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Featured Application: The proposed technique is an application of human behavior analysis,
analyzing six human behaviors. It may be applied in surveillance systems for abnormal events
and action detection. Furthermore, the extended version of the application may be used in the
context of the medical domain for automated patient care systems.

Abstract: Gestures are one of the basic modes of human communication and are usually used to
represent different actions. Automatic recognition of these actions forms the basis for solving more
complex problems like human behavior analysis, video surveillance, event detection, and sign
language recognition, etc. Action recognition from images is a challenging task as the key information
like temporal data, object trajectory, and optical flow are not available in still images. While measuring
the size of different regions of the human body i.e., step size, arms span, length of the arm, forearm,
and hand, etc., provides valuable clues for identification of the human actions. In this article,
a framework for classification of the human actions is presented where humans are detected
and localized through faster region-convolutional neural networks followed by morphological
image processing techniques. Furthermore, geometric features from human blob are extracted and
incorporated into the classification rules for the six human actions i.e., standing, walking, single-hand
side wave, single-hand top wave, both hands side wave, and both hands top wave. The performance
of the proposed technique has been evaluated using precision, recall, omission error, and commission
error. The proposed technique has been comparatively analyzed in terms of overall accuracy with
existing approaches showing that it performs well in contrast to its counterparts.

Keywords: action recognition; rule based classification; human body proportions; human blob

1. Introduction

Images are an important source of information sharing and have been used for many decades
to represent actions, events, things, and scenes, etc. It is generally believed that an image speaks a
thousand words and has served through its wide use in newspapers, posters, magazines, and books.
Images containing different actions are easily understood by humans. Automatic image recognition is

Appl. Sci. 2020, 10, 5453; doi:10.3390/app10165453 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-1274-5168
https://orcid.org/0000-0001-7474-0405
https://orcid.org/0000-0002-6605-498X
https://orcid.org/0000-0003-3882-3179
https://orcid.org/0000-0002-4190-7990
http://www.mdpi.com/2076-3417/10/16/5453?type=check_update&version=1
http://dx.doi.org/10.3390/app10165453
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 5453 2 of 24

an important area of research and a great deal of time and effort has been invested to achieve this goal.
Human actions are a series of gestures generated by the human body, and their recognition includes
analyzing them by matching the specified patterns. The recognition of human actions is widely used
in solving different research problems like surveillance, activity analysis, and event recognition, etc.
Over the last two decades, a lot of efforts have been made to recognize human actions from video
content that has sufficient temporal and spatial information. However, a little work has been done for
the same purpose using still images due to its challenging nature as static images have less information
than video sequences.

Human detection is the first step in the recognition of human actions. Many well-known efforts
are made for human detection using a histogram of oriented gradients [1–3]. However, in the last
decade, it has been observed that the deep learning-based classifier has been performing better than the
conventional feature extraction based classification. Ren et al. [4] used a faster regional-convolutional
neural network (Faster R-CNN) to detect and locate the objects. This may be applied for the detection
of a specific object like human detection and localization. Much of the work carried out in the
field of action recognition includes silhouette-based features through depth images or vision-based
generic features for 2D images with inherent limitations. Geometric features can be a good source of
information used to solve the classification problem [5] and domain-specific features may perform
better than the generic nature of global or local features [6].

This article presents a technique to address the problem of recognizing human actions from still
images. The task of human detection and localization is accomplished through the use of faster R-CNN
followed by background modeling (BM) and segmentation algorithm (SA). Geometric features have
been extracted from the human blob and adopted in the context of human body size proportions
science. The computed features are used to model the classification rules for six human actions:
single-hand side wave, single-hand top wave, walking, standing, both hands side wave, and both
hands top wave.

The rest of the paper has following organization: Section 2 presents the existing research, Section 3
presents the proposed research, Section 4 presents results and discussion over the produced results,
while Section 5 concludes the presented research.

2. Literature Review

This section presents a review of the state of the art techniques relevant to the proposed research.
It is further divided into four subsections: i.e., (1) Features based Action Recognition from 2D Videos,
(2) Deep learning-based Action Recognition from 2D Videos, (3) Action Recognition using depth
Videos, and (4) Action Recognition from still Images.

2.1. Features Based Action Recognition from 2D Videos

Evangelidis et al. [7] proposed local features descriptor from the human skeleton by generating
view independent features covering 3D views. A Gaussian mixture model was used for generating
Fisher kernels from skeletons which have been used as discriminant features. The action classification
task was achieved through a linear support vector machine (SVM). Zhang et al. [8] proposed a
methodology for the recognition of human actions. They formulated a global feature descriptor based
on local features. All the local features of human body parts were calculated independently of overall
human body actions. The local features were used for the recognition of global actions. Marín-Jiménez
et al. [9] proposed a multiscale descriptor for human action recognition obtained through pyramids of
optical flow histograms and tested their technique over standard datasets. Al-Ali et al. [10] explained
contour and silhouette based approaches for human action classification in their book chapter. While
investigating the contour-based techniques, they put the emphasis on four features i.e., chord-length,
Cartesian coordinate, centroid-distance, and Fourier descriptors’ features. On the other hand, for
silhouette, they discussed a histogram of oriented optical flow, structural similarity index measure,
and a histogram of oriented gradients. They tested the features through SVM and K-nearest neighbor
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(KNN) classifiers. Veenendaal et al. [11] proposed their technique for the classification of human
activity by extracting the human shapes from a sequence of frames and then used eigen and canonical
space transformations to obtain binary state. After downsampling all the activity frames to a single
frame, they classified it through decision rules. Wu et al. [12] represented human actions in the form
of graphs and computed context-oriented graph similarities. The graph kernels were combined and
used to train the classifiers.The local features used initially for representing the graph vertices and
edges were the relationships between features in inter and intra frames. Veenendaal et al. [13] used a
dynamic probabilistic network (DPN) for the classification of four human actions i.e., walking, object
lifting, standing, and sitting. All the actions were captured from an indoor environment. Initially,
they extracted the features through key regions i.e., legs, body, arms, and face and then temporal
based links between these key regions were extracted. The dynamic links were then used as input
to DPN that classified them as valid human actions. Abdulmunem et al. [14] used a combination
of local and global descriptors through SVM for human action recognition. For representing the
local descriptor, 3D-scale invariant feature transform (SIFT) features were used while for the global
ones they used a histogram of oriented optical flow. The computational complexity is avoided by
detecting the salient objects from the frames and only those frames were processed where objects were
found. The authors validated their technique by performing experiments over standard datasets. The
real-time human actions from videos are recognized by Liang et al. [15] focusing on the lower human
limb based actions by detecting the hip joint as a first step. The motion information was gathered
through the y-axis of the hip joint along with its acceleration and velocity. The motion information
was subject to filtration through Kalman and wavelet transform. Human actions were defined through
filtered information and classified through the dynamic Bayesian network. Luvizon et al. [16] used
temporal and spacial local features calculated from a sequence of skeletons of humans taken from
depth images. The authors used the KNN model for classification. A feature extractor from the
skeleton of human images was presented [17] that could be used for classification purposes. It was
tested on multiple datasets along with a user-generated dataset. View invariant features were extracted
by Chou et al. [18] using a holistic set of features. Gaussian mixture model and nearest neighborhood
were used for classification purposes. Human body parts based features, for twelve body parts, were
exploited to represent different actions performed by a human [19]. The features were fed to the
artificial neural networks (ANN) for classification and validated over KTH and Weizmann datasets. 3D
Spatio-temporal gradient histograms were used to form a feature vector for action recognition in [20].
The gradients were supposed to work in arbitrary scales and parameter optimization regarding the
action classification was evaluated as well. Interest points-based spatiotemporally windowed data [21]
features were employed for human behavior classification while support vector machine-based human
skeleton features [22] were presented for the same task as well. Multiclass support vector machines
were used by Sharif et al. [23] extracting three types of feature vectors from the input frames i.e., local
binary patterns, the histogram of oriented gradients, and Harlick features. The features selection was
performed through Euclidean distance and joint entropy-PCA-based method. Finally, features were
fed to the classifier for classification purposes. Another research work [24] used features from human
skeletal and classification was achieved through kernel-based SVM.

2.2. Deep Learning Based Action Recognition from 2D Videos

Recently, deep learning has been a focused area of research [25]. Wang et al. [26] employed deep
learning for action recognition from videos. They used convolutional neural networks that have been
widely used for images. Zhu et al. [27] used the co-occurrence of features for joints of human skeletons.
They used deep learning in a recurrent neural network for training using long short-term memory.
Chéron et al. [28] worked on action classification through the convolutional neural network where
feature representation was derived from a human pose. The pose descriptor combined motion and
appearance information along with trajectories of body parts. Authors achieved better results than
the state-of-the-art techniques. Pan et al. [29] defined the convolutional neural network models as



Appl. Sci. 2020, 10, 5453 4 of 24

double deep as they can be composed in temporal and spatial layers. Authors argued that these
models are suitable in scenarios where training data are very limited or the target concept is very
complex. Kataoka et al. [30] defined transitional actions as ones that are in between the two action
classes. Those were the states where an actor was transiting from one action to another. As there is not
a huge difference between actions and transitional actions, in order to distinguish between both, they
used convolutional neural network-based subtle motion descriptors. Once the actions and transitional
actions are correctly classified, the next actions can be anticipated using a combination of them.

2.3. Action Recognition Using Depth Videos

Chen et al. [31] used depth videos for recognizing human actions. They generated depth decision
maps from the front, top, and side views and motion information is measured from depth maps using
local binary patterns (LBP) using two types of fusion i.e., (1) fusion of LBP features obtained from
all the three views and (2) fusion of classification outcomes. They obtained better results than the
state-of-the-art techniques. Chen et al. [32] used the Kinect depth sensor in combination with wearable
inertial sensors. They obtained the data in three forms i.e., (1) joint positions of human skeletons,
(2) depth images, and (3) signals from wearable inertial sensors. The output of the individual classifier
for each of the input data are fused to classify the human action. The authors revealed that the result of
fusing the outcome of three collaborative classifiers is better than the use of individual data separately.
Li et al. [33] worked on recognizing the actions of humans from depth camera data arguing that a
good technique must divide the human body into different parts and features must be extracted from
each part. They further described that the combinations of feature descriptors should be of good
discriminative nature but at the same time. Authors presented their technique which used part based
features along with depth data by applying sparse based learning methods, consequently, producing
reasonably better results. Jiang et al. [34] analyzed the contribution made by each human skeleton
joint for different actions. The authors worked with 3D human skeletons achieved through the Kinect
devices. Human joints have been used to form a feature vector for action recognition by Chaaraoui
et al. [35] from RGB-D images. The RGB-D device produced 3D locations for the body joints which
were later used for classification. Geodesic distances have been used by Kim et al. [36] to estimate
human joints from image data collected by 3D depth sensors. The joints were calculated for body
parts involving motion and the computed features were used in conjunction with SVM to classify
the actions.

2.4. Action Recognition from Still Images

Chaaraoui et al. [37] presented their methodology where human actions were recognized using
contour points of silhouette and learned through multi-view poses. They not only achieved a better
computational complexity for real-time processing but variations in actions by different actors were
handled as well. Guo and Lai [38] argued that human action recognition from images is unlike videos,
as there is no temporal information available in still images. They discussed the state of the art
techniques for action recognition from still images by providing a detailed survey and concluded by
providing their views over those techniques. Zhao et al. [39] performed human action classification
from still images exploiting the concept that the human has some periodic and symmetric pairs and
their detection helps to identify discriminative regions for action classification. The authors evaluated
their technique over four datasets. Sharma et al. [40] proposed methodology which recognized the
human attributes along with actions in still images. To achieve their task, they identified the human
body parts using the collection of templates. After localizing the required human body parts, the
required attributes and actions were classified. Vishwakarma and Kapoor [41] used the human
silhouette to recognize the action by extracting features from grids and cells of fix sizes.
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3. Proposed Solution

The proposed methodology recognizes human action from the given input image. Initially, human
detection and localization are achieved through the use of faster R-CNN [4] and post-processing
analysis. Next, the task is to compute geometric features and afterward, classification rules using these
geometric features are presented. The graphical representation of the proposed model is shown in
Figure 1. 
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Figure 1. Workflow for the proposed technique.

3.1. Human Detection

Given an Image, I, having Oj objects: 1 ≤ j ≤ k, we need to detect and localize human from it. To
detect human in an image, the proposed technique uses faster R-CNN [4]. The general architecture of
faster R-CNN has been presented in Figure 2.

It may be observed that the input image is provided to the convolutional layer that produces
a convolutional feature map. Instead of using a selective search algorithm on the feature map for
identification of the region proposals, a separate network is used for predicting them. The predicted
region proposals are then reshaped using a region of interest (RoI) pooling layer that is ultimately used
to classify the image within the proposed region and predict the offset values for the bounding boxes
as well.

To deal with different scales and aspect ratios of human, anchors are used in the region proposal
network (RPN). Each anchor is associated with a scale and an aspect ratio. Following the default setting
of [4], three scales (1282, 2562, and 5122 pixels) and three aspect ratios (1:1, 1:2, and 2:1) have been
used leading to k = 9 anchors at each location. Each proposal is parameterized relative to an anchor.
Therefore, for a convolutional feature map of size W × H, there are at most WHk possible proposals.
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Figure 2. Faster-CNN architecture.

3.2. Human Segmentation

Bounding Box returned through faster R-CNN is a Quad Tuple i.e., BB =

{Xinit, Yinit, Width_BB, Height_BB}. Bounding Box is cropped automatically returning four
points {(Xinit, Yinit), (Xinit + Height_BB, Yinit),(Xinit, Yinit + Width_BB), (Xinit + Height_BB, Yinit +

Width_BB)} termed as BBI and its dimensions are Width_BB × Height_BB. Pixels of OI
(Original Image) within the set of points i.r., {(Xinit, Yinit), (Xinit + Height_BB, Yinit), (Xinit, Yinit +

Width_BB), (Xinit + Height_BB, Yinit + Width_BB)}, are marked as Black. Background of BBI is
modelled through BM Algorithm 1.

Algorithm 1 Background Modeling of BBI Algorithm (BMA)

Input: Original Image,Bounding Box Image OI, BBI
Output: Background of BBI, BI

1: Create a new Image ,BI, of size Width_BB× Height_BB and initialize each of its pixel as black.
2: for row ri : Xinit ≤ i ≤ Xinit + Height_BB do

3: For each column cj : Yinit ≤ j ≤ Yinit +
Width_BB

2
4: LN = {Width_BB

2 many left neighbours of OI(ri, cj)}
5: Find histogram of neighbouring pixels, H = Histogram(LN);
6: Find peak of Histogram, P = Peak(H);
7: Assign color value to pixels in Bounding Box of original image, OI(ri, cj) = P;
8: Assign color to pixels of background image, BI(ri − Xinit + 1, cj −Yinit + 1) = P;
9: end for

10: for row ri : Xinit ≤ i ≤ Xinit + Height_BB do

11: for column cj : Yinit + Width ≥ j ≥ Yinit +
Width_BB

2 do

12: RN = {Width_BB
2 many right neighbours of OI(ri, cj)}

13: Find histogram of neighbouring pixels, H = Histogram(RN)
14: Find peak of Histogram, P = Peak(H)
15: Assign color value to pixels in Bounding Box of original image, OI(ri, cj) = P
16: Assign color to pixels of background image, BI(ri − Xinit + 1, cj −Yinit +

Width_BB
2 − 1) = P

17: end for
18: end for
19: return BI
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Next, the task is to segment human blob from the enclosing rectangle and is accomplished through
presenting a segmentation algorithm (SA). Algorithm 2 takes the output of the BM algorithm, BI, along
with BBI as its input and returns a segmented image, SI, having human blob (HB) as output.

Algorithm 2 Segmentation Algorithm (SA)

Input: BBI, BI
Output: Segmented Image, SI

1: For Segmented Image(SI), subtract background image(BI) from BBI. i.e., SI = BBI − BG
2: After applying thresholding over SI by producing binary level image.
3: Fill holes from blobs present in SI.
4: Apply dilation followed by erosion.
5: Apply Gaussian smoothing over SI resulted from above steps.
6: Retain blobs in SI having size greater than threshold.
7: Return SI having Human Blob(HB).

3.3. Feature Extraction

A segmented bounding box image (SI) obtained through the Segmentation Algorithm (SA) has
both foreground (human blob) and background (black) pixels, we need to extract features from a
human blob that would be used in classifying six human actions. SI is represented as SI = {FP ∪ BP},
where FP = ∪{∀(xp, yq) : SI(xp, yq) is foreground} and
BP = ∪{∀(xr, ys) : SI(xr, ys) is background}.

To deal with the human actions under the presented study, geometrical positions of the hands
and feet are quite important. The graphical representation of geometrical features from the human
blob is shown in Figure 3. In the case of a hand wave, the position of the hand is important, while, in
the case of straight standing or walking step, the position of feet is important. These positions may
be represented as discriminant features, but they need to be calculated with some reference point.
We have defined the centroid of the human blob as a reference point for calculating the feature set.
Centroid of the Human blob, (Xcb, Ycb) is calculated using: Xcb = 1

m Σm
i=1xi and Ycb = 1

n Σn
j=1yj, where

xi and yj represent pixel positions in FP. Boundary points of HB are extracted through finding the
pixels pj such that pj ∈ FP and in its 8-neighborhood at least one of the neighbor np ∈ BP. A boundary
vector BV is created and all the boundary points are added to it. To obtain salient features, we divided
the boundary vector (BV) of HB into four regions keeping the centroid of the HB as a reference point
i.e., Top Left (TL), Top Right (TR), Bottom Left (BL), and Bottom Right (BR). The features for each of
the actions are shown in Figure 4.

The idea behind dividing the HB into four regions lies in the physical positions of both the hands
and feet i.e., hands are in the upper half region of HB, while the feet position of HB is in its lower half.
In each of the four regions, the farthest points from the centroid are calculated as:

MDPK = max {dp =
√

xp − xc)2 + (yp − yc)2)) : ∀p ∈ K}, where K ∈ {TL, TR, BL, BR}. (1)

The position of the farthest distant points in each region is an important clue in the recognition of
human actions under study. Along with the position of the calculated point, the angular position of
the point about the centroid of the HB is equally useful as well. Drawing a line from the distant point
to the centroid would help in calculating the angular position of points i.e., angles, ΘK, of each farther
distant point with reference to centroid i.e.,

ΘK = tan−1 (MDPK(y)− yc)

(MDPK(x)− xc)
(2)

It may be observed from Figure 4a–f that, for each of the six actions, distances between TL, TR,
and BL, BR gives better clues for recognizing them. From Figure 4a, it is evident that the distance DTLR
is not high as TL and TR are close to head area, while from the Figure 4b it may be inspected that there
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is a considerable value for DTLR as the position of the right stretched hand is farther from the position
of the head point, calculated as TR. The same can be established from Figure 4c–f. Distance between
farthest points in the top and bottom regions are calculated using Euclidean distance as:

DTLR = |MDPTL − MDPTR| =
√
(MDPTL(x)−MDPTR(x))2 + (MDPTL(y)−MDPTR(y))2 (3)

DBLR = |MDPBL −MDPBR| =
√
(MDPBL(x)−MDPBR(x))2 + (MDPBL(y)−MDPBR(y))2 (4)

It is to be noted that feet are at the largest distance from the centroid of the body in the lower body
region. DBLR represents the distance between the extreme points in the lower part of the body i.e., the
distance between feet. This distance gives a clue about whether the human under study is in standing
or walking position. The ratio of DBLR to the height of the blob gives step to height ratio (SHR) i.e.,

SHR =
DBLR

HB_Height
(5)

Literature about physical dimensions of the human body reveals that there exist ratios between
the size of different body parts to the height of human [42,43] i.e., length of the arm is approximately
0.44 of the height of the human i.e,

armLength = 0.44 ∗ HB_Height (6)

Furthermore, the human body dynamics depict that the arm may be divided into two portions
i.e., lower and upper arm. The proportion of the lower to the upper arm is nearly 4:3 and may be
represented as:

upperarm = (
3
7
) ∗ armLength (7)

lowerarm = (
4
7
) ∗ armLength (8)

The length of the lower arm is the sum of the forearm and hand i.e.,

lowerarm = f orearm + hand (9)

The ratio between the length of the hand and the forearm is 2 : 3. We computed the length of the
hand from the lower arm through the following relation i.e.,

handSize = (
2
5
) ∗ lowerarm (10)
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Figure 3. Geometric feature extraction from human blob.
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Figure 4. Representing geometric features for human actions. (a) single hand side wave; (b) single
hand top wave; (c) standing; (d) Walking; (e) both hands side wave; (f) both hands top wave.

3.4. Classification

Based on the extracted feature set, the rule-based classification is presented. The classification
rules for all of the six actions are modeled and presented in the following subsection.



Appl. Sci. 2020, 10, 5453 10 of 24

3.4.1. Case Standing

When a person is in a standing position, his hands are not in a stretched position. Either they
are in parallel to the body in a downward direction or around the chest. In both of the cases, the
extreme point TL and TR from the centroid are around the head area of the human. The width of
the human head approximately matches the length of the hand. Thus, in a standing position, DTLR
would be lesser than or equal to the hand length of the human having DTLR(θ) is not very large. From
the reviews of the step science, it is observed that the ratio of the human step size to his height is in
between 0.41 to 0.45. However, the human actions in still images, a person could be in a half step
to full step in his walk. Through the experimental observations, it is deduced that a person in the
standing position would have SHR lesser than 0.25. By combining all of the feature attributes, the rule
for classifying a human in the standing action is presented as:

DTLR(θ) < 10 AND DTLR ≤ handSize AND SHR < 0.25 (11)

3.4.2. Case Walking Step

In a posture of a walking step, the lower part of the human body shows significant changes.
As mentioned in the standing case, the ration of SHR to the height of the human is 0.41 to 0.45. This is
the ratio when a human is walking and having a full stretched step. However, the image may be one
of a frame from all the sequences and the size of the step would not be accurate in the range of 0.41 to
0.45 of the human height. Furthermore, from most of the dataset images, the SHR varies from 0.25
to 0.42 for a human in walking posture. Angles from centroid point to extreme points in BL and BR
regions are wider for walking step posture than that of standing action. By combining both SHR and
DBLR(θ), the discriminating rule for classifying a human in walking posture is presented as i.e.,

DBLR(θ) > 15 AND SHR > 0.25 (12)

3.4.3. Case Single Hand Side Wave

In case of recognizing the human action of waving a single hand on sidewise, it only needs
to inspect the upper portion of the body i.e., TL and TR regions need to be focused. In the case of
Right-hand wave, TR(θ) gets larger than 125 degrees relative to the centroid of the human blob, whilst
the extreme point in the TR region remains near the head region having an angle closer to 90 degrees.
The distance between extreme points of TL and TR regions is more than the length of the arm. The
classification rule may be described as:

TL(θ) > 125 AND TR(θ) > 75 AND DTLR > armLength. (13)

Similarly for the left hand wave classification, angles get reversed as extreme TL point gets near
head region:

TL(θ) < 105 AND TR(θ) < 55 AND DTLR > armLength (14)

3.4.4. Case Single Hand Top Wave

When a human waves his hand in top direction, the angle of the waving hand gets closer to the
head position. As only one hand is waved, say the right one, an extreme TR point rests near the head
position while the position of the hand can be quite closer or away from the head. When a waving
hand has a closer angle with respect to the position of the head, the segmentation limitations might
misclassify it to the standing posture. Likewise, when TL(θ) gets wider, then there may be some point
where Top Wave and Side Wave have the same boundary point, and it may get misclassified. To tackle
all of these issues, the proposed classification rule has used the combinational privilege of different
features. The classification rule for the right-hand wave is given as:
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TL(θ) > 97.5 AND TL(θ) ≤ 125) AND TR(θ) > 75 AND DTLR > hand_Size AND

DTLR < (
2
3
) ∗ armLength (15)

Just like the above, we can write the rule for the Left hand Top wave:

TR(θ) < 82.5 AND TL(θ) ≥ 55) AND TL(θ) < 105 AND DTLR > hand_Size AND

DTLR < (
2
3
) ∗ armLength (16)

3.4.5. Case Both Hands Side Wave

The proposed rule for Classifying both hands side wave is a combination of the left and right-hand
side wave along with taking DTLR into account. As defined by [44], the size of the Wingspan of a
human is the same as his height. There are some cases as well when the direction of the wingspan is
slightly upward resulting in reduced wingspan size. Thus, the proposed rule combines the mentioned
constraints over the selected features and is defined as:

TL(θ) > 125 AND TR(theta) < 55 AND DTLR > 1.5 ∗ armLength (17)

3.4.6. Case Both Hands Top Wave

The proposed classification rule for both hands Top wave is a combination of single hand left and
right top wave rules. The maximum distance between TL and TR extreme points must be at least the
same as the length of the forearm and should not be greater than 1.5 of armLength. The minimum and
maximum values for TLθ and TR(θ) are also used as discriminating features. The proposed rule is
described as:

(TL(θ) > 97.5 AND TL(θ) ≤ 125) AND

(TR(θ) < 82.5 AND TR(theta) ≥ 55)) AND

(DTLR > f orearm AND DTLR ≤ 1.5 ∗ armLength))

(18)

4. Results and Discussion

In this section, the details about dataset, evaluations metrics, and results achieved through the
implementation of the proposed technique have been presented.

4.1. Dataset and System Platform

To evaluate the performance of the proposed methodology, various experiments are performed
over the Weizmann dataset [45]. The dataset is used for six of the actions i.e., Standing, Walking, Single
Hand Side Wave, Single Hand Top Wave, Both Hands Side Wave and Both Hands Top Wave. The
action images are extracted from the videos having a human body in the motions of walking, jumping,
bending, waving with one hand, and both hands. The six potential action classes have been presented
in Table 1.
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Table 1. Action Class labels with abbreviations.

Action Class Abbreviations

1 Single Hand Side Wave SHSW
2 Single Hand Top Wave SHTW
3 Standing Standing
4 Walking Walk
5 Both Hands Side Wave BHSW
6 Both Hands Top Wave BHTW

Images for all the six potential action classes are extracted from the videos of eight different actors,
i.e., Darya, Denis, Eli, Ido, Ira, Lena, Lyova, and Moshe. Five of the actors depicting the actions were
male while three were female. The human body dimensions of all the actors were different with respect
to their heights, postures of walking, standing, and waving hands.

To conduct experiments, MATLAB 2015 (MathWorks, Natick, MA, USA) on a machine with the
processing speed of 2.14 GHz Core i5 and 6 GB RAM has been used for implementing the proposed
approach.

4.2. Performance Evaluation Metrics

The following evaluation metrics have been used to measure the performance of the proposed
technique i.e., precision, recall, accuracy, F-score, omission error, and commission error. Each of the
performance parameters has been briefly explained in the following subsections.

4.2.1. Precision

The precision score describes the ability of the classifier not to label a negative example as positive.
The precision score can further be described as evaluating the probability that a positive prediction
made by the classifying engine is in fact positive. The score ranges [0, 1], with 0 being the worst
possible score and 1 being perfect. The Precision score is defined:

Precision =
(ΣTruePositive)

(ΣTruePositive + ΣFalsePositive)
(19)

4.2.2. Omission Error

Given m many actions in class Cj, the Omission error represents actions that belong to Cj but
were not accurately classified as being in the Cj class:

OmissionError = 1− Precision (20)

4.2.3. Recall

The Recall score describes the ability of a classifier not to identify a positive example as negative.
The score ranges [0, 1], with 0 being the worst possible score and 1 being perfect. The Recall score can
be further described as:

Recall =
(ΣTruePositive)

(ΣTruePositive + ΣFalseNegative)
(21)

4.2.4. Commission Error

Given m many actions in a class Cj, the Commission error represents actions belonging to a
different class but were inaccurately classified as being in the Cj class. Commission error is defined in
relationship to Recall, as:

CommissionError = 1− Recall (22)
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4.2.5. F-Score

F-Score is defined as a measure that provides a balance between recall and precision or it may be
said as a harmonic mean of recall and precision. It may further be represented as:

F− Score = 2
(Precision ∗ Recall)
(Precision + Recall)

(23)

4.2.6. Accuracy

Accuracy is an important but simplistic measure of how often a classifier makes a correct
prediction. It is depicted as the ratio between the number of correct predictions versus the total
number of predictions. Overall accuracy represents the total classification accuracy:

Accuracy =
(ΣTruePositive + ΣTrueNegative)

(ΣTruePositive + ΣFalsePositive + ΣTrueNegative + ΣFalseNegative)
(24)

4.3. Results

In this subsection, experimental results are presented when the proposed technique is applied on
action image dataset. Figure 5 is showing the results through each step of proposed technique.
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Figure 5. Results of each step through the proposed technique.

Table 2 is showing a classification matrix, representing statistical results in the case when the
proposed technique is applied over Daria images. Originally, 278 images of Daria having all the six
actions were tested. The proposed technique achieved 100%, 96.3%, 83.1%, 86.9%, 91.2%, and 100%
recall for SHSW, SHTW, walk, standing, BHSW, and BHTW actions, respectively, while there were
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100% , 92.9% , 92.5%, 81.5%, 100%, and 93% precision values for them, respectively. An overall accuracy
of 91.4% is achieved while, out of all the images, 9 remained un-classified.

Table 2. Classification matrix for Daria images.

SHSW SHTW Walk Standing BHSW BHTW Total Images
Classified Recall Commission

Error
Un-Classified

Images Total Images Un-Classification
(%)

SHSW 21 0 0 0 0 0 21 100% 0% 3 24 12.5%
SHTW 0 52 0 2 0 0 54 96.3% 3.7% 0 54 0%
Walk 0 0 49 10 0 0 59 83.1% 16.9% 0 59 0%
Standing 0 4 4 53 0 0 61 86.9% 13.1% 2 63 3.2%
BHSW 0 0 0 0 31 3 34 91.2% 8.8% 4 38 10.5%
BHTW 0 0 0 0 0 40 40 100% 0% 0 40 0
Total
Images 21 56 53 65 31 43 n = 269 9 m = 278

Precision 100% 92.9% 92.5% 81.5% 100% 93.0% Overall Accuracy(91.4%) Overall Un-Classification(4.4%)
Ommission
Error 0.0% 7.1% 7.5% 18.5% 0.0% 7.0%

Table 3 is a classification matrix for the six defined actions achieved after implementing the
proposed technique using the Denis images. A total of 188 images having all the six actions were
tested and, out of those 188 images, 10 were un-classified while from the remaining 178 images 91.6%
actions were accurately classified giving 100%, 95%, 81.9%, 91.7%, 100 %, and 100% recall and 100%,
82.6%, 100%, 80.0%, 100%, and 100% precision for SHSW, SHTW, walk, standing, BHSW, and BHTW
actions, respectively.

Table 3. Classification matrix for Denis images.

SHSW SHTW Walk Standing BHSW BHTW Total Images
Classified Recall Commission

Error
Un-Classified

Images Total Images Un-Classification
(%)

SHSW 23 0 0 0 0 0 23 100% 0% 2 25 8.0%
SHTW 0 19 0 1 0 0 20 95.0% 5.0% 2 22 9.1%
Walk 0 0 45 10 0 0 55 81.9% 18.1% 0 55 0%
Standing 0 4 0 44 0 0 48 91.7% 8.3% 0 48 0%
BHSW 0 0 0 0 17 0 17 100% 0% 3 20 15.0%
BHTW 0 0 0 0 0 15 15 100% 0% 3 18 16.7%
Total
Images 23 23 45 55 17 15 n = 178 10 m = 188 Overall Un-Classification(5.3%)

Precision 100% 82.6% 100% 80.0% 100% 100% Overall Accuracy(93.7%)
Omission
Error 0.0% 17.4% 0% 20.0% 0% 0%

The classification matrix for Ira images is shown in Table 4. In this experiment, a total of 267
images are tested to evaluate the proposed technique. The unclassified images are 18 while the rest of
the 249 images are classified. The overall accuracy for Ira actions is 93.2% while 93.9%, 92.9%, 86.2%,
100%, 90.9%, 90.9% recall and 91.2%, 95.1%, 100%, 87.8%, 100%, and 90.9% precision for SHSW, SHTW,
walk, standing, BHSW and BHTW actions, respectively, are achieved.

Table 4. Classification matrix for Ira images.

SHSW SHTW Walk Standing BHSW BHTW Total Images
Classified Recall Commission

Error Un-Classified Total
Images

Un-Classification
(%)

SHSW 31 2 0 0 0 0 33 93.9% 6.1% 1 34 2.9%
SHTW 3 39 0 0 0 0 42 92.9% 7.1% 7 49 14.3%
Walk 0 0 50 8 0 0 58 86.2% 13.8% 1 59 1.7%
Standing 0 0 0 72 0 0 72 100% 0% 3 75 4.0%
BHSW 0 0 0 0 20 2 22 90.9% 9.1% 4 26 15.4%
BHTW 0 0 0 2 0 20 22 90.9% 9.1% 2 24 8.3%
Total
Images 34 41 50 82 20 22 n = 249 18 m = 267 Overall Un-Classification(6.7%)

Precision 91.2% 95.1% 100% 87.8% 100% 90.9% Overall Accuracy(93.2%)
Omission
Error 8.8% 4.9% 0.0% 12.2% 0% 9.1%

In Table 5, classification results for "Eli" have been presented showing precision, recall, overall
accuracy, and other evaluation metrics. It may be observed that a total of 281 images of Eli are tested
that contained all the six actions. A total of 273 images are classified leaving eight of them unclassified.
Overall classification accuracy over Eli images is 91.7% while 8.3% actions are misclassified. There is
98.2%, 89.2%, 92.3%, 86%, 95.7%, and 85.2% recall, and 100%, 92.6%, 95.6%, 71.2%, 100%, and 95.8%
precision for SHSW, SHTW, walk, standing, BHSW, and BHTW actions, respectively, is recorded. Least
precision is for standing action while the least recall is for BHTW with an 85.2% score.
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Table 5. Classification matrix for Eli images.

SHSW SHTW Walk Standing BHSW BHTW Total Images
Classified Recall Commission

Error
Un-Classified

Images
Total

Images
Un-Classification

(%)

SHSW 56 1 0 0 0 0 57 98.2% 1.8% 2 59 3.4%
SHTW 0 50 0 6 0 0 56 89.3% 10.7% 0 56 0.0%
Walk 0 0 65 5 0 0 70 92.3% 7.7% 0 70 0.0%
Standing 0 3 3 37 0 0 43 86.0% 14.0% 0 43 0.0%
BHSW 0 0 0 0 22 1 23 95.7% 4.3% 1 24 4.2%
BHTW 0 0 0 4 0 23 27 85.2% 14.8% 2 29 6.9%
Total
Images 56 54 68 52 22 24 n = 276 5 m = 281 Overall Un-Classification(1.8%)

Precision 100% 92.6% 95.6% 71.2% 100% 95.8% Overall Accuracy(91.7%)
Omission
Error 0 7.4% 4.4% 28.8% 0% 4.2%

Table 6 is showing classification matrix results for the actions performed by “Ido”. The original
dataset contained 196 images having all six action images. Out of them, 10 images were not classified.
For the images where the proposed technique is able to classify, the overall accuracy is 89.2%. It may
be observed that the proposed technique achieved 88.5%, 80.8%, 85.4%, 93.5%, 96.4%, and 89.5% recall,
and 100%, 77.8%, 100%, 78.6%, 100%, and 94.4% precision for the SHSW, SHTW, walk, standing, BHSW,
and BHTW actions, respectively.

Table 6. Classification matrix for Ido images.

SHSW SHTW Walk Standing BHSW BHTW Total Images
Classified Recall Commission

Error
Un-Classified

Images
Total

Images
Un-Classification

(%)

SHSW 23 3 0 0 0 0 26 88.5% 11.5% 1 27 3.7%
SHTW 0 21 0 5 0 0 26 80.8% 19.2% 2 28 7.1%
Walk 0 0 35 6 0 0 41 85.4% 14.6% 2 43 4.7%
Standing 0 3 0 43 0 0 46 93.5% 6.5% 0 46 0.0%
BHSW 0 0 0 0 27 1 28 96.4% 3.6% 2 30 6.7%
BHTW 0 0 0 2 0 17 19 89.5% 10.5% 3 22 13.6%
Total
Images 23 27 35 56 27 18 n = 186 10 m = 196 Overall Un-Classification(5.1%)

Precision 100% 77.8% 100% 76.8% 100% 94.4% Overall Accuracy(89.2%)
Omission
Error 0% 22.2% 0% 23.2% 0% 5.6%

The classification matrix for “Lena” images is presented in Table 7 obtained by testing the proposed
technique over a total of 214 action images. The number of unclassified images is 9 while 205 have
been successfully classified. The overall accuracy for “Lena” images is 93.7%. The matrix shows that
the proposed technique achieved 100%, 91.3%, 97.1%, 85.7%, 91.7%, and 95.7% recall, and 100%, 77.8%,
100%, 90%, 95.7%, and 91.7% precision for SHSW, SHTW, walk, standing, BHSW, and BHTW actions,
respectively.

Table 7. Classification matrix for Lena images.

SHSW SHTW Walk Standing BHSW BHTW Total Classified
Images Recall Commission

Error
Un-Classified

Images
Total

Images Un-Classification

SHSW 24 0 0 0 0 0 24 100% 0% 2 26 7.7%
SHTW 0 21 0 2 0 0 23 91.3% 8.7% 0 23 0%
Walk 0 0 67 2 0 0 69 97.1% 2.9% 1 70 1.4%
Standing 0 6 0 36 0 0 42 85.7% 14.3% 3 45 6.7%
BHSW 0 0 0 0 22 2 24 91.7% 8.3% 2 26 7.7%
BHTW 0 0 0 0 1 22 23 95.7% 4.3% 1 24 4.2%
Total
Images 24 27 67 40 23 24 n = 205 9 m = 214 Overall Un-Classification(4.2%)

Precision 100% 77.8% 100% 90.0% 95.7% 91.7% Overall Accuracy(93.7%)
Omission
Error 0.0% 22.2% 0% 10.0% 4.3% 8.3%

Table 8 is the representation of the classification matrix for the actions performed by the actor
“Lyova”. There were 189 images for all the six actions from which 12 images remained unclassified,
while for the remaining 177 images the overall accuracy of the proposed technique is 92.7%. The results
achieved from the proposed technique are 95.2%, 85.7%, 95.7%, 89.6%, 100%, and 94.1% recall, and
100%, 80%, 100%, 86%, 100%, and 100% precision for for SHSW, SHTW, walk, standing, BHSW, and
BHTW actions, respectively.
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Table 8. Classification matrix for Lyova images.

SHSW SHTW Walk Standing BHSW BHTW Total Images
Classified Recall Commission

Error Un-identified Total
Images Un-Classification

SHSW 20 1 0 0 0 0 21 95.2% 4.8% 3 24 12.5%
SHTW 0 24 0 4 0 0 28 85.7% 14.3% 2 30 6.7%
Walk 0 0 44 2 0 0 46 95.7% 4.3% 2 48 4.2%
Standing 0 5 0 43 0 0 48 89.6% 10.4% 4 52 7.7%
BHSW 0 0 0 0 17 0 17 100.0% 0.0% 1 18 5.6%
BHTW 0 0 0 1 0 16 17 94.1% 5.9% 0 17 0%
Total
Images 20 30 44 50 17 16 n = 177 12 m = 189 Overall Un-Classification(6.3%)

Precision 100.0% 80.0% 100.0% 86.0% 100.0% 100.0% Overall Accuracy(92.7%)
Omision
Error 0% 20.0% 0% 14.0% 0% 0%

The classification matrix for the images of actions performed by “Moshe” is represented in Table 9.
There were a total of 242 images, out of whom 11 images couldn’t get classified through the proposed
technique while the overall accuracy for the remaining 231 images is 87.4%. The precision and recall
for SHSW, SHTW, walk, standing, BHSW, and BHTW are 100%, 61.9%, 100%, 75%, 100%, and 92.9%,
and 89.3%, 86.7%, 97.3%, 71.7%, 90.5%, and 83.9% respectively.

Table 9. Classification matrix for Moshe images.

SHSW SHTW Walk Standing BHSW BHTW Total Images
Classified Recall Commission

Error
Un-Classified

Images
Total

Images
Un-Classification

(%)

SHSW 25 3 0 0 0 0 28 89.3% 10.7% 2 30 6.7%
SHTW 0 26 0 4 0 0 30 86.7% 13.3% 0 30 0.0%
Walk 0 0 73 2 0 0 75 97.3% 2.7% 1 76 1.3%
Standing 0 13 0 33 0 0 46 71.7% 28.3% 1 47 2.1%
BHSW 0 0 0 0 19 2 21 90.5% 9.5% 2 23 8.7%
BHTW 0 0 0 5 0 26 31 83.9% 16.1% 5 36 13.9%
Total
Images 25 42 73 44 19 28 n = 231 11 m = 242 Overall Un-Classification(4.5%)

Precision 100% 61.9% 100% 75.0% 100% 92.9% Overall Accuracy(87.4%)
Omission
Error 0% 38.1% 0% 25.0% 0% 7.1%

Table 10 is representing the classification matrix for the complete dataset. The same as the
classification matrices for the individual actors, it is showing the statistical results obtained by
implementing the proposed technique for different parameters, namely; precision, recall, overall
accuracy, overall Un-Classification, commission error, and omission error. The dataset contained 1855
images from all the actors having all the six actions. The proposed technique is unable to classify 84
actions while the remaining 1771 are classified with an overall accuracy of 91.4%. The recall values are
95.7%, 90.3%, 90.5%, 88.9%, 94.1%, and 92.3%, and the precision values are 98.6%, 84%, 97.7%, 81.3%,
99.4%, and 94.2% for SHSW, SHTW, walk, standing, BHSW, and BHTW, respectively.

Table 10. Classification matrix for the complete dataset.

SHSW SHTW Walk Standing BHSW BHTW Total Images
Classified Recall Commission

Error
Un-Classified

Images
Total

Images
Un-Classification

(%)

SHSW 223 10 0 0 0 0 233 95.7% 4.3% 16 249 6.4%
SHTW 3 252 0 24 0 0 279 90.3% 9.7% 13 292 4.5%
Walk 0 0 428 45 0 0 473 90.5% 9.5% 07 480 1.5%
Standing 0 38 7 361 0 0 406 88.9% 11.1% 13 419 3.1%
BHSW 0 0 0 0 175 11 186 94.1% 5.9% 19 205 9.2%
BHTW 0 0 0 14 1 179 194 92.3% 7.7% 16 210 7.6%
Total Images 226 300 435 444 176 190 n = 1771 84 m = 1855 Overall Un-Classification(4.5%)
Precision 98.6% 84.0% 97.7% 81.3% 99.4% 94.2% Overall Accuracy(91.4%)
Omission
Error 1.4% 16.0% 2.3% 18.7% 0.6% 5.8%

Figure 6 is showing the performance of the proposed technique using precision, recall, and
F-score metrics. The statistics are presented for SHSW, SHTW, Walk, Standing, BHSW, and BHTW. The
proposed technique has been applied over the Weizmann Dataset for all the performance parameters.
In case of precision, it achieved 0.98, 0.84, 0.98, 0.81, 0.99, and 0.94, in case of recall; 0.96, 0.90, 0.91, 0.89,
0.94, and 0.92 while in the case of F-score; 0.97, 0.87, 0.94, 0.85, 0.97, and 0.93 have been achieved for
SHSW, SHTW, walk, standing, BHSW, and BHTW actions, respectively. The highest precision has been
achieved both in the case of SHSW and BHSW while standing has the least precision value of 0.81. The
highest recall value of 0.96 has been achieved for SHSW action while the least recall has been recorded
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for “standing” action having a value of 0.89. Actions of SHSW and BHSW achieved the highest F-score
sharing 0.97 value while the least F-score is for “standing” action having a value of 0.85.
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Figure 6. Performance of the proposed technique.

4.4. Discussion

As has already been discussed, the proposed technique has been used to classify six actions i.e.,
SHSW, SHTW, walk, standing, BHSW, and BHTW. For this purpose, a “modified dataset” has been
used where images with the above-mentioned actions have been used containing the actions of eight
different actors. Three of the actors are male while the rest are female. All of them have different
heights, postures of walking, standing, and hands waving. The clear picture of the statistical results
obtained from the proposed technique has been presented in Table 10 containing the classification
matrix for the complete dataset.

The dataset originally contains 249 images for SHSW action. A total of 223 images for SHSW are
correctly classified, 10 are misclassified as SHTW, while 16 actions are not classified by the proposed
technique. The classification rule for the right SHSW has been shown in Equation (13). Most of the
time, the first portion of Equation (13) i.e., TL(θ) > 125 AND TR(θ) > 75, get satisfied when the
result is Un-Classification, but the second part of the rule i.e., DTLR > armLength is the cause of
misclassification as if there is a bend in the arm or the actor does not have its complete stretch. In this
case, DTLR evaluates to less than the armLength resulting in it being classified out of the SHSW class.
These actions don’t even fall into the SHTW class as rule (5); the class does not get satisfied as the
example image shown in Figure 7a. These are the cases where TL(θ) are greater than 125, but DTLR is
less than armLength or TL(θ) ≤ 125 but armLength > DTLR > ( 2

3 ) ∗ armLength. In all of these cases,
SHSW actions are un-classified. Ten of SHSW actions that are misclassified as SHTW are those where
the hand of the actor is in such a position that its feature DTLR becomes less than ( 2

3 ) ∗ armLength as
shown in Figure 7b. As described above, these are the cases where the arm is in a bent position or it is
a side wave, but the position of the hand is above the normal side hand wave position.



Appl. Sci. 2020, 10, 5453 18 of 24

  
  

(a) (b) 

 
Figure 7. Abnormal “SHSW” actions. (a) Misclassification example; (b) Un-Classification example.

SHTW is the second action in the sequence whose statistics are shown in Table 10. The total
number of images for SHTW actions from all the actors is 292. Out of all the 292 images, 252 are correctly
classified. The Un-classified SHTW actions are 13 while the remaining images are misclassified as
SHSW (03), and standing (24). Three of the SHTW actions are classified as SHSW. As discussed earlier
in the case of SHSW, these are the actions where the actors stretched their arm more than the normal of
the SHTW position and elbow bent was missing. As the SHTW rule for the right hand is defined in
(15) and these cases fail to satisfy DTLR < ( 2

3 ), ∗armLength fulfills the condition of SHSW i.e., DTLR >

armLength. The other misclassification class is standing. In some of the Images of SHTW actions, the
hand of the actors was just touching the head and even it was not much above the head failing to
fulfill both the conditions of rule (15) and shown in Figure 8a i.e., TL(θ) > 97.5 AND TL(θ) ≤ 125)
AND TR(θ) > 75 and DTLR > hand_Size AND DTLR < ( 2

3 ) ∗ armLength. As the top hand of the
actor touches his/her head, the TL(θ) becomes less than 97.5 and DTLR is not greater than hand_size
so it matches the conditions of rule (1). In the SHTW Un-Classification cases as already discussed,
these are the cases that neither fulfill rule (13) nor rule (15) as shown in Figure 8b.

  

(a) (b) 

 
Figure 8. Abnormal “SHTW” actions. (a) Misclassification example; (b) Un-Classification example.

Classification statistics of “Walk” as action are presented in Table 10 showing cumulative results
from all the actors. A total of 480 images having a person in walk posture have been used for
validating the proposed technique. The number of classified images is 473 while 07 images remained
un-classified. The images which are correctly classified are 428 while 45 actions are misclassified. All
of the 45 actions are misclassified as Standing. Rule (12) is defined for classifying “Walk” action i.e.,
DBLR(θ) > 15 AND SHR > 0.25. The second part of the rule says that the step size to height ratio
should be greater than 0.25. During the walk, the size of step changes and misclassification case is
for those frames where the posture of step is such that it is getting towards 0. Rule (11) is defined
for a Standing case whose second part says SHR < 0.25. Thus, as the step size of the person gets
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shorter, therefore, the posture matches the standing posture and it may be taken as misclassification.
The example images of those are shown in Figure 9a,b.

  

(a) (b) 

 
Figure 9. Abnormal “Walk” actions. (a,b) Misclassification examples.

“Standing” is the next action whose classification statistics are shown in Table 10. A total of 419
images are used for testing purposes which are contributed by all of the eight actors. The number
of classified images is 406 while 13 are un-classified. From the classified images, 361 are correctly
classified while 45 are misclassified. Out of 45, 38 are misclassified as SHTW and seven as Walk. The
classification rule for “Standing” action is given in (11) stating that three of the conditions need to
be fulfilled for the prescribed class. The misclassification to SHTW is unfulfillment of portion of (11)
i.e., dTLR(θ) < 10 AND DTLR ≤ handSize. These are the images in the dataset where the actor is
standing in a bent position. The bent is more than the normal position and is thus closer to bending
action than standing. This posture e.g., in Figure 10a resulted when DTLR greater than handSize as
the Top left point moves farther from the top right point. The second condition also gets failed i.e.,
dTLR(θ) < 10. As a result, rule (15) gets applied which classifies the action as SHTW. The second case
where the images are misclassified as “Walk” doesn’t fulfill the second half of rule (11) i.e., SHR < 0.25.
Figure 10b shown below is the example of those misclassified action images. It is clear from Figure 10b
that the position of feet of the actor is such that it gives the same “Walk” like step i.e., SHR > 0.25,
which is a condition of rule (12) for “Walk” action.

 

  

(a) (b) 

  
Figure 10. Abnormal “Standing” actions. (a,b) Misclassification examples.

The next action under discussion is “BHSW” for which a total of 205 test images are collected
from eight different actors. The classified images are 186 while 19 of them got un-classified. From
186 classified actions, 175 are correctly classified and the remaining 11 are misclassified to “BHTW”.
The classification rule for BHSW is defined in (17). The classification rule for BHSW has two parts
i.e., (i) Condition fulfilling top left and top right angles with respect to centroid of the human body,
TL(θ) > 125 AND TR(theta) < 55, (ii) The distance between top left and top right points, DTLR >

1.5 ∗ armLength. Figure 11a is an example of misclassification of “BHSW” as “BHTW” as both TL(θ)
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and TR(theta) do not fulfill the required criteria and the conditions fall in rule (18) which is for
“BHTW”. The “BHSW” actions that are un-classified by the proposed technique neither fulfill rule (17)
for “BHSW” nor rule (18) for “BHTW”. Figure 11b,c are examples of un-classified actions. Figure 11b
doesn’t fulfill the first part of rule (17) so it can’t be classified to “BHSW”, although the first part of rule
(18) is true i.e., (TL(θ) > 97.5 AND TL(θ) ≤ 125) AND (TR(theta) < 82.5 AND TR(theta) ≥ 55)),
but the second half of the rule i.e., DTLR ≤ 1.5 ∗ armLength is not fulfilled so resulting them as
un-classified. The second Un-Classification example for “BHSW” is Figure 11c. This is the case where
one of the arms is a side wave, while the position of the other is of the top wave. In these conditions, the
first half of the rule (17) is partially true and rule (18) is not true at all so these actions are un-classified.

 

   

(a) (b) (c) 

   
Figure 11. Abnormal “BHSW” actions. (a) Misclassification example; (b,c) Un-Classification examples.

The last action under the discussion is “BHTW”. In Table 10, the classification statistical details
for BHTW are presented as well. The contribution of eight actors resulted in 210 “BHTW” images. The
classification rule for BHTW action is presented as (18). The number of images where the proposed
technique did classification are 194, while the other 16 remained un-classified. Out of 194, 179 are
correctly classified leaving 14 misclassified as “Standing” and one as “BHSW”. The “BHTW” actions
are misclassified as “Standing” as they are not able to fulfill the two halves of (18) i.e., (i) (TL(θ) > 97.5
AND TL(θ) ≤ 125) AND (TR(theta) < 82.5 AND TR(theta) ≥ 55)) and (ii) (DTLR > f orearm
AND DTLR ≤ 1.5 ∗ armLength)). Figure 12b is the example of the “BHTW” action images where
left and right hands touch each other. When the top left and top right points are calculated, they do
not fulfill the DTLR > f orearm condition but do fulfill criteria from rule (11) i.e., DTLR ≤ handSize
for “Standing” action, so Figure 12b is classified as “Standing”. Figure 12c is the image which is
misclassified as “BHSW” as the part of rule (18) is not fulfilled i.e., DTLR ≤ 1.5 ∗ armLength, but it
agrees with all the parts of the rule defined in (17) resulting in being classified as “BHSW”. Figure 12a
is the example where neither the conditions of rules (18), (17), and (11) are fulfilled nor any other rule
cover feature statistics, so images like Figure 12a remain un-classified.
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Figure 12. Abnormal “BHTW” Actions. (a) Un-Classification example; (b,c) Misclassification examples.

4.4.1. Comparative Analysis of the Proposed Technique with Existing Research

Figure 13 is showing comparative results of the proposed technique with the existing research.
The comparison is based on the evaluation metric of overall accuracy. It may be observed that the
accuracy of linear regression-based classification [23] over the Weizmann dataset is 61.7%, while it is
60.1% for subspace discriminant analysis [23]. The proposed technique achieved an overall accuracy
of 91.4%, and it is highest among all of its counterparts. The results of multiclass SVMs [23] are 91.2%
accurate while KNN based classification [23] was 86.1% correct. Dollár et al. [21] achieved 85.2%
accuracy using sparse spatio-temporal features and unsupervised learning based classification through
spatio-temporal words [46] attained an overall accuracy of 90.0%. Again, the spatial-temporal features
were used by Klaser et al. [20], but, based on 3D gradients, it remained 84.3% accurate. It may also
be observed that the Gaussian mixture model-based technique [18] could attain 91.11% accuracy and
the same research using the nearest neighbor classifier [18] remained 87.78% accurate. Even the latest
research [19] achieved an accuracy of 89.41%.
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Figure 13. Accuracy based comparative results of the proposed technique with existing research.

5. Conclusions

A geometric featured based technique, where features are extracted in the context of human
body science, is presented here. The proposed technique recognized six human actions, i.e., standing,
walking, single-hand side wave, single-hand top wave, both hands side wave, and both hands top
wave. All these actions are represented by using extreme points of the human body in each of the four
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quadrants. The centroid of the human blob is also computed, allowing a relative calculation to be made
about it. The dimensions of the human body (arm size, height, wingspan, hand size, and step-to-height
ratio) are used in the classification rules and the results are presented in the form of classification
matrices. BHSW having the highest precision of 99.4%, while “standing” has the least precision value
of 81.3%. The highest recall is 95.7% for SHSW action while the least is for the “standing” action with
88.9%. Both SHSW and BHSW shared the highest F-score value of 97%, while the “standing” action
has the least F-score value of 85%. In comparison to the existing research, the proposed technique
remained at the top having 91.4% accuracy. In the future, the work may be extended for more complex
situations where actions are completed through the participation of more than one human.
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