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Abstract: This paper presents free vibrations of the tapered horseshoe circular arch with a constant
volume. The volume of the arch is constant, and the cross-sectional shape of the arch is square
and circular. The taper function of the arch is a quadratic function. Differential equations with the
boundary conditions that govern the free vibration of such arches are derived and numerically solved
to calculate natural frequencies and mode shapes. The natural frequencies of this study agree well
with those of the finite element ADINA. Parametric studies of the geometrical and cross-sectional
properties of the arch on frequencies and mode shapes are performed and discussed.
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1. Introduction

Arches are frequently erected in many engineering fields because of their beautiful appearance and
excellent structural function. The horseshoe arch is an arch shape in which the length of the longitudinal
secant line increases from the peak of the arch, reaches its maximum value on the horizontal axis,
and decreases to the span length of the lower opening [1]. In particular, the horseshoe arch is widely
used as a framed structure in the fields of civil, architecture, aerospace, and ship-building engineering
because it can utilize a wide range of working space under the arch member [2]. The arch can be
graded in cross-section in the axial direction; meanwhile, in order to meet the aesthetic and economic
cost (or minimum weight) demands of the arch, the non-prismatic arch may be employed in the form of
tapered, piecewise, and continuous segmented member [3]. Figure 1 shows an example of a horseshoe
arch erected as an entrance portal that goes well with a modern building.

Exciting the dynamic load acting on the structure creates an element that weakens the structure
function due to the resonance phenomenon of the free vibration characteristics. Therefore, free vibration
is one of the important research tasks of structural analysis, from the design stage of the structure to
monitoring the soundness of the structure in public use [4].

Over the last severaldecades, manyresearchers, suchasTimoshenko[5], Henrych[6], andChidamparam
and Leissa [7], have published free vibration behavior, including arch structures. Considering the
research trends of the free vibration of the arch, it is as follows. The arch’s free vibration solutions
can be divided into the closed and approximate. The closed form solution [8,9] is very complicated,
so there are few research results. The approximate form solution is obtained from the numerical
method that calculates mode shapes by numerically integrating the governing differential equation,
the eigenvalues of natural frequencies by the determinant search method, and most of research works
included here [1,2,10–15].
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Figure 1. An example of a horseshoe circular arch as an entrance portal to a hospital at Wonkwang 
University in Iksan-si, Jeollabuk-do, Korea (Photo by B. K. Lee). 

In the design of the arched structure, it is most important to choose the suitable arch shape, so 
various linear shapes such as circular [1,8,9,12,13,15], parabolic [10], elliptical [2,11], catenary [16], 
and elastica [17] have been studied. In addition, research topics include the variable cross-section 
[8,13,14], material properties [9,12,15], multi-span arch [18], secondary effects on frequencies [19], 
and frequency optimization [20]. As mentioned above, the free vibration studies of arches are still 
being actively studied, from the linear shape to frequency optimization of the arch. 

In the open literature, only two works [1,2] that directly dealt with the problem of free vibration 
of a horseshoe arch are available, where the circular and elliptic arches with uniform cross-sections, 
but not tapered, are covered. High-rise arches, especially horseshoe arches, are vulnerable to 
stability, so tapered members should be used properly to improve the stiffness of the arch. In this 
regard, this paper focuses on the free vibration of a tapered horseshoe arch. 

In this study, differential equations governing in-plane free vibrations of tapered horseshoe 
circular arches are derived and numerically solved to compute natural frequencies with their mode 
shapes. In particular, the effects of a cross-sectional shape, taper ratio, rotatory inertia couple, and 
volume ratio are included, in combination or separation, in the governing differential equations, 
implying the novelty of this study. Parametric studies affecting natural frequencies and mode 
shapes have been conducted and discussed extensively. 

2. Problem Formulation 
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Figure 1. An example of a horseshoe circular arch as an entrance portal to a hospital at Wonkwang
University in Iksan-si, Jeollabuk-do, Korea (Photo by B. K. Lee).

In the design of the arched structure, it is most important to choose the suitable arch shape,
so various linear shapes such as circular [1,8,9,12,13,15], parabolic [10], elliptical [2,11], catenary [16],
and elastica [17] have been studied. In addition, research topics include the variable cross-section [8,13,14],
material properties [9,12,15], multi-span arch [18], secondary effects on frequencies [19], and frequency
optimization [20]. As mentioned above, the free vibration studies of arches are still being actively
studied, from the linear shape to frequency optimization of the arch.

In the open literature, only two works [1,2] that directly dealt with the problem of free vibration
of a horseshoe arch are available, where the circular and elliptic arches with uniform cross-sections,
but not tapered, are covered. High-rise arches, especially horseshoe arches, are vulnerable to stability,
so tapered members should be used properly to improve the stiffness of the arch. In this regard,
this paper focuses on the free vibration of a tapered horseshoe arch.

In this study, differential equations governing in-plane free vibrations of tapered horseshoe circular
arches are derived and numerically solved to compute natural frequencies with their mode shapes.
In particular, the effects of a cross-sectional shape, taper ratio, rotatory inertia couple, and volume
ratio are included, in combination or separation, in the governing differential equations, implying the
novelty of this study. Parametric studies affecting natural frequencies and mode shapes have been
conducted and discussed extensively.

2. Problem Formulation

2.1. Geometry of Arch

Figure 2 shows the geometry of a horseshoe circular arch with radius r and the opening angle
α (π ≤ α ≤ 2π). The arch axis is defined by the angular coordinates (r,θ) where the center of the
circle is O. Both ends a (θ = 0) and b (θ = α) of the arch are supported by the hinged or clamped
end constraint. The arch member is tapered, and its depth, area, and second moment of plane area
at (r,θ) are denoted by (D, A, I) respectively, which are defined in Figure 3. When the arch vibrates,
each of the radial deformation w, tangential deformation v, and angular rotation ψ occurs in the
cross-section at (r,θ). In this study, the free vibration assumes a harmonic motion in which each
dynamic coordinate is proportional to sinωit. For example, the dynamic radial deformation wr,t is
expressed as wr,t = w sinωit, where w is the radial amplitude (deformation),ωi is the angular frequency,
i(= 1, 2, 3, · · ·) is the mode number, and t is the time. As a result, the dynamic axial force N, shear force
Q and bending moment M occur in the cross-section of the arch due to deformations (w, v).
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Figure 2. Geometry of tapered horseshoe circular arch. 

Shown in Figure 3 is the axially functionally tapered arch, from which the cross-sectional 
properties of ܣ and ܫ can be established. The cross-sectional shape is square or circular with the 
varying arch depth ܦ at (ݎ,  is the height for the square and the ܦ ,as shown in Figure 3a. Here (ߠ
diameter for the circular cross-sections, respectively. In Figure 3b, the tapering fashion is 
represented by a function of a single variable ߠ. At the support ܽ	(ߠ = 0) and ܾ	(ߠ =  is ܦ ,(ߙ
depicted by ܦ = ߠ)	ܿ ௔ and at the mid-arcܦ = 2 2⁄ ܦ is depicted by ܦ ,( =  ,is practically used in terms of the linear, polynomial and periodic function [3,19–21]. In this study ܦ ௖. The taper function ofܦ
the tapering function is chosen as a quadratic function with respect to ߠ. 

 
Figure 3. (a) Cross-sectional shape of arch and (b) variation function of depth ܦ. 

To determine the quadratic function ܦ, the following taper ratio ݉ is defined: ݉ = ௖ܦ௔ܦ  (1) 

Using Equation (1), the quadratic function ܦ  in terms of a univariate variable ߠ  can be 
expressed as follows. ܦ = ,௖݂ܦ ݂ = 4(݉ − 1) ቆߠଶߙଶ − ቇߙߠ +݉	 (2) 

where the equation ݂ is a convex taper when ݉ > 1, a uniform prismatic when ݉ = 1 and a 
concave taper when ݉ < 1, (see Figure 3b). 

Using Equation (1), ܣ and ܫ at (ݎ,  :are expressed by the definition (ߠ
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Figure 3. (a) Cross-sectional shape of arch and (b) variation function of depth D

Shown in Figure 3 is the axially functionally tapered arch, from which the cross-sectional properties
of A and I can be established. The cross-sectional shape is square or circular with the varying arch
depth D at (r,θ) as shown in Figure 3a. Here, D is the height for the square and the diameter for the
circular cross-sections, respectively. In Figure 3b, the tapering fashion is represented by a function
of a single variable θ. At the support a (θ = 0) and b (θ = α), D is depicted by D = Da and at the
mid-arc c (θ = 2/2), D is depicted by D = Dc. The taper function of D is practically used in terms of
the linear, polynomial and periodic function [3,19–21]. In this study, the tapering function is chosen as
a quadratic function with respect to θ.

To determine the quadratic function D, the following taper ratio m is defined:

m =
Da

Dc
(1)

Using Equation (1), the quadratic function D in terms of a univariate variable θ can be expressed
as follows.

D = Dc f , f = 4(m− 1)
(
θ2

α2 −
θ
α

)
+ m (2)

where the equation f is a convex taper when m > 1, a uniform prismatic when m = 1 and a concave
taper when m < 1, (see Figure 3b).

Using Equation (1), A and I at (r,θ) are expressed by the definition:

A = c1D2 = c1D2
c f 2 (3)

I = c2D4 = c2D4
c f 4 (4)
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where, (c1 = 1, c2 = 1/12) for square and (c1 = π/4, c2 = π/64) for cross-section.
The volume V of the arch is obtained as follows.

V =

∫ α

0
Ardθ = c1rD2

c

∫ α

0
f 2dθ = c1c3αrD2

c , c3 =
1

15

(
3m2 + 4m + 8

)
(5)

in which it is particularly noted that V is constant in free vibration problems considered in this study.
The above Equation (5) is rearranged against the depth Dc at the mid-arc, or

Dc =

√
V

c1c3αr
(6)

Using Equation (6) together with Equations (3) and (4) yields

A = c1D2 =
V

c3αr
f 2 (7)

I = c2D4 =
c2V2

c2
1c2

3α
2r2

f 4 (8)

2.2. Governing Differential Equations

Figure 4 is a free body diagram of an arch element under a free vibration state. The stress resultants
(N, Q, M) due to deformations (w, v) act in the cross-section of this element, and the inertia forces
(Pr, Pt, T) occur on this element having mass ρ due to accelerations.
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From the free body diagram, equilibrium equations of
∑

Fr = 0,
∑

Ft = 0,
∑

M = 0 are obtained as

N′ + Q + rPt = 0 (9)

Q′ −N + rPr = 0 (10)

M′

r
−Q− T = 0 (11)

where (′) = d/dθ and (′′ ) = d2/dθ2 of the differential operators.
The equations of (N, M,ψ ) related to the deformations (w, v) consider the axial deformation due

to N, those are given in following equations [22].

N =
EA
r
(v′ + w) −

M
r

=
EV

c3αr2 f 2(v′ + w) −
M
r

(12)
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M = −
EI
r2
(w′′ + w) = −

c2EV2

c2
1c2

3α
2r4

f 4(w′′ + w) (13)

ψ =
1
r
(w′ − v) (14)

The inertia loadings (Pr, Pt, T) are [23]:

Pr = ρAω2
i w =

ρV
c3αr

ω2
i f 2w (15)

Pt = ρAω2
i v =

ρV
c3αr

ω2
i f 2v (16)

T = ρIω2
i ψ =

c2 ρV2

c2
1c2

3α
2r3
ω2

i f 4(w′ − v) (17)

First derivatives of (N′, M′) in Equations (12) and (13) are obtained as

N′ =
EV

c3αr2

[
f 2(v′′ + w′) + 2 f f ′(v′ + w)

]
−

M′

r
(18)

M′ = −
c2EV2

c2
1c2

3α
2r4

[
f 4(w′′′ + w′) + 4 f 3 f ′(w′′ + w)

]
(19)

Substituting Equations (17) and (19) into Equation (11) and arranging against Q gives Equation (20),
and then the first derivative Q′ is obtained as Equation (21).

Q = −
c2EV2

c2
1c2

3α
2r5

[
f 4(w′′′ + w′) + 4 f 3 f ′(w′′ + w)

]
−

c2 ρV2

c2
1c2

3α
2r3
ω2

i f 4(w′ − v) (20)

Q′ = − c2EV2

c2
1c2

3α
2r5

[
f 4(w′′′′ + w′′ ) + 8 f 3 f ′(w′′′ + w′) + 4

(
f 3 f ′′ + 3 f 2 f ′2

)
(w′′ + w)

]
−

c2ρV2

c2
1c2

3α
2r3ω

2
i

[
f 4(w′′ − v′) + 4 f 3 f ′(w′ − v)

] (21)

The following non-dimensional parameters are defined to derive differential equations in the
non-dimensional forms.

δ =
w
r

(22)

λ =
v
r

(23)

κ = V/r3 (24)

Ci = ωir
√
ρ/E (25)

where (δ,λ) are the radial and tangential dimensionless deformations, κ is the volume ratio and Ci is
the frequency parameter.

By substituting Equations (12), (15) and (21) into Equation (10) and applying dimensionless
Equations (22)–(25), the differential Equation (26) can be obtained. Similarly, by substituting Equations (16),
(18) and (20) into Equation (9), the differential Equation (24) can be derived.

δ′′′′ = −
8 f ′

f (δ′′′ + δ′) − 4
f

(
f ′′ + 3 f ′2

f

)
(δ′′ + δ) − (2δ′′ + δ)

−C2
i

{
(δ′′ − λ′) +

4 f ′

f (δ′ − λ)
}
+

c2
1c3α
c2κ

1
f 2

[(
C2

i − 1
)
δ− λ′

] (26)

λ′′ = −δ′ +
c2κ

c2
1c3α

C2
i f 2(δ′ − λ) −

2 f ′

f
(λ′ + δ) −C2

i λ (27)
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where derivatives of ( f ′, f ′′ ) in the above two equations are obtained from Equation (2), or

f ′ = 4(m− 1)
(2θ
α2 −

1
α

)
, f ′′ =

8(m− 1)
α2 (28)

In Equations (26) and (27), the term in {· · · } is due to the rotatory inertia couple T. If differential
equations ignore T, the term in {· · · } is simply deleted.

2.3. Boundary Conditions

In order to solve differential equations as the initial and boundary value problems, the boundary
conditions of the hinged and clamped end constraints at both ends of the arch a and b are necessary.
The deformations (w, v) and the bending moment M expressed by Equation (13) at the hinged
end (θ = 0 or θ = α) are zero. By applying Equations (23) and (24) to the boundary conditions,
the dimensionless boundary conditions of the hinged end can be obtained, or

δ = 0 (29)

λ = 0 (30)

δ′′ = 0 (31)

The deformations (w, v) and the angular rotation ψ expressed by Equation (14) at the clamped
end (θ = 0 or θ = α) are zero. By applying Equations (22) and (23) to the boundary conditions,
the dimensionless boundary conditions of the clamped end can be obtained, or

δ = 0 (32)

λ = 0 (33)

δ′ = 0 (34)

3. Solution Methods and Validation

The input parameters of the differential equations, Equations (26) and (27), are as follows:
end constraint (hinged-hinged, hinged-clamped/clamped-hinged and clamped-clamped); opening
angleα; taper ratio m; and volume ratio κ. The boundary conditions, Equations (29)–(34), were subjected
to the differential equations according to the given end condition, and the frequency parameter Ci
with the mode shape (δ,λ)i were calculated. In order to calculate (δ,λ)i, the differential equations
were numerically integrated by the Runge–Kutta method [24], which is a direct integration method,
and Ci was calculated by the determinant search method enhanced by the Regula–Falsi method [24],
which is a numerical solution method of the nonlinear equation. These kinds of numerical methods
have proven useful in several studies [2,15,20], so detailed descriptions are omitted here.

Before the numerical analysis, convergence analysis was performed to ensure the accuracy of
the numerical solutions. Since the accuracy of numerical solution is influenced by step size ∆θ in the
Runge–Kutta method [24], convergence analysis of Ci was performed for the number of partitions nd
of the arch axis shown below.

nd =
α

∆θ
(35)

The input arch parameters used for convergence analysis are hinged-clamped, square cross-section,
α = 1.5π, m = 1.5 and κ = 0.25. The convergence analysis for the lowest four Ci=1,2,3,4 were conducted
and the results are shown in Figure 5. The convergence of Ci with increasing nd is very stable, and the
reliability of the numerical solutions of this study can be confirmed. The solutions Ci converged from
nd = 50 to nd = 200 within the order of three significant figures (see C3). Then, nd = 100 was used to
calculate Ci in this study.
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To verify the numerical analysis, Table 1 compares the angular frequency ωi in rad/s of this study
and the finite element solution ADINA. The radius of the arch is 1 m and the arch material is steel with
E = 210 GPa and ρ = 7850kg/m3. The depth Da and Dc with the input dimensionless parameters are
listed in the table. As shown in this table, ωi of the two results is very close, implying that the feasibility
of this study could be verified with a maximum error of less than 2.70% and an average error of 1.20%.

Table 1. Comparison of angular frequency ωi between ADINA and this study.

End Condition Geometry of Arch with
Non-Dimensional Parameters

i
Angular Frequency ωi (rad/s)

ADINA This Study

Hinged-hinged Square : Da = 0.1 m and
Dc = 0.2 m (α = 1.2π, m = 0.5, κ = 0.108)

1 443.2 441.0
2 1428.0 1434.5
3 2932.3 2968.5
4 4147.6 4259.5

Hinged-clamped
Uniform cross-section

Square : Da = Dc = 0.2 m
(α = 1.4π, m = 1, κ = 0.176)

1 595.0 591.0
2 1574.3 1584.6
3 3040.8 3045.5
4 4323.9 4363.9

Clamped-clamped Circular : Da = 0.2 m,
Dc = 0.1 m (α = 1.6π, m = 2, κ = 0.0737)

1 375.8 382.4
2 841.1 852.0
3 1513.8 1534.7
4 2313.0 2375.0

4. Numerical Examples and Discussions

Table 2 shows the effect of the rotatory inertia couple T on the frequency parameter Ci. The input
arch parameters are square cross-section, α = 1.5π and m = 1.5. Considering the effect of T,
Ci decreases compared to the case where T is not considered. When considering T in the dynamic
analysis of a structure, the natural frequency decreases since the deformation increases under the
same energy. The effect of T on Ci is greater in the higher order mode than in the lower order
mode. For example, in the clamped-clamped arch, under the same κ = 0.3, the reduction rate
of i = 1 is 0.19% (0.17660/0.17626 = 1.0019), but the larger reduction rate of i = 4 is 0.57%
(0.90445/0.89934 = 1.0057). The effect of T is greater for larger volume ratio than for smaller volume
ratio. In the above clamped-clamped arch, under the same i = 4, the reduction rate of κ = 0.9 is 1.43%
(1.03688/1.02230 = 1.0143), which is larger than the reduction rate 0.57% of κ = 0.3. Therefore,
when a high frequency dynamic load is applied to a tapered horseshoe arch with a large volume ratio,
the influence of T should be considered to accurately analyze the dynamic behavior.
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Table 2. Effect of rotatory inertia couple T on frequency parameter Ci.

End Condition κ T Index *
Frequency Parameter Ci

i=1 i=2 i=3 i=4

Hinged-hinged
0.03

0 0.02628 0.08804 0.18147 0.30340
1 0.02628 0.08799 0.18124 0.30272

0.1
0 0.04794 0.16045 0.33027 0.54985
1 0.04791 0.16014 0.32886 0.54594

Hinged-clamped
0.1

0 0.07270 0.19714 0.37902 0.60448
1 0.07265 0.19674 0.37736 0.60025

0.3
0 0.12521 0.33693 0.64030 0.90027
1 0.12497 0.33502 0.63295 0.89397

Clamped-clamped
0.3

0 0.17660 0.39766 0.71535 0.90445
1 0.17626 0.39542 0.70764 0.89934

0.9
0 0.29736 0.62380 1.00197 1.03688
1 0.29611 0.61738 0.99030 1.02230

* T index = 0: without rotatory inertia couple; index = 1: with.

Table 3 shows the effect of the cross-sectional shape on frequency parameter Ci. The input arch
parameters are α = 1.5π, m = 1.5 and κ = 0.25 with the rotatory inertia couple. The Ci of the square
cross-section is larger than those of the circular cross-section, regardless of the end condition and mode
number. Its effect is larger in lower mode than in higher mode. For example, in clamped-clamped end
conditions, the effect is 2.28% (0.16130/0.15771 = 1.0228) for the first mode, while the effect is 0.081%
(0.87560/0.86855 = 1.0081) for the fourth mode.

Table 3. Effect of cross-sectional shape on frequency parameter Ci ∗

End Condition Cross-Section
Frequency Paramete Ci

i=1 i=2 i=3 i=4

Hinged-hinged Square 0.07555 0.25147 0.51290 0.82607
Circular 0.07384 0.24586 0.50174 0.81136

Hinged-clamped Square 0.11427 0.30716 0.58290 0.86026
Circular 0.11171 0.30045 0.57070 0.84994

Clamped-clamped Square 0.16130 0.36368 0.65471 0.87560
Circular 0.15771 0.35597 0.64163 0.86855

* See text for the input arch parameters.

In the following discussion, the effect of T was included in numerical examples. Figure 6 shows
the natural frequency curve of the frequency parameter Ci according to the change in the opening
angle α. The input arch parameters are square cross-section, m = 1.5 and κ = 0.25. As α increases,
Ci decreases. As α increases, the span length of the arch decreases, while the height increases and
structural stiffness of the arch decreases, resulting in a decrease in Ci. In the hinged-hinged arch,
when the arch becomes a complete circle of α = 2π marked with •, Ci vanishes, i.e., Ci = 0 and the
arch becomes unstable. The hinged-hinged arch with α = 2π means that the whole structure becomes
‘unstructured’ because it cannot resist the lateral load. This is consistent with the results of the free
vibrations of elastica arch [17]. Meanwhile, the hinged-clamped and clamped-clamped arches with
α = 2π can maintain a stable state because it can resist the lateral load at the clamped end. For the
hinged-hinged and clamped-clamped arch, there is a double frequency in the coordinates marked
with N. It is a well-known phenomenon that the mode shape can be changed from symmetric to
anti-symmetric or vice versa [19–21]. On the other hand, in the case of the hinged-clamped arch,
there is no double frequency because the end condition is asymmetric. This is also a well-known fact,
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a so-called veering phenomenon, that in the case of an asymmetric arch, the two frequency curves are
merely approached, but not met as shown in this figure [25].
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Figure 6. Ci versus α curves.

Figure 7 shows the natural frequency curve of the frequency parameter Ci according to the change
in the taper ratio m. The input arch parameters are square cross-section, α = 1.5π and κ = 0.25. As m
increases, Ci increases. If m is larger, the tapered arch is more rigid at the two support ends comparing
the mid-arc. Thus, when constructing a horseshoe arch, it is necessary to place more rigidity on the
two supporting ends a and b than the mid-arc c, and a structurally more rigid arch can be realized.
As shown in this figure, if m is less than the critical taper ratio mcr marked with N, the lowest frequency
parameter C1 vanishes and the arch become unstable. For example, the hinged-hinged arch with m
less than mcr = 0.180 cannot resist from the dynamic load and becomes unstable.

Figure 8 shows the natural frequency curve of the frequency parameter Ci according to the change
in the volume ratio κ. The input arch parameters are square cross-section, α = 1.5π and m = 1.5. As κ
increases, Ci increases. As κ increases, the structural stiffness of the arch decreases, so Ci decreases.
In the small region of κ, the spacing between natural frequency curves is narrow, implying that the
effect of κ on Ci has a greater effect on smaller κ. Further, in such a narrow band, the arch under
dynamic load is likely to cause resonance. From this point of view, from the design stage, it is important
to determine the suitable κ value of the arch by using the natural frequency curve such as Figure 8 to
have the natural frequency that can avoid resonance.
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Figure 7. Ci versus m curves.

Figure 9 shows an example of mode shapes of the hinged-hinged, hinged-clamped and
clamped-clamped arch. The input arch parameters are circular cross-section, α = 1.5π, m = 1.5
and κ = 0.25. In the numerical analysis of differential equations, the radial and tangential deformations
(δ,λ) are calculated separately. Since these two deformation vectors are perpendicular to each other as
shown in Figure 2, the two deformations are represented as one synthesized mode shape. In the Ci
values shown in this figure, the end constraint has a great influence on Ci computations. There is no
significant difference between the three mode shapes except for the presence or absence of angular
rotation at both ends and a and b of the arch (see boundary conditions, Equations (29)–(34)). That is,
there are no significant differences of the nodal points and the maximum amplitude positions between
the three mode shapes. The position of the maximum deformation shown in Figure 9 is important
for structural safety, and when exposed to dynamic loads over a long period of time, there is a high
possibility of fatigue fracture due to resonance, so a periodic soundness check is required at the
maximum amplitude positions of the horseshoe arch.
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5. Concluding Remarks

This study deals with free vibration analyses of the tapered horseshoe circular arch with constant
volume. By applying the equilibrium equations of the arch element acting on the stress resultants
and inertia forces, this study finds the differential equations governing free vibrations of such an
arch. In the governing equations, the effects of the cross-sectional shape, taper ratio, and volume
ratio are simultaneously included. These differential equations were numerically solved using the
direct integration method such as the Runge–Kutta method and the determinant search method
enhanced by the Regula–Falsi method, and the natural frequencies with the mode shapes were
calculated. Convergence analysis was performed for effective integration in the Runge–Kutta
scheme. For validation purposes, the natural frequencies of this study and the finite element
ADINA were compared, which agreed well with each other. With the comprehensive numerical
examples, the parametric studies affecting the natural frequencies and mode shapes were conducted
and discussed extensively: the rotatory inertia couple lowers the frequency parameter and has a greater
effect on the low mode and large volume ratio; the frequency parameter of the square cross-section is
greater than the frequency parameter of the circular cross-section; the frequency parameter decreases
with increasing opening angle, while the frequency parameter increases with increasing taper and
volume ratios.
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