it is obvious that Fu,vc
(i) ∈ R

`Fu,vc
(i)
×k

and Fu,vc ∈ R`Fu,vc×k.
The synthesizer. Synthesizer is an extension of the self-attention mechanism. The advantage of

the synthesizer mechanism is that it replaces the inner product QK> in the vanilla self-attention
mechanism with the synthesizing function ϕ(·), which results in reduced computational complexity;
parameter costs which are approximately 10% lower than those for the vanilla self-attention mechanism;
and competitive performance with the vanilla one [37]. Among its several variants, we utilized a
mixed version of synthesizer, i.e., synthesizer (random + vanilla), which is the mixture of synthesizer
random and vanilla self-attention models. The architecture of synthesizer (random + vanilla) is
illustrated in Figure 2. The objective of synthesizer in the attributes-driven latent information extraction
layer (USER × CANDIDATE) is to learn the different influences of each feature interaction on the

candidate item. Therefore, we achieve it by applying αsyn = ϕ(Fu,vc
(1) ) ∈ R

`Fu,vc
(1)
×`Fu,vc

(1) as the feature

interaction-level attention score matrix for Fu,vc
(1) . We discuss the influences of feature interactions in

Section 5.3.1. Fu,vc
(1) is used as the input, and the output vector F̂u,vc of synthesizer is defined as:

F̂u,vc
= αsynψvalue(Fu,vc

(1) ) = ϕ(Fu,vc
(1) )ψvalue(Fu,vc

(1) ), (10)

where

ϕ(·) =


Wsyn, Random Mode
Softmaxsyn(ψquery(·)ψkey(·)>), Vanilla Mode
Softmaxsyn(Wsyn + ψquery(·)ψkey(·)>), Random + Vanilla Mode

, (11)

and

Softmaxsyn(·) =
exp(·)∑`·
1 exp(·)

. (12)

ψquery(·), ψkey(·), ψvalue(·) ∈ R
`Fu,vc

(1)
×`Fu,vc

(1) are multi-layer perceptron (MLP) units that are analogous
to Q(Query), K(Key) and V(Value) in the vanilla self-attention model, respectively:

ψ·(·) = MLP(·) = σ(W(·) + b), (13)
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where W , b and σ(·) are the weight, bias and non-linear activation function, respectively. Dice is
utilized as the activation function in our model:

σ(x) =
1

1 + e
− x−E[x]√

Var[x]+ε

, (14)

where E[x] and Var[x] are the mean and variance of input, respectively, and ε is set to 10−8 following [8].

Note that Wsyn ∈ R
`Fu,vc

(1)
×`Fu,vc

(1) is a randomly initialized matrix which is applied to replace QK> in the

synthesizer (random) method. Therefore, given Equations (10) and (11), F̂u,vc in random + vanilla
mode is:

F̂u,vc
= ϕ(Wsyn + ψquery(Fu,vc

(1) )[ψkey(Fu,vc
(1) )]

>)ψvalue(Fu,vc
(1) ), (15)

where F̂u,vc ∈ R
`Fu,vc

(1)
×k

. Thus, F̂u,vc and Fu,vc are provided as the outputs of the attributes-driven
latent information extraction layer (USER × CANDIDATE).

1-Order Feature Interactions

...

Concat
︷ ︸︸ ︷

ValueKeyQuery

Wsyn

Softmax

F̂
u,vc

Inner Product

Element-wise Addition

Dice-activated MLP

Figure 2. Synthesizer architecture.

3.4.2. User Behavior-Driven Latent Information Extraction Layer (HISTORY)

For the attributes-driven latent information extraction layer (USER × CANDIDATE), it learns the
scope of the user’s interest and tries to narrow it down by extracting latent information from feature
interactions in the macro perspective. Additionally, a user’s interests are diverse [8]. To precisely
and comprehensively capture a user’s diverse interests, similar to the activation unit applied in [8],
we propose the user behavior-driven latent information extraction layer (HISTORY) to learn the
latent information from user’s historical behavior by modeling the user’s history interactions, and
investigating the different impact which each history item vi ∈ Svc

u has on the candidate item vc.
With these impacts, the intensity of u’s interest in vc can be measured, which plays a decisive role
in determining the probability of clicking vc. Differently from the self-attention-based synthesizer
mechanism applied in the attributes-driven latent information extraction layer (USER× CANDIDATE),
the attention mechanism utilized in this layer learns to assign a different attentive weight to each
history item, to compute the importance of each item on the candidate item.

The graph inside the purple box in Figure 1 illustrates the architecture of the user behavior-driven
latent information extraction layer (HISTORY). For each candidate item vc of user u, vc and Svc

u are used
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as the inputs of the layer. The intensity of u’s interest in vc, i.e., Ivc
u , is calculated with a fully-connected

neural network layerM, as shown in Equation (16).

Ivc
u = f (vc, Svc

u ) = f (vc, {v1, v2, ..., v|Svc
u |}) =

|Svc
u |∑

i=1

wcivi, (16)

where

wci =
exp(w

′
ci)∑|Svc

u |
1 exp(w′

ci)
, (17)

w
′
ci =

M(vc, vi)√
k

=
MLPL([vc; vi; vc − vi; vc ◦ vi])√

k
(18)

and
MLPL(·) = MLP(MLP(· · ·MLP(·))). (19)

wci is treated as the correlation score between vc and vi. We discuss the influence of vi on vc in
Section 5.3.2. [A; B] denotes the concatenation of vector A and vector B. The working procedure of
wci is illustrated in Figure 3. Ivc

u is provided as the output of user behavior-driven latent information
extraction layer (HISTORY).

...
...

vc vi

Concat

...

...

wci

Dice-activated MLP

Hadamard Product

Element-wise Subtraction

Softmax

Figure 3. The working procedure of wci.

3.4.3. Latent Information Digestion and Prediction Layer (PREDICTION)

The latent information digestion and prediction layer (PREDICTION) receives the outputs of the
first two layers, i.e., F̂u,vc , Fu,vc and Ivc

u , and generates Pvc
u , i.e., u’s preference vector for vc:

Pvc
u = [F̂u,vc ;Fu,vc ; Ivc

u ]. (20)

Next, Pvc
u is sent through a fully-connected layer, to calculate the probability of u clicking vc:

prob(Pvc
u ) = MLPL′(Pvc

u ), (21)

Finally, vc’s prediction score ŷ for u is:

ŷ = sigmoid(prob(Pvc
u )) = sigmoid(MLPL′(Pvc

u )), (22)

where ŷ ∈ {0, 1} and sigmoid(x) = 1
1+exp(−x) .
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4. Experimental Setup

In this section, we present our experiments in detail, including datasets, baselines, evaluation
metrics and hyperparameters. Experiments were conducted on two public datasets with user and item
attributes and user behavior to investigate the effectiveness of our model.

4.1. Datasets

We experimented with two different datasets: MovieLens-1M (Movielens-1M dataset:
https://grouplens.org/datasets/movielens/1m/) and Ad Display/Click Data on Taobao.com
(Ad Display/Click Data on Taobao.com dataset: https://tianchi.aliyun.com/dataset/dataDetail?
dataId=56). We name “Ad Display/Click Data on Taobao.com” dataset “Taobao” in the rest of the
paper for short. The descriptive statistics for the datasets and attributes used as features are shown in
Tables 2–4.

MovieLens-1M dataset. The MovieLens-1M dataset contains approximately one million explicit
movie ratings (ranging from 1 to 5), users’ demographic information and movies’ basic information
from the MovieLens website. We used both users’ and items’ attributes as the input features. To make
it suitable for CTR prediction task, we followed [38] and transformed ratings into implicit feedback;
each entry that was marked with 1 indicated that the user had rated the item positively, and we
sampled negative examples from an unwatched set marked as 0 for each user, which had the same
numbers as the rated ones. The threshold of positive ratings was set to 4. For the dataset splitting
procedure, we split data based on userID; therefore, 3622 (60%), 1207 (20%) and 1207 (20%) users
among 6036 users were randomly sampled into the training set (441,134 samples), validation set
(149,128 samples) and test set (151,438 samples).

Taobao dataset. Taobao dataset contains over 26 million ad display/click logs from 8 days, users’
and items’ basic information from Taobao website. We used both users’ and items’ attributes as
the input features. Samples whose “clk” field is 1 were treated as positive samples, otherwise as
negative samples. Users with low activity, i.e., the ones who have less than 5 positive samples,
were filtered from the dataset. Similar to the unwatched set generated for Movielens-1M, an unclicked
set was sampled as negative samples for Taobao dataset, which had the same number with the
positive ones. In addition to log data, attribute values of the numerical field, i.e., price, were normalized
to the range [0, 1]. Same as the split method for Movielens-1M, we split Taobao dataset based on userID,
thus 30,295 (60%), 10,097 (20%) and 10,097 (20%) users among 50,489 users were randomly sampled
into training set (443,640 samples), validation set (148,264 samples) and test set (148,534 samples).

Table 2. Descriptive statistics for the datasets.

MovieLens-1M Taobao

Number of users 6036 50,489
Number of items 2347 376,764
Number of interactions 753,772 841,416
Median of interactions per user 78 14
Average number of interactions per user 125 17
Number of fields 6 13
Number of features 3486 460,995

Table 3. Attribute statistics for the Movielens-1M dataset.

Attribute Type (# Fields) Field Name Field Type # Categories

User Attributes (4)

gender Categorical 2
age Categorical 7
occupation Categorical 21
zipcode Categorical 3402

Item Attributes (2) release_year Categorical 36
genre Categorical 18

https://grouplens.org/datasets/movielens/1m/
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56
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Table 4. Attribute statistics for the Taobao dataset.

Attribute Type (# Fields) Field Name Field Type # Categories

User Attributes (8)

cms_segid Categorical 95
cms_group_id Categorical 13
final_gender_code Categorical 2
age_level Categorical 7
pvalue_level Categorical 3
shopping_level Categorical 3
occupation Categorical 2
new_user_class_level Categorical 4

Item Attributes (5)

cate_id Categorical 5273
campaign_id Categorical 233,398
customer Categorical 155,979
brand Categorical 66,215
price Numerical 1

4.2. Baselines

We compared our model with the following baseline algorithms.
IPNN [32]. IPNN is the PNN model with an inner product layer. PNN applies a product layer to

capture 1-order and 2-order feature interactions from multi-field categorical data after the embedding
layer. We used the same configurations in [32], except that the mini-batch size was set to 50.

OPNN [32]. OPNN is the PNN model with an outer product layer. We used the same
configurations in [32], except that the mini-batch size was set to 50.

DeepFM [39]. DeepFM combines the power of factorization machines for recommendation and
deep learning for feature learning in a neural network architecture. We used the same configurations
in [39], except that the mini-batch size was set to 50.

DIN [8]. DIN uses a local activation unit to adaptively learn the representations of user interests
from historical behaviors with respect to a certain item. We used the same configurations in [8], except
that the mini-batch size was set to 50.

4.3. Evaluation Metrics and Hyperparameters

To evaluate the performance of each method, we employed two commonly used metrics AUC
(area under ROC curve) [40] and ACC (accuracy). AUC is a widely used metric for evaluating
classification problems. Reference [25] validated AUC as a good measurement in CTR estimation.
Formally, the AUC of a classifier C is the probability that C ranks a randomly drawn positive sample
x+ higher than a randomly drawn negative sample x−:

AUC(C) = P
[
C(x+) > C(x−)

]
. (23)

The second metric, ACC calculates the fraction of correctly classified samples:

ACC =
# True Positives + # True Negatives

# Samples
. (24)

For hyperparameters, we experimented with different ones to find the best configurations of our
method for each dataset. The configurations of our model are summarized in Table 5.
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Table 5. Configurations for ALIEN.

MovieLens-1M Taobao

Embedding size 32 32
Learning rate 0.1 0.1
Dropout rate 0 0
MLPL′ layer sizes [800, 1] [4500, 2300, 1200, 600, 1]
Highest order of feature interactions modeled 4 4
Mini-batch size 50 50

5. Results and Discussion

In this section, the performances of the proposed models and baselines are shown, according
to the experimental settings we stated in the previous section. In addition, the superiority of the
proposed models through comparisons of performance and the demonstration of their effectiveness in
explainability are discussed.

5.1. Model Performance

Table 6 shows the performances of all methods under the metrics of AUC and ACC.
Each experiment was repeated three times and the averaged results are reported. Relative scores are
given compared to the strongest baselines, whose results are underlined. Note that a slightly higher
AUC of 0.001 is regarded as significant for CTR predictions [23,39,41]. Therefore, for both datasets,
ALIEN outperformed all baselines with large margins.

Table 6. AUC and ACC scores for the ALIEN models and the baselines for the test sets in Movielens-1M
and Taobao datasets.

Movielens-1M Taobao
AUC ACC AUC ACC

DIN 0.8808 0.7993 0.8223 0.7675
DeepFM 0.9257 0.8447 0.8665 0.7866

IPNN 0.9293 0.8536 0.8710 0.7880
OPNN 0.9294 0.8543 0.8718 0.7916

ALIEN 0.9400 0.8670 0.8928 0.8114
(+1.14%) (+1.49%) (+2.41%) (+2.50%)

5.2. Comparison of Performances

OPNN had the strongest baseline on both the Movielens-1M and Taobao datasets. ALIEN
outperformed OPNN with the improvements of 1.14% and 2.41% in AUC score; and 1.49% and
2.50% in ACC score for both the Movielens-1M and Taobao datasets, respectively. For both datasets,
although DIN learns the representation of user interests from historical behavior with the candidate
item, it has the worst performance without the modeling of feature interactions. For approaches which
modeled low-order feature interactions, IPNN and OPNN held the lead compared with DeepFM on
Movielens-1M, and the advantage of PNN’s two variants against DeepFM became more obvious on the
Taobao dataset. In terms of PNN’s two variants, OPNN outperformed IPNN on both datasets. Despite
being without the modeling of high-order feature interactions and user’s historical behavior, they still
provided competitive results. The good performance of ALIEN is attributed mainly to the traits that
two types of latent information are taken into consideration simultaneously, i.e., attributes-driven
and user-behavior-driven latent information, which are extracted from low and high-order feature
interactions and the user’s history items, respectively, to construct a comprehensive user profile and
finally provide a more precise prediction. Please note that for the Movielens-1M dataset, as shown in
Table 2, there were abundant interactions for each user but there were not enough fields of features,
whereas for the Taobao dataset, interactions for each user were scarce but the number of feature fields
was adequate. These results demonstrate that ALIEN can achieve a better performance when it is



Appl. Sci. 2020, 10, 5468 14 of 18

short of features or the user’s history interactions. In other words, ALIEN is capable of coping with
severe situations.

Please note that in [8,39], the authors reported the experimental results of PNN, DeepFM and DIN
on different datasets, i.e., Movielens-20M, Amazon, Alibaba, Criteo and Company [8,39], which were
not utilized in this study. On Movielens-20M, Amazon and Alibaba datasets, DIN was reported to
outperform IPNN and DeepFM, and DeepFM performed better than IPNN. On Criteo and Company
datasets, DeepFM was reported to outperform the two variants of PNN, i.e., IPNN and OPNN.
However, the analysis of the baselines’ performances on these datasets is beyond the topic of this paper,
since the valuable user and item attributes and the timestamps of each user’s history interactions do
not exist simultaneously in these five datasets, thereby making them fall short of the requirement for
our experiment.

5.3. Effectiveness on the Explainability Problem (Case Study)

We conducted a real-world case study of user #7 and candidate item #861 in the Movielens-1M
dataset, to present the capability of ALIEN to explain the recommendation results from two perspectives:
(1) feature interactions, and (2) a user’s historical behavior. The MovieLens-1M dataset was utilized as
the dataset of this case study.

5.3.1. Influence of Feature Interactions

Figure 4 illustrates the relevance between different fields of attributes from the attention score αsyn

obtained by the synthesizer module in the attributes-driven latent information extraction layer (USER
× CANDIDATE). From the red and black dashed rectangles, we can see that the user’s age “35–44”
and the movie’s genre “action and thriller” contribute more than other fields of attributes and act as
good ingredients when forming feature interactions with others. Specifically, the pair <age = “35–44”,
movie’s genre = “action and thriller”> (i.e., the red square) is identified as the most influential feature
interaction for the candidate item. It makes sense that middle-aged adults, especially men, are very
likely to prefer action and thriller movies.

Release_Year=1992,

Candidate Item

Label=1, Predicted CTR=0.91

Genre=Action & Thriller

X

# 861

Gender=Male, Age=35-44, 

Occupation=Academic/Educator,

Zipcode=06810

User # 7

Figure 4. A heat map of attention weights for feature interactions on MovieLens-1M. The axes represent
attribute fields of u and vc (gender, age, occupation, zipcode, movie’s release year, genre). Influential
feature interactions are highlighted with bright colors (Label = 1, Predicted CTR = 0.91).

5.3.2. Influence of User’s Historical Behavior

Figure 5 illustrates the relevance between different history items vi and the candidate item vc

from the attention score wci obtained by the attention module in the user behavior-driven latent
information extraction layer (HISTORY). The user discussed in Figure 5 is the same person discussed
in Section 5.3.1. Note that the Movielens-1M dataset suffers a severe shortage of attributes, and there
exists latent information which is not implied by the attributes. Therefore, generally, history items
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which have the similar genre and release year as the candidate item are given a high relevance score.
It is apparent from the figure that this male user loves action and thriller movies. The reason that
v13 and v14 are weighted very low is due to the fact that he has watched two romance movies and is
currently tired of that same genre. He now wants to get back to the action and thriller movies again
and chooses to watch vc.

1985

1993

1980

1974

1973

1996

1999

1991

1990

1998

1998

1992

1994

1997

1992

Attention Score

User’s Historical 

Behavior Sequence

Candidate Item

Label=1, Predicted CTR=0.91

Figure 5. Illustration of the influence of user behavior on the candidate item. The genre and release
year of each item are provided. Generally, history items with high relevance to candidate item get high
attention scores.

6. Conclusions and Future Research

In this work, we developed a model titled the attention-based latent information extraction
network (ALIEN) for CTR prediction. ALIEN is designed for common scenarios, such as the
recommendation of movies on a video streaming website or products on an e-commerce shopping site,
where the user and item attributes and the user’s past clicking decisions are typically available.
Based on the experimental results, ALIEN resolves the issues of: (1) modeling high-order feature
interactions, and (2) the explainability of the prediction. To achieve these two objectives, ALIEN (i)
constructs the low and high-order feature interactions from user and item attributes, via the
vector inner-product approach combined with a compressed interaction network (CIN) module;
(ii) extracts latent information from feature interactions and the user’s history interactions with two
attention-based layers to enhance the performance of CTR prediction; and simultaneously (iii) provides
explainability by interpreting the contributions of different feature and history interactions. We have
conducted experiments on two real-world datasets and demonstrated considerable improvements
over strong baselines. Moreover, our proposed model can provide reasonable explanations, even
when attributes are quite scarce. For future research, we aim to model other sources of attributes,
particularly on a knowledge graph, to better characterize users and items and therefore make even
more precise predictions.
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Abbreviations

The following abbreviations are used in this manuscript (in alphabetical order):

ACC Accuracy
ALIEN Attention-Based Latent Information Extraction Network
AUC Area Under ROC Curve
CF Collaborative Filtering
CIN Compressed Interaction Network
CTR Click-Through Rate
DIN Deep Interest Network
FM Factorization Machines
IPNN Inner Product-based Neural Network
MF Matrix Factorization
MLP Multi-Layer Perceptron
OPNN Outer Product-based Neural Network
PNN Product-based Neural Network
ROC Receiver Operating Characteristic
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