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Abstract: This article presents a methodology for the design of rehabilitation devices that considers
factors involved in a clinical environment. This methodology integrates different disciplines that
work together. The methodology is composed by three phases and 13 stages with specific tasks,
the first phase includes the clinical context considering the requirements of the patient and therapist
during the rehabilitation, the second phase is focused in engineering based on the philosophy of
digital twin, and in the third phase is evaluated the device. This article explains the characteristics of
the methodology and how it was applied in the design of an exoskeleton for passive rehabilitation of
upper limb.
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1. Introduction

Currently, the rehabilitation technologies are part of the strategies that facilitate the integration
of people with some injury that generates disability, it is the harmonious conceptualization of
technology, engineering and health [1]. James Reswick describes the rehabilitation engineering as
the application of science and technology with the purpose to reduce the limitations of individuals
with disabilities [2]. Rehabilitation engineering is multidisciplinary in bringing together professionals
such as doctors, nurses, physiotherapists, occupational therapists, biologists, engineers, physicists and
chemists. Indeed, the rehabilitation devices are developed by a group of specialized professionals with
interdisciplinary training, such is the case of bioengineering that is the application of the knowledge
gathered in a fertile balance between engineering and medical science [3].

As already observed, the multidisciplinary environment that is generated has results in areas with
high technological development entering the field of rehabilitation therapies, for example, robotics
has been shown to accelerate the recuperation process [4] and has improved the range of motion of
the limbs [5]. However, the devices have been presented as research products with low technology
readiness level; therefore, they are not sufficiently compact, safe and do not have feedback for the
patient or the therapist that allows them to be operated in clinical settings [4].

These characteristics of the developments of rehabilitation technologies have results into the
appearance of different methodologies approaches to create therapies devices, in [6] describes a
methodology for design an exoskeleton using a motion capture system of the trajectory of the limb
from a healthy subject, for rehabilitation’s devices are important to define the specifications to calculate
the design parameters of the actuator, the number of elements and the characteristics of the material [7],
the development of multidisciplinary technological devices requires a holistic methodology for
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planning, optimization and integration of human-centered workplaces [8], as aforementioned each of
the methodologies work like a sequence of steps but do not use the clinical context and a specialist
from different disciplines working concurrently from the beginning of the design.

The methodology for the design of a rehabilitation devices must be formulated to satisfy the
objectives of the rehabilitation as it is traditionally done, taking into account the regulations of medical
equipment, biomechanics considerations and analysis a rehabilitation exercises that apply day to day.
These considerations are immersed in the “know-how” for development of mechatronic systems and
the product life-cycle management where contributes the requirements for the design such as devices
modeling, simulation, validation and human-machine interfaces.

The rehabilitation devices are part of the medical equipment and they must meet specific and
rigorous standards, from design to construction. The Medical Device Innovation Handbook [9]
establishes a process for the creation a medical device in which the user is defined and their needs,
generating a brainstorming based on the knowledge of doctors, nurses, therapists, designers and
engineers of various branches that are involved in the design of the device. The book Good Design
Practice For Medical Devices And Equipment: A Framework [10] establishes a methodology for
the design and validation of medical equipment taking into account the regulation of the Food and
Drug Administration (FDA) to consider the normative processes. Both emphasize the importance of
gathering information from users (patients and doctors) and the monitoring of the rules that should be
considered from the earliest stages.

An outstanding aspect of the methodology that is proposed in this paper is that it consider from
the beginning the clinical environment through the analysis of rehabilitation sessions and interviews
with users and experts, also is important include the documentation and the normative. Three aspects
that stand out are the use of digital twin, use a new manufacturing techniques and the feedback of the
specialists in order to avoid errors and do the processes efficiently, hence, this methodology can be
implemented for the design a high impact technology such as the assistant robots.

This paper is organized as follows. Section 2 describes the methodology which includes the
phases and thirteen stages. Section 3 shows the implementation of the methodology on the design
an exoskeleton of passive rehabilitation for upper limb with a detailed description of each stage.
Conclusion and future work are reported in Section 4.

2. Methodology

The methodology is divided into 3 phases and thirteen stages that include the construction of
the system from the conception of the problem to the point where after making several iterations it
is possible to make the technological transfer one step after the to consolidate a prototype. Figure 1
shows the diagram that describes the methodology.
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Figure 1. Diagram that explain the methodology.
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The three phases are made in order to divide all the process in closing task, each one represents
a close cycle and the next phase can aboard it with only deliverable documentation from the
previous stage.

2.1. Phase 1

The phase 1 is the initial part of the methodology it includes the context and is the first contact
with the therapist and patient allowing to find niches of opportunity where technologies devices can
help in the rehabilitation process. This phase is composed of 4 stages and the final product is the
conceptual model and the requirements of the device.

Stage 1. Identification of the problem: The pathologies of interest are analyzed and the type of
treatment that such pathology requires as passive or active rehabilitation. In this stage is identified the
joints, muscles, tissues and bones involved in the medical pathology. Besides have to define the type of
device want to develop. Figure 2 shows different kinds of rehabilitation robots that can be organized
regarding their morphology as [11]

o  Orthosis: There are the external devices that are used to improve the functionality of a body part,
but they do not replace a body part only modify the structural and functional characteristics of
the skeletal system.

e  Prosthesis: They are defined as external devices that partially or totally replace a limb it could
have functionality or just have a biological appearance.

e Rehabilitation Aids: These devices do not have a physical contact or a fixed point in the body,
they only help during the rehabilitation protocol.

Orthosis

Passive

Active

With electrostimulation
Exoskeleton

/N

ya A
_/Rehabilitation ¥
/ Aids

Prosthesis

» Bioappearance

« Neuronal prosthesis
robotic arm

robotic leg robotic hand

ya
V4 » Hand-held
/’ * Leg-held

Figure 2. Types of rehabilitation robotics.

Stage 2. Documentation: To understand a problem is necessary to know the detailed context
around the problem as to know the anatomical bases and how the human body works, it allows to
generate an organic device that response to the patient needs. The technical context allows to analysis
scientific advances to identify an opportunity to develop, improve or innovate. This stage stabilizes
the project through bases with solid arguments. All this information have to be inside a database that
be used in future stages. Table 1 shows the documentation divided according to the discipline clinical
and technical in order to make the interaction easier.

Stage 3. Establish the requirements and restrictions: In this stage is established the dimensions of
the device and the anthropometric characteristics that must be satisfied according to the age and gender
of the users and the anatomical movements performed by a healthy person. The characteristics for the
movements are selected from a mechanical perspective, including the forces, speeds and accelerations.
The workspace of the mechanism is requested in order to be able to performance of the rehabilitation
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exercises. For this methodology it is mandatory to take into account the localization of the anatomical
joints in order to maintain patient safety, as well the limits of the natural range movements must be
equal in the device avoiding any non-natural configuration in the patient.

Table 1. Documentation clinical and technical.

Clinical Documentation Technical Documentation
Anatomical definitions The state of the art (search in scientific publications)
Biomechanics The state of the technique (search in patents)

Analysis the rehabilitation sessions ~ The standardization as IEC 80601-2-78:2019 [12], ISO 13485 [13], etc.

Interviews to users and patients Analysis the commercial devices

Rehabilitation goals The normative and legal area that applies (the geographical area)

Stage 4. Conceptual Design: Here appears the first approximation to the problem solution through
a diorama scheme. It shows the operating principle and is possible to use augmented reality design.
This is called the conceptual model that contains all the proposals of the system and the details the
location of the mechanical joints of the device through a basic configuration as well the main idea of
the human machine interface.

2.2. Phase 2

Phase 2 is the engineering part of the methodology, it requires technical, mathematical and
physical skills, the success of this phase lies in the functionality expectations, to reach them, the design
processes are detailed in a concurrent way and it is supported by technological advances in the
manufacture of prototyping and a simulation based on digital twin [14,15] for rehabilitation devices.
This phase is composed of 5 stages and the final product is the experimental physical model (EPM)
and the dynamic modeling synthesis (DMS).

Stage 5. Systems Definition: For this stage is raised the design trough the creation of sets according
to the function and interconnection inside the system for instance the mechanical, electronic and the
interface. If it is necessary make from a set some subsets its expressed in this stage. All these sets are
showed in a the structural diagram each part has an alphanumeric own identification and is showed
how all the parts are connected each others. These connections sometimes represents mechanical joint
or unions electrical and electronics in order to guide the design of the control and human machine
interface of the device.

Stage 6. Detailed engineering: Each set is given to a different team of engineers. The information
ways are planed between each team in order to maintain a communication flux. This would be
done through to the database. The master guide is the structural diagram. The real dimensions,
the materials for each part and each mechanical element of the system are specified even whether it is
complementary as:

e  Screws or mechanical connections.

e  Material selection.

e  Types of actuators.

e  The hardware for control and the interface.
e  Wiring system.

The methodology proposed enables the parallel develop of the next steps, the first step is create
all the elements in the structural diagram in a digital environment making use of tools for dynamic
modeling synthesis, it calculates the kinematics and dynamics both direct and inverse also computed
the speed, joint position, torque and forces. Each set finally becomes in a block with all the dynamic
behavior described waiting to interact with the rest of them. The next step consist in the construction
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of each component with rapid prototyping techniques that allow their assembly and feedback for the
CAD and the DMS. It has been shown that working in this way brings about a faster convergence,
reducing time and costs [16].

For the interface set is necessary to select the software and firmware to work into:

o Low Level Control (Programming the drivers).
e High Level Control (Programming the trajectory control, movement coordination strategies,
security and the interface).

Stage 7. Integration: The sets are integrated according to the information of the structural diagram
to have the total DMS and the EPM, it means that are two platforms totally functional one virtual and
one physical able to do experimentation in order to probe the functional principle, the requirements
and restrictions. Besides is considered the assembly of actuators and sensors into the EPM.

Stage 8. Simulation: The digital twin is a virtual replica of the device that simulate the behavior of
their real system [15], it is a form of validation of the design, with the simulation system is possible
to generate the product and perform the necessary iterations without affecting the final budget of
the investigation. The simulation of the total model is done by the DMS. The digital twin needs the
database that was created in previous stages with all the documentation.

Stage 9. Emulation: It is understood by emulation to the effect of evaluating the ranges of
movements in articulations with the EPM for evaluating the precision, accuracy, resolution and load
supported. It allows to fine adjustments in controller gains for each degree of freedom and its saturation
limits. Regard to the high level control its design depending on the mathematical model and on the
desired performance of the devices.

Furthermore, taking into account the safety protocols that the device have to follow as:

e Include a fault tree analysis that it is a deductive technique to determine the sequence of faults [17].

e Include a first initial check is a path of each degree of freedom from the minor to the greatest
range of movement to verify that during the development of the trajectory there are no
mechanical failures.

e  Adequate sensors to control the robot.

2.3. Phase 3

Phase 3 is for the evaluation of the device, an expert (therapist or doctor) participation is required
to evaluate the EPM to give a feedback. The evaluation is made through different strategies as
measurements, usability test and experiments with healthy people. This phase is composed of 4 stages
and the final product is the information enough to take the decision whether or not the EPM and DMS
are viable to passes to a prototype level according to the technological transfer.

Stage 10. Metrics evaluation: It is the first formal evaluation of the device. The anatomical and
functional ranges of movement identified in stage 2 are compared with the data obtaining from the
EPM using different devices, furthermore it is verified that the requirements and restrictions are met.
This stage establishes a security protocol for all the experiments with the EPM and it is necessary that it
contains at least 3 levels of emergency stops in three different ways (mechanical, software and electric).

Stage 11. Expert visit: An expert is requested to establish tasks that emulate a therapy session
with the EPM, then the evaluation and the analysis start with the performs of the rehabilitation by the
device delivering a usability survey. This stage gives the chance to return to the phase 4 if the results
obtained from the therapist show that is necessary an improvement in such a way the feedback is
followed until the results become in the expected.

Stage 12. Cases of study: In this stage is planned a rehabilitation protocol seeking patients with
the pathologies that were studied in the stage 1, if is possible use a patient that has the pathology or
use a healthy user that performance the protocol. The performance is supervised by the therapist and
a representative of the engineering team. If the circumstance are not able to experiments with the
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patient in real, the case study is introduced in the DMS to perform the tasks rehabilitation inside the
simulation in a virtual environment.

Stage 13. Final evaluation: This is the last stage; therefore, a report is delivered to determine if
is necessary to improve the experimental physical model or continue to a technological transfer for

a prototype.
3. Design of a Rehabilitation Exoskeleton

The methodology for design of rehabilitation devices was applied to the design an exoskeleton
of passive rehabilitation of upper limb called ERMIS (in Spanish, Exoesqueleto de Rehabilitacién de
Miembro Superior) [18], in the next section is presented a summary of the results of the application of
each stage of the methodology.

It was decided to work on the rehabilitation of the upper limb (stage 1). Regarding the state
of the art it was found different robotic rehabilitation devices of the exoskeleton type upper limb
some of these were mounted in wheelchairs [19], in the floor [20], or in a wall [21], they are solid
structures [22]. For the state of the technique was analyzed the work done by Armeo [23].

The documentation (stage 2) that was evaluated and taken into account was the anatomy and
biomechanics of the shoulder, elbow and wrist joints. The pathologies such as stroke, brachial plexus
injuries and upper limb trauma were analyzed. The performance about 340 h of rehabilitation
sessions in a public health center were examined. For the regulations were taken into account
the recommendations of the Federal Commission for Protection against Sanitary Risk (in Spanish,
Comision Federal para la Proteccién contra Riesgos Sanitarios, COFEPRIS) of their manuals of
rehabilitation of upper limb, the NOM-241-SSA1-2012 [24] dedicated to the manufacture of medical
devices and ISO 13485 [13] standard Management Systems of the Quality of Medical Equipment.

At this point it was determined that the devices do not focus on passive rehabilitation since this
type of rehabilitation requires mobilization within the ranges that the injury allows the affected joint
while the rest of the body remains static, these movements are executed with the help of one or two
physical therapists. This is an example of one of the requirements (stage 3) that was enlisted gather
the anatomical range of movements for each human joint as limits desired and others. Some of the
most important restriction was the location of the joints in the exoskeleton must be aligned with the
correspondent in the human’s arm. The rest of the requirements and restrictions are written inside the
patent is in process.

The conceptual model (stage 4) in Figure 3 represents a 7 Degrees of Freedom (DoF) exoskeleton
each degree corresponding to the shoulder: flexion-extension, adduction and abduction, internal and
external rotation; elbow flexion-extension; wrist pronation and supination, flexion-extension and
radial cubital deviation. Each movement was aligned with its corresponding anatomical articulation,
was proposed use of 5 linear motors and two rotational motors.

The design of the transmission of joint 5 of the arm are based on 4-bar that allow to shorten the
stroke while greater the range of movement without causing any damage to the patient, ensuring that
the positions are within the anatomical ranges. The joints of the wrist used 2 motors with a differential
transmission with the axis of the engine aligned to the wrist joints.

To start the phase 2, the conceptual model was divided (stage 5) into three sets: mechanical,
electronic control system and human-machine interface. The mechanical set is divided into four
subsets: the shoulder joint, internal and external shoulder rotation, joint elbow and wrist. All of them
were worked concurrently according to the structural diagram.

The implementation of the stage 6 (Figure 4) was separated into several sub-stages in order to
understand how each of the sets and subsets of the system worked in parallel. Each set was designed
individually were several sequences of changes appeared. Figure 5, shows the increasing of technology
readiness level (TRL) for the internal and external shoulder rotation set and Figure 6 shows the
increasing of TRL for the wrist set design.
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Figure 3. Conceptual model of ERMIS.
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Figure 4. Detailed engineering for the ERMIS.

Once all the mechanics parts are finished, the experimental physical model was integrated (stage 7)
according to the structural diagram for the right arm as Figure 7 shows.

The simulation (stage 8) is inspired by digital twin methodology, this enables to foresee the
expected outcomes using all the information of the previous stages in a virtual way through database.
Figure 8 shows how the DMS was integrated and simulated using Simscape and Simulink by
MATLAB, the exoskeleton links were emulated through the multibody library, the dynamics of the
actuators through the electric library. A PID (Proportional-integral-derivative) distributed control was
implemented which allowed to performance the direct and inverse dynamics measuring accelerations,
forces and moments of the exoskeleton in a virtual environment. At the same time the CPU of
the exoskeleton is embedded with the algorithms from Matlab in order to make the movements
coordination controlled by the screens designed inside the HMI (Human-Machine Interface) (stage 9).
The design of the interface has a slide for each DoF that represent the position of the actuator and a
bottom to save each configuration of all the joints. If it is necessary, the gain of each actuator control is
modified. At the end of this stage its possible to control the exoskeleton and is ready to performance
the proofs.
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Figure 5. Increasing of (TRL) for the internal and external shoulder set.

This design had the vertical differential This design has the differential gears in
gears and the transmission was a worm gear. horizontal and has a direct transmission. It
It had a weight of 6.7 kg. has a weight of 4.3 kg.

Figure 6. Increasing of technology readiness level TRL for the wrist set.

Figure 9A shows the control system and the power electronic for the actuators both are embedded
in an CPU SIEMENS 1500. In phase 3, the experiments and their measurements are done. Is selected
(stage 10) a healthy man with 1.85 m for height and weighing 90 kg, with an arm length of 30 cm,
elbow-finger length of 46 cm and arm diameter of 34.5 cm. The test protocol is programmed through
the HMI and was developed as is showed in Figure 9B. The evaluating of the trajectory tracking
and the range movement were obtained by the acquisition system specifically developed to measure
the angles and trajectories of the exoskeleton currently registered with number MX/E/2019/080149.
Each joint reach 100% of the functional ranges and regarding the anatomical movement range for the
shoulder adduction-abduction it was covered in a 91.2%, for shoulder flexion-extension in a 96.2%,
for internal and external shoulder rotation in a 97.4%, for elbow flexion-extension in a 93.6% and
for wrist flexion-extension in a 96.6%, on average the ERMIS is able to follow in 95% the trajectories
according to anatomical and functional ranges established in [25].
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Figure 7. The experimental physical model of ERMIS.
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Figure 8. Simulation of the ERMIS using a digital twin.

According to the Handbook of Usability Testing [26], the main objective of these tests is to

collect information on the perception of design that users have, there are different approaches when
performing functionality tests, the objective of performing a test of usability in this methodology is to
analyze the perception that specialists have with the design of the exoskeleton (stage 11). The usability
analysis consisted of three phases:

Pre-test: A survey focused on the academic level of the users and their workload during the
rehabilitation sessions.

Test: This phase the specialists analyzed the design of the exoskeleton and its components such as
the screen, safety buttons, patient support, etc. and then a task was performance which consisted
of simulating a rehabilitation session without a patient so that they could analyze the task analysis
and device functionality.

Post-test: This phase the specialists asked to design engineers questions in order to know which
aspects are intuitive and which require prior introduction, they also made more specific comments
on the design.

The usability test consisted of six sections as Figure 10 shows, the first section “user environment

profiling” takes into account issues as interaction with the patient regarding a clinical environment.
The second section “design” lets know if the exoskeleton design is attractive, safe and easy to use.
The third section “interaction” encompass factors such as the coupling of the exoskeleton to the
body. The fourth section “ergonomic” is analyzed the components adaptability and the position of the
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patients and therapists. The fifth section tackle the task analysis considering factors such as the range of
movement, mechanical stops and safety. At the end the sixth section cover the functionality evaluation
in order to know if the device could be implemented in health centers to support physiotherapists.
Each section contained five questions, as answers to each question, the Likert scale suggested in [26]
was used, which consists of the following options: strongly disagree, disagree, neutral, agree and
strongly agree. For each answer was assigned a scoring criteria as shown in Figure 10, this to make a
statistical analysis of the positions of specialists regarding the design and use of the exoskeleton

» = PTO/PWM I SIMATIC WinCC Runtime Advanced [E==EoR ===
HMI SWIth [GEUS [SIEMENS | SIMATIC PANEL
= ® Ethernet
== W Bus potencia
T L i
| Bus encoder slider | b

(a) o (8)

Figure 9. (A) Electronic diagram of the ERMIS (B) The interface for the first implementation.
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Figure 10. Diagram to explain the usability test.

This analysis was applied to 12 physiotherapists and 3 doctors, Figure 11 shows the percentage of
the five scores for each section.
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Figure 11. Results for each section of the usability test.

As shown in Figure 12, the highest score was given in the task analysis. The doctors and the
therapists consider this section the most important topic when evaluating a medical device because
it determines the usefulness of the exoskeleton. The lowest score was given in the functionality
because for this section is required to do experimentation with patients to establish the rehabilitation
treatment. Overall, the evaluation result was acceptable getting an average of 4.015; for this reason,
it was considered that the exoskeleton development can continue to the next stage, keeping its current
technical specifications.

Usability test for exoskeleton -

AVERAGE

5 1.25 4.32 1.40
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User Design Interaction Ergonomic Task Analysis  Functionality
Environment
Profiling

Figure 12. Results of the usability test.

Two physiotherapists who approved the analysis of usability was invited to work into a pair
of study cases (stage 12). Is proposed a healthy patient for emulate a rehabilitation protocol for
shoulder-elbow and elbow-wrist in order to evaluate the tracking of ERMIS. Develop of the case studies
always were under the guidance of the safety protocol establishes by the regulations inside [13,24].
One of the most important point was that the physiotherapist in charge and one of the design engineer
were present during the sessions of rehabilitation, before the sessions it was necessary to verify the
presence and functionality of an emergency stop button and the electrical safety.

Depending on the protocol the tasks, the intensity of the training and speed has been
adapted individually.

Case of study 1: A 39-year-old male is performed a rehabilitation routine for shoulder-elbow,
the rehabilitation protocol simulated that the arm rotates like a rudder. Figure 13(1-3) shows the data
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acquisition from rehabilitation therapy and Figure 13(4-6) shows the rehabilitation protocol with the
exoskeleton. The protocol includes movements for shoulder and elbow joints.

At all time the training was supervised by a physiotherapist, providing assistance and instructions
for the patient and a medical doctor in charge of documentation and supervision.

Figure 13. The rehabilitation protocol case 1 and data acquisition.

Figure 14 shows the trajectory of the end-effector of the exoskeleton when it performed the
rehabilitation protocol. The exoskeleton is able to follow the rudder trajectory.
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Figure 14. Trajectory of the end-effector of the exoskeleton.

Case of study 2: A 47-year-old female is performed a rehabilitation routine for elbow-wrist.
The Figure 15 shows the protocol that was analysis in 20 repetitions. The rehabilitation protocol
includes independent movements for each of the elbow and wrist joints. The procedure consists of
selecting the joint to be worked on (wrist), immobilizing the rest of the joints of the arm by means
of bandages or with the participation of a second therapist, but in this case the therapy only use the
exoskeleton for immobilizing the rest of the joints (Shoulder and elbow).
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Figure 15. The rehabilitation protocol case 2.

Table 2 shows the error that the exoskeleton presents during the performance of the protocol
against the data acquisition for each case of study. Furthermore, it shows the range of motion for
each DoF.

Table 2. Error in track tracking of the exoskeleton.

Error Mean

Movement Range of Motion
Case 1 Case 2

Shoulder adduction-abduction —0.3481° —2.4198° 0°a 164°
Shoulder flexion-extension 1.0034° 4.1481° 0°a 173°

Internal and external shoulder rotation  2.0033° 2.6058° —86°a 74°
Elbow flexion-extension —1.5345°  —3.2495° 0°a 140°

Wrist flexion-extension 3.0231° —4.2074° —53%a 74°

Radial cubital deviation 0.9832° 2.0349° —10°a 30°

Pronation and supination —1.4022° —0.6788° —80°a —90°

For stage 13, a summary of the previous stages is presented, emphasis in the cases of study and
usability. A meeting was held with members of each team together with the team of specialists and an
opinion was issued stating that the exoskeleton works for passive rehabilitation but the materials that
were chosen are not the best, a budget is suggested to update mechanical elements with other types of
materials. In addition, a recommendation for improve the design of the interface in HMI that should
be more intuitive for the therapist. It is suggested that a more extensive study be made regarding
compatibility for patients of different sizes, because the range of sizes that the exoskeleton can use
is unknown.

4. Conclusions

This methodology is highlighted by the level of information that it manages from the perspective
of the patient, therapist and the clinical environment not only from the technological view also includes
the contextual view, this fact enabled the device to be accepted in 87.94% according to usability criteria.
The methodology allowed to develop an EPM of an exoskeleton in 2 years with limited resources.
The information is stored in a database and is embedded in a virtual environment inspired by the
methodology of digital twin.

The methodology allows to identify specific needs which caused the elements and the exoskeleton
itself to be an original design with a patent registration MX/F/2018/000467 also the detailed study
of the documentation stage produce the registration of a wire distribution system EXOSEP with
registration MX/F/2019/002548.

The use of technological know-how from other areas such as the industrial allowed to use
an industrial CPU within the medical area, which was robust enough to be able to performance a
rehabilitation therapy

The methodology integrates the validation of the exoskeleton through the analysis of case of
studies, for the exoskeleton its demonstrated that is possible to reproduce the rehabilitation exercises
in the patient in the same way as a conventional therapy, for case of study 1 the exoskeleton is able to
follow in a 98.56% of the original trajectory and for the case of study 2 a 94.97%.
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Future work seeks to determine the influence of exoskeleton uses on rehabilitation therapies over
conventional therapies.

5. Patents

The presented methodology has generated two devices patented in the Mexican Institute of
Industrial Property (IMPI) the first named Patent of a exoskeleton for upper limb rehabilitation with the
registration number MX/F/2018/000467 and the second named Patent of a device for energy supply in
exoskeletons with the registration number MX/F/2019/002548.
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