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Abstract: The Jaya algorithm is arguably one of the fastest-emerging metaheuristics amongst the
newest members of the evolutionary computation family. The present paper proposes a new,
improved Jaya algorithm by modifying the update strategies of the best and the worst members
in the population. Simulation results on a twelve-function benchmark test-suite and a real-world
problem show that the proposed strategy produces results that are better and faster in the majority of
cases. Statistical tests of significance are used to validate the performance improvement.
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1. Introduction

For optimization of computationally hard problems and of problems that are mathematically
intractable, machine-learning-based strategies such as evolutionary computation (EC) [1] and
artificial neural network (ANN) [2] have seen significant success in numerous application areas.
The “no-free-lunch theorem” [3] tells us that, theoretically, over all possible optimization functions,
all algorithms perform equally well. In practice, however, for specific problems (particularly,
hard problems), the need for better and still better algorithms (and heuristics) remains.

The Jaya algorithm [4], one of the newest members of the evolutionary computation family, has
seen remarkable success across a wide variety of applications in continuous optimization. Jaya’s
success can arguably be attributed to the following two features: (a) it requires very few algorithm
parameters, and (b) compared to most of its EC-cousins, Jaya is extremely simple to implement. A user
of the Jaya algorithm has to decide on suitable values for only two parameters—population size and
the number of iterations (generations). Because any population-based algorithm (or heuristic) must
have a population size, and because the user of any algorithm/heuristic must have an idea of when
to stop the process, it can be argued that the population size and the stopping condition are two
fundamental attributes of any population-based heuristic and that the Jaya algorithm is parameterless.
In this paper, we present an algorithm that improves over the Jaya algorithm by modifying the search
strategy, without compromising on the above two qualities. The improved algorithm uses new update
strategies for the best and the worst members in the population. The comparative performance of Jaya
and the proposed method is studied empirically on a twelve-function benchmark test-suite as well as
on a real-world problem from fuel cell stack design optimization. The improvement in performance
afforded by the proposed algorithm is validated with statistical tests of significance. (Technically,
Jaya is not an algorithm; it is a heuristic. However, following common practice in the evolutionary
computation community, we continue to refer to it as an algorithm in this paper.)

The remainder of this paper is organized as follows. A very brief outline of some of the most
interesting previous work on the Jaya algorithm is presented in Section 2. Section 3 presents the
proposed algorithm. Simulation results and statistical tests for performance analysis are presented in
Section 4. Finally, conclusions are drawn in Section 5.
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2. A Brief Overview of Previous Work on Jaya

A variation of the standard Jaya algorithm is presented in the multi-team perturbation-guiding
Jaya (MTPG-Jaya) [5] where several “teams” explore the search space, with the same population being
used by each team, while the “perturbations” governing the progression of the teams are different.
The MTPG-Jaya was applied to the layout optimization problem of a wind farm. The Jaya algorithm
was originally designed for continuous (real-valued) optimization, and most of Jaya’s applications to
date have been in the continuous domain. A binary version of Jaya, however, was proposed in [6],
where the authors borrowed (from [7]) the idea of combining particle swarm optimization with angle
modulation and adapted that idea for Jaya. The binary Jaya was applied to feature selection in [6].
Modifications to the standard Jaya algorithm include a self-adaptive multi-population-based Jaya
algorithm that was applied to entropy generation minimization of a plate-fin heat exchanger [8],
a multi-objective Jaya algorithm that was applied to waterjet machining process optimization [9],
and a hybrid parallel Jaya algorithm for a multi-core environment [10]. Application areas of the Jaya
algorithm have included such diverse fields as pathological brain detection systems [11], flow-shop
scheduling [12], maximum power point tracking problems in photovoltaic systems [13], identification
and monitoring of electroencephalogram-based brain-computer interface for motor imagery tasks [14],
and traffic signal control [15].

3. The Proposed Algorithm

The new algorithm is presented in Algorithm 1 where, without loss of generality, an array
representation with conventional indexed access is assumed for the members (individuals) of a
population. At each generation, we examine the individuals in the population one by one, in sequence,
conditionally replacing each with a newly created individual. A new individual is created from the
current individual by using the best individual, the worst individual, and two random numbers—each
chosen uniformly randomly in (0, 1]—per problem parameter (variable). The generation of the new
individual xnew, given the current individual xcurrent, is described by the following equation (xnew,
xcurrent, xbest and xworst are each a d-component vector):

xnew
i = xcurrent

i + rt,i,1(xbest
i − |xcurrent

i |)− rt,i,2(xworst
i − |xcurrent

i |)

where xi, i = 1 to d, represent the d parameters (variables) to be optimized, rt,i,1 and rt,i,2 are each a
random number in (0.0, 1.0], t indicates the iteration (generation) number, xbest and xworst represent,
respectively, the best and the worst individual in the population at the time of the creation of xnew

from xcurrent. When xnew
i falls outside its problem-specified lower or upper bound, it is clamped at the

appropriate bound.
In the original Jaya algorithm, the new individual replaces the current individual only if it (the

former) is better than the latter. The present algorithm, however, accepts the new individual if it is at
least as good as (that is, has a fitness value that is equal or better—either smaller (for minimization) or
larger (for maximization)—than that of) the current individual.

The original Jaya updates the population-best and the population-worst individuals once every
generation. Algorithm 1, however, checks to see if xbest needs to be updated, and performs the update
if needed, after every single replacement of the existing individual. A similar approach is adopted
for updating xworst, but in this case, an update is needed only for the case when the existing (current)
individual is the worst one; this is because a replacement is guaranteed never to cause the objective
(cost) function to be worse.
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Algorithm 1: Pseudocode of the improved algorithm.

1 initialize the population;
2 find the best and the worst individuals in the population, and initialize bestIndex to the index

of the best individual and worstIndex to the index of the worst individual;
3 while a pre-determined stopping condition is not satisfied do
4 set the parameters (the r’s), independently of one another, to random values between 0.0

and 1.0;
5 for each individual in the population starting from the first index do
6 create a new individual using the current individual, the individual at bestIndex,

the individual at worstIndex, and the random parameters;
7 if the new individual is at least as good as the current individual then
8 replace the current individual with the new individual;
9 if the current individual is better than the individual at bestIndex then

10 update bestIndex to set it to the current index;
11 end
12 if the current individual’s index is the same as worstIndex then
13 find the worst individual in the population and set worstIndex to the index of

the worst individual;
14 end
15 end
16 end
17 end

The simultaneous presence in the population of more than one best (or worst) individual (clones
of the same individual and/or different genotypes with the same phenotype) presents no problem for
the new algorithm, because the computation of the best (or worst) is always over the entire population,
that is, it is never done incrementally.

We improve upon Jaya by changing the policies of updating the best and the worst members and
also by changing the criterion used to accept a new member as a replacement of an existing member.
The motivation for the first pair of changes comes from the argument that an early availability and
use of the best and worst individuals should lead to an earlier creation of better individuals; this is
similar to the idea behind the “steady-state“ operation of genetic algorithms [16,17]. The logic behind
the second change is to try to avoid the “plateau problem”.

We call the proposed algorithm semi-steady-state Jaya or SJaya.

4. Simulation Results

For studying the comparative performance of Jaya and SJaya, we use a benchmark test-suite
comprising a dozen well-known test functions from the literature and a real-world problem of fuel cell
stack design optimization. All of the thirteen problems involve minimization of the objective function
value (fitness). The following metrics [18] are used for performance comparison:

• Best-of-run fitness: the best (lowest), mean, and standard deviation of the best-of-run fitness
values from 30 (or 100 [Section 4.3]) runs;

• The number of fitness evaluations (FirstHitEvals) needed to reach a specified fitness value for the
first time in a run: the best (fewest), mean, and standard deviation of these numbers from 30 (or
100 [Section 4.3]) runs;

• Success count: the number of runs (out of the thirty or the hundred) in which the specified fitness
level is reached (it is possible that the specified level is never reached with the given population
size and the given number of generations).
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The best-of-run fitness provides a measure of the quality of the solution, while the FirstHitEvals
metric expresses how fast the algorithm is able to find a solution of a given quality. The two metrics
are thus complementary to each other.

4.1. Results on the Benchmark Test-Suite

The benchmark suite (Table 1) [4,19] includes functions of a wide variety of features
and levels of problem difficulty, including unimodal/multimodal, separable/non-separable,
continuous/discontinuous, differentiable/non-differentiable, and convex/non-convex functions.

For each test function, the population size and the number of generations were chosen based
loosely on the problem size (number of variables) and the problem difficulty. No systematic tuning of
the population size (PopSize) or the number of generations (Gens) was attempted; the values used in
this study were found to be reasonably good across a majority of the problems after a few initial trials.
Two PopSize-Gens combinations were used for each function (see Table 2). For d = 30, population
sizes of 100 and 150 were used, with the corresponding number of generations being 3000 and 5000.
For d = 2, the population sizes were 15 and 20, with 5000 generations used for both. Thirty independent
runs of each of the two algorithms were executed for each PopSize-Gens combination on each of the
test functions. A run is considered a success if it manages to produce at least one solution with a fitness
within a distance of ±1.0× 10−6 from the true (known) global optimum, and the number of fitness
evaluations corresponding to the first appearance of such a solution is recorded as the FirstHitEvals of
that run.

Tables 2 and 3 show the results of SJaya and Jaya, respectively, on the 12-function test-suite. In all
the tables in this paper, results are rounded at the fourth decimal place.

From Tables 2 and 3 we see that SJaya produces superior results than Jaya on all the
metrics. Specifically,

• On the best of best-of-runs metric, out of 24 cases, SJaya outperforms Jaya in 12 cases and is
outperformed by Jaya in 2 cases, with 10 cases resulting in ties. In a few cases (such as the values
of 3.0000 of the best of best-of-run fitnesses and of the mean of best-of-run fitnesses corresponding
to the Goldstein-Price function for both SJaya and Jaya), differences exist at the fifth or a later
decimal position but do not show in Tables 2 and 3.

• On the mean of best-of-runs metric, SJaya is the winner with win-loss-tie figures of 18-1-5.
• The success counts are higher (5-1-18) for SJaya.
• SJaya outperforms Jaya 19-1-4 on the best FirstHitEvals metric.
• On the mean FirstHitEvals metric, SJaya outperforms Jaya 19-1-4.
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Table 1. Benchmark functions.

Name Definition Dim. Global Minimum Bounds

Ackley f (x1, · · · , xn) = −20exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

(
1
n ∑n

i=1 cos(2πxi)
)
+ 20 + e 30

f (x∗) = 0
x∗ = (0, · · · , 0) −10 ≤ xi ≤ 10

Rosenbrock f (x1, · · · , xn) = ∑n−1
i=1 [100(xi+1 − x2

i )
2 + (1− xi)

2] 30
f (x∗) = 0
x∗ = (1, · · · , 1) −10 ≤ xi ≤ 10

Chung-Reynolds f (x1, · · · , xn) =
(
∑n

i=1 x2
i
)2 30

f (x∗) = 0
x∗ = (0, · · · , 0) −10 ≤ xi ≤ 10

Step f (x1, · · · , xn) = ∑n
i=1b|xi|c 30

f (x∗) = 0
x∗i ∈ (−1, 1) −100 ≤ xi ≤ 100

Alpine-1 f (x1, · · · , xn) = ∑n
i=1 |xi sin(xi) + 0.1xi| 30

f (x∗) = 0
x∗ = (0, · · · , 0) −10 ≤ xi ≤ 10

SumSquares f (x1, · · · , xn) = ∑n
i=1 ix2

i 30
f (x∗) = 0
x∗ = (0, · · · , 0) −10 ≤ xi ≤ 10

Sphere f (x1, · · · , xn) = ∑n
i=1 x2

i 30
f (x∗) = 0
x∗ = (0, · · · , 0) −100 ≤ xi ≤ 100

Bohachevsky-3 f (x1, x2) = x2
1 + 2x2

2 − 0.3 cos(3πx1 + 4πx2) + 0.3 2
f (x∗) = 0
x∗ = (0, 0) −100 ≤ x1, x2 ≤ 100

Bohachevsky-2 f (x1, x2) = x2
1 + 2x2

2 − 0.3 cos(3πx1) cos(4πx2) + 0.3 2
f (x∗) = 0
x∗ = (0, 0) −100 ≤ x1, x2 ≤ 100

Bartels Conn f (x1, x2) = |x2
1 + x2

2 + x1x2|+ | sin(x1)|+ | cos(x2)| 2
f (x∗) = 1
x∗ = (0, 0) −500 ≤ x1, x2 ≤ 500

Goldstein-Price
f (x1, x2) =

[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)
]
×[

30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)
] 2

f (x∗) = 3
x∗ = (0,−1) −2 ≤ x1, x2 ≤ 2

Matyas f (x1, x2) = 0.26(x2
1 + x2

2)− 0.48x1x2 2
f (x∗) = 0
x∗ = (0, 0) −10 ≤ x1, x2 ≤ 10
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Table 2. Results of SJaya on the 12-function test-suite (each row corresponds to 30 independent runs). Most numbers are shown with rounding at the fourth place after
the decimal.

Function PopSize Gens
Best-of-Run Fitness FirstHitEvals

Best Mean Std Dev Success Best Mean Std Dev

Ackley 100 3000 7.4347× 10−10 1.8090× 10−9 9.1920× 10−10 30 209,499 217,209.4333 4885.3830
150 5000 1.0938× 10−12 2.7097× 10−12 7.9283× 10−13 30 407,146 426,516.7667 7522.8400

Rosenbrock 100 3000 0.0015 25.4532 28.8764 0 — — —
150 5000 0.0001 17.0565 26.9145 0 — — —

Chu-Rey 100 3000 5.0261× 10−37 1.1798× 10−35 3.0313× 10−35 30 77,035 84,420.6 3325.8495
150 5000 1.2691× 10−48 4.9288× 10−47 6.4529× 10−47 30 153,594 162,497.0667 3651.8492

Step 100 3000 0.0 0.0667 0.2494 28 39004 43,895.0357 5319.6538
150 5000 0.0 0.0 0.0 30 68,099 73,154.9333 3639.5311

Alpine-1 100 3000 0.0247 6.8245 6.4345 0 — — —
150 5000 0.0137 4.5976 5.7499 0 — — —

SumSquares 100 3000 6.1724× 10−18 3.8440× 10−17 4.0234× 10−17 30 138,646 144,029.4333 3771.9204
150 5000 1.3309× 10−23 7.2599× 10−23 5.5164× 10−23 30 266,653 280,539.4333 6344.5950

Sphere 100 3000 5.6616× 10−17 2.9297× 10−16 2.6115× 10−16 30 152,133 157,149.2333 2954.1983
150 5000 1.3981× 10−22 6.1597× 10−22 4.1632× 10−22 30 298,554 306,880.0667 4927.0814

Boha-3 15 5000 0.0 0.0 0.0 30 882 1322.4667 308.4498
20 5000 0.0 0.0 0.0 30 1182 1838.7 333.6645

Boha-2 15 5000 0.0 0.0 0.0 30 718 1005.3333 268.2153
20 5000 0.0 0.0 0.0 30 890 1443.3667 222.3957

Bartels 15 5000 1.0 1.0 0.0 30 893 1061.0 90.1706
20 5000 1.0 1.0 0.0 30 1128 1523.4333 124.4451

Gold-Pr 15 5000 3.0000 3.0000 1.0820× 10−5 6 28,320 55,587.5 14,917.3860
20 5000 3.0000 3.0000 1.8986× 10−5 5 58,442 82,977.0 14,243.2530

Matyas 15 5000 0.0 3.0482× 10−35 1.6415× 10−34 30 471 856.1 169.1497
20 5000 0.0 5.6005× 10−123 3.0160× 10−122 30 692 1152.7333 264.9280
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Table 3. Results of Jaya on the 12-function test-suite (each row corresponds to 30 independent runs). Most numbers are shown with rounding at the fourth place after
the decimal.

Function PopSize Gens
Best-of-Run Fitness FirstHitEvals

Best Mean Std Dev Success Best Mean Std Dev

Ackley 100 3000 4.2232× 10−6 7.6506× 10−6 1.9595× 10−6 0 — — —
150 5000 3.9148× 10−8 8.2624× 10−8 2.5913× 10−8 30 620,422 651,813.4333 11,801.5819

Rosenbrock 100 3000 0.0310 26.8113 27.5200 0 — — —
150 5000 0.0521 37.0939 32.6063 0 — — —

Chu-Rey 100 3000 6.1251× 10−23 2.2695× 10−21 2.7432× 10−21 30 122,216 130,083.4667 3283.9261
150 5000 1.1798× 10−30 1.1626× 10−29 1.2429× 10−29 30 230,733 245,191.6 6139.8179

Step 100 3000 0.0 0.0 0.0 30 82115 88940.6 4467.5422
150 5000 0.0 0.0 0.0 30 154,374 166,652.7667 6105.3915

Alpine-1 100 3000 0.0240 9.7502 5.6913 0 — — —
150 5000 0.0381 6.2610 5.6690 0 — — —

SumSquares 100 3000 1.5297× 10−10 4.5700× 10−10 2.2292× 10−10 30 213,427 222,775.1667 3910.2976
150 5000 4.9038× 10−15 3.7103× 10−14 1.7512× 10−14 30 406,918 421,195.1 7055.2581

Sphere 100 3000 1.2410× 10−9 4.6650× 10−9 2.4779× 10−9 30 231,137 245,599.1667 4874.0277
150 5000 8.6939× 10−14 3.6152× 10−13 2.3875× 10−13 30 441,574 464,684.3667 10,701.7923

Boha-3 15 5000 0.0 0.0301 0.1624 29 947 1368.5517 257.8614
20 5000 0.0 0.0 0.0 30 1461 1877.5333 275.5259

Boha-2 15 5000 0.0 0.0347 0.1866 29 809 1102.7931 158.0520
20 5000 0.0 0.0 0.0 30 1160 1590.8667 243.5768

Bartels 15 5000 1.0 1.0 0.0 30 995 1238.7667 91.8632
20 5000 1.0 1.0 0.0 30 1375 1684.0667 152.4998

Gold-Pr 15 5000 3.0000 3.0000 1.4203× 10−5 5 36,981 57,683.4 12,921.8507
20 5000 3.0000 3.0000 1.7344× 10−5 3 37,550 52,030.0 15,017.5414

Matyas 15 5000 0.0 1.6173× 10−11 8.7092× 10−11 30 572 906.9667 261.1821
20 5000 0.0 1.9566× 10−55 1.0537× 10−54 30 761 1286.0 264.6156
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Table 4 presents the t-scores and one-tailed p-values from Smith–Satterthwaite tests (Welch’s
tests) [20] (corresponding to unequal population variances) run on the data in Tables 2 and 3 for
examining whether or not the difference between the means of Jaya and SJaya (for the best-of-run
fitnesses metric and, separately, for the FirstHitEvals metric) is significant. Using the subscripts 1 and
2 for Jaya and SJaya respectively, we obtain the test statistic as a t-score given by

t =
x̄1 − x̄2 − 0√

s2
1

n1
+

s2
2

n2

,

and the degrees of freedom of the t-distribution (this t-distribution is used to approximate the sampling
distribution of the difference between the two means) as(

s2
1

n1
+

s2
2

n2

)2

(s2
1/n1)

2

n1 − 1
+

(s2
2/n2)

2

n2 − 1

,

where the symbols x̄, s and n represent mean, standard deviation and sample size, respectively. Note
that even though 30 runs were executed in each case, the sample sizes are not always 30 (because
not all runs were successful in all cases); for instance, for the Goldstein-Price function (executed with
parameters PopSize = 15 and Gens = 5000), n1 = n2 = 30 for the mean best-of-run fitness calculation,
whereas n1 = 5 and n2 = 6 for the mean FirstHitEvals computation. (To avoid division by zero,
we cannot use the above formulas when both s1 and s2 are zeros or when any one of n1 and n2 is unity.)

Using α = 0.05 as the level of significance, we see from the results in Table 4 that on the best-of-run
metric, out of a total of 19 cases, ten cases produce a positive t statistic that corresponds to a one-tailed
p-value less than α (the p-values were obtained with t-tests from scipy.stats). Thus the null hypothesis
x̄1 = x̄2 must be rejected in favor of x̄1 > x̄2 for those ten cases. The 19 cases include a lone negative t
score, but the corresponding p-value is greater than 0.05. On the FirstHitEvals metric, we have a total
of 19 cases (the two occurrences of 19 between best-of-run and FirstHitEvals is a coincidence), of which
fourteen have a positive t with a p-value less than 0.05, and a single case has a negative t-score with a
less-than-0.05 p-value.

The statistical tests in Table 4 provide performance comparison separately on each of the twelve
functions (using two different algorithm parameter settings for each function). A measure of the
combined performance on the 12 functions taken together can be obtained using a paired-sample
Wilcoxon signed rank test on the 12-function suite. The results of this test for each of the two metrics
are presented in Table 5 where the null hypothesis is that the Jaya mean and the SJaya mean are
identical and the alternate hypothesis is that the former is larger than the latter. The second column
in Table 5 shows the number of zero differences between SJaya and Jaya; n represents the effective
number of samples obtained by ignoring the samples, if any, corresponding to zero differences (e.g., n is
24− 5 = 19 for the mean of best-of-run fitness metric); W is the test statistic obtained as the minimum
of W+ and W−; α represents the level of significance (a value of 0.05 is used here); and the critical W
for a given n and for α = 0.05 is obtained from standard statistical tables. The W statistic is seen to be
less than the critical W. The mean of W is

mean =
n(n + 1)

4
,

and its standard deviation is given by

std dev =

√
n(n + 1)(2n + 1)

24
,
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and, arguing that the sample size n is large enough for the discrete distribution of the W statistic to be
approximated by a normal distribution, we obtain the z-statistic as

z =
W −mean

std dev
.

The one-tailed p-value corresponding to the above z-statistic is obtained from standard tables of
the normal distribution.

From the results in Tables 4 and 5 we conclude that at the 5% significance level, SJaya is better
than Jaya on the benchmark test-set.

Table 4. Smith–Satterthwaite tests: Jaya vs. SJaya on the benchmark functions.

Function PopSize Gens
Best-of-Run Fitness FirstHitEvals

t-Statistic p-Value t-Statistic p-Value

Ackley 100 3000 21.3800 1.3355× 10−19 — —
150 5000 17.4636 3.1280× 10−17 88.1720 3.7508× 10−56

Rosenbrock 100 3000 0.1865 0.4264 — —
150 5000 2.5958 0.0060 — —

Chu-Rey 100 3000 4.5314 4.6542× 10−5 53.5110 2.3156× 10−51

150 5000 5.1236 8.9954× 10−6 63.4031 1.1548× 10−47

Step 100 3000 −1.4639 0.0770 34.7952 1.9600× 10−38

150 5000 — — 72.0480 2.6003× 10−50

Alpine-1 100 3000 1.8655 0.0336 — —
150 5000 1.1283 0.1319 — —

SumSquares 100 3000 11.2285 2.2360× 10−12 79.3863 4.1571× 10−61

150 5000 11.6045 1.0180× 10−12 81.1938 3.3244× 10−61

Sphere 100 3000 10.3116 1.6374× 10−11 85.0016 4.2333× 10−54

150 5000 8.2938 1.9158× 10−9 73.3631 3.1842× 10−45

Boha-3 15 5000 1.0171 0.1588 0.6234 0.2678
20 5000 — — 0.4915 0.3125

Boha-2 15 5000 1.0171 0.1588 1.7071 0.0472
20 5000 — — 2.4494 0.0087

Bartels 15 5000 — — 7.5641 1.6549× 10−10

20 5000 — — 4.4699 1.9412× 10−5

Gold-Pr 15 5000 1.0676 0.1452 0.2496 0.4042
20 5000 0.7407 0.2309 −2.8765 0.0217

Matyas 15 5000 1.0171 0.1588 0.8954 0.1875
20 5000 1.0171 0.1588 1.9494 0.0280
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Table 5. Wilcoxon signed rank tests: Jaya vs. SJaya on the 12-function benchmark suite.

Metric #zero Diff. n W+ W− W α Critical W Mean of W Std. Dev. of W z-Statistic Left Tail p

Mean of Best-of-Run Fitnesses 5 19 175 15 15 0.05 53 95 24.8495 −3.2194 0.0006
Mean of FirstHitEvals 0 19 180 10 10 0.05 53 95 24.8495 −3.4206 0.0003
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4.2. Results on Fuel Cell Stack Design Optimization

A proton exchange membrane fuel cell (PEMFC) [21,22] stack design optimization problem [23–25]
is considered here. This problem has been investigated in the fuel cell literature as a problem of practical
importance for which the global minimum is believed to be mathematically intractable [24]. This is
a constrained optimization problem where the task is to minimize the cost of building a PEMFC
stack that meets specific requirements. The objective (cost) function is a function of three variables
Np, Ns, Acell:

cost = Kn × Np × Ns + Kdiff ×
∣∣∣Vload,rated −Vload,mpp

∣∣∣+ Ka × Acell + P ,

where Ns is the number of cells connected in series in each group; Np is the number of groups
connected in parallel; Acell is the cell area; Vload,r is the rated (given) terminal voltage of the stack;
Vload,mpp represents the output voltage at the maximum power point of the stack; Pload,r is the rated
(given) output power of the stack; Pload,max is the maximum output power of the stack; Kn, Kdiff, Ka are
pre-determined constants [24] used to adjust the relative importance of the different components of
the cost function; and P represents a penalty term given by

P =

{
0 if Pload,max ≥ Pload,r;

c(Pload,r − Pload,max) otherwise.

Pload,max and Vload,mpp are obtained numerically from the following equation by iterating over
the load current iload,d (recall that power is voltage times current), using a step size of iload = 1 mA:

Vst = Ns

{
ENernst − A ln

(
iload,d/Np + in,d

i0,d

)
+ B ln

(
1−

iload,d/Np + in,d

ilimit,d

)
− (iload,d/Np + in,d)ra

}
,

where Vst is the stack voltage, ENernst is the Nernst e.m.f., A and B are constants known from
electrochemistry, ra is the area-specific resistance, and the i’s represent different types of current
densities (the subscript d is used to indicate density) in the cell [21,26]. The lower and upper bounds
of Ns, Np and Acell are provided in Table 6 and the numerical values of the parameters in Table 7.

Table 6. Bounds of the design variables [23].

Variable Lower Bound Upper Bound

Ns 1 50
Np 1 50
Acell (cm2) 10 400

Table 7. PEMFC parameters and coefficients.

Parameter Value
Vload,r 12 V
Pload,r 200 W
Kn 0.5
Kdiff 10
Ka 0.001
c 200
ra 98.0×10−6 KΩ cm2

ilimit,d 129 mA/cm2

i0,d 0.21 mA/cm2

in,d 1.26 mA/cm2

A 0.05 V
B 0.08 V
ENernst 1.04 V
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Tables 8 and 9 present results of the two algorithms on the fuel cell problem; 30 independent runs
are executed for each of 13 PopSize-Gens combinations for either algorithm. For this problem, the
success of a run is defined as the production of at least one solution with a fitness of 13.62 or lower [24].
For 12 of the 13 cases in Table 8, the mean of the best-of-run costs is better for SJaya than for Jaya.
Furthermore, on the mean FirstHitEvals metric, SJaya outperforms Jaya 10 out of the 13 times. Again,
SJaya beats Jaya 9-3-1 on the success count metric. Results of Smith–Satterthwaite tests (Table 10) show
that for the best-of-run cost metric, the t-statistic is positive in all cases but one, but the one-tailed
p-values are not less than 0.05. Thus we do not have a strong reason at the 5% significance level to
reject the null hypothesis that the two means of the best-of-run costs are equal. For the best-of-run
metric, the single negative t-score in Table 10 corresponds to a p-value that is close to 0.5, indicating
no reason to consider Jaya to be significantly better than SJaya on that case. The FirstHitEvals metric
shows SJaya to be significantly better (at the 5% level) in two of the 12 cases, the other cases being ties
at that level of significance.

Table 8. Results of SJaya on the fuel cell problem (each row corresponds to 30 independent runs). Most
numbers are shown with rounding at the fourth place after the decimal.

PopSize Gens
Best-of-Run Fitness FirstHitEvals

Best Mean Std Dev Success Best Mean Std Dev

20 10 13.6162 13.6885 0.0759 3 127 172.0 31.9479
15 20 13.6161 13.6255 0.0190 21 128 254.8095 47.8187
20 20 13.6159 13.6376 0.0523 21 127 310.0 71.8338
20 25 13.6159 13.6302 0.0484 25 127 335.8 89.0222
25 40 13.6157 13.6164 0.0023 29 89 510.6897 166.4118
40 25 13.6158 13.6184 0.0044 25 291 654.24 213.3435
20 100 13.6157 13.6158 8.7813× 10−5 30 127 436.1333 304.5035

100 20 13.6159 13.6195 0.0029 20 463 1491.5 437.1448
30 100 13.6157 13.6158 0.0002 30 370 585.4667 230.4605

100 30 13.6158 13.6179 0.0022 25 463 1675.08 550.3110
40 100 13.6157 13.6160 0.0006 30 291 778.9333 385.4906

100 40 13.6157 13.6174 0.0022 26 463 1737.1154 622.4179
100 100 13.6157 13.6162 0.0010 29 463 2155.3103 1395.2800

Table 9. Results of Jaya on the fuel cell problem (each row corresponds to 30 independent runs). Most
numbers are shown with rounding at the fourth place after the decimal.

PopSize Gens
Best-of-Run Fitness FirstHitEvals

Best Mean Std Dev Success Best Mean Std Dev

20 10 13.6213 13.7026 0.0713 0 — —
15 20 13.6160 13.6374 0.0342 13 124 241.8462 45.9378
20 20 13.6163 13.6367 0.0483 20 298 363.65 31.7636
20 25 13.6160 13.6312 0.0463 25 298 382.36 48.3867
25 40 13.6158 13.6298 0.0520 28 144 540.6071 144.4191
40 25 13.6158 13.6229 0.0236 26 250 739.5 170.0993
20 100 13.6157 13.6182 0.0126 29 298 454.6897 236.2226

100 20 13.6160 13.7947 0.9338 14 907 1595.2857 360.2738
30 100 13.6157 15.1444 8.2308 29 368 740.6207 546.2285

100 30 13.6159 13.7910 0.9344 25 907 1922.44 492.2595
40 100 13.6157 13.6202 0.0237 29 250 787.5517 222.2544

100 40 13.6157 13.7907 0.9345 26 907 1972.7308 544.2687
100 100 13.6157 13.7900 0.9346 27 907 2118.4074 914.8884
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Table 10. Smith–Satterthwaite tests: Jaya vs. Sjaya on the fuel cell problem.

PopSize Gens
Best-of-Run Fitness FirstHitEvals

t-Statistic p-Value t-Statistic p-Value

20 10 0.7429 0.2303 — —
15 20 1.6673 0.0512 −0.7872 0.2191
20 20 −0.0627 0.4751 3.1175 0.0021
20 25 0.0865 0.4657 2.2976 0.0137
25 40 1.4068 0.0850 0.7256 0.2356
40 25 1.0202 0.1578 1.5742 0.0612
20 100 1.0461 0.1521 0.2620 0.3971

100 20 1.0279 0.1562 0.7564 0.2276
30 100 1.0172 0.1587 1.4129 0.0830

100 30 1.0147 0.1593 1.6751 0.0503
40 100 0.9838 0.1667 0.1056 0.4582

100 40 1.0158 0.1591 1.4530 0.0763
100 100 1.0190 0.1583 −0.1178 0.4534

Table 11 shows results of Wilcoxon signed-rank tests for the PEMFC problem. For each of the two
metrics, the W-statistic is less than the critical W. Moreover, the one-tailed p-value computed from
the z-score is less than 0.05 for both the metrics, thereby establishing a significant (at the 5% level)
superiority of SJaya over Jaya on the fuel cell problem.

4.3. Performance Comparison with the Algorithm of Chakraborty’s (2019)

For a head-to-head comparison of SJaya with the Jaya variant developed in [24], 100 independent
runs of SJaya are executed and the results summarized in Table 12. A comparison of the mean of
100 best-of-run costs (Table 12 in this paper and Table 14 in [24]) shows that the present approach’s
mean value is lower in five of the 13 cases and higher in the remaining eight. The difference, however,
is not statistically significant, as seen from the results (Table 13) of the Wilcoxon signed rank test which
shows no clear advantage for either algorithm on this metric (the one-tailed p-value is much closer to
0.5 than to zero). On the success count metric (Table 15 in [24]), SJaya outperforms the method of [24]
in six cases and is outperformed in four cases, with three cases being ties. On the mean FirstHitEvals
metric (Table 15 in [24]), SJaya wins in 11 out of the 13 cases, with the difference seen to be statistically
significant at the 5% level (the p-value in Table 13 is 0.0044). Thus we conclude that SJaya is quite
competitive with the method of [24].
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Table 11. Wilcoxon signed rank tests: Jaya vs. Sjaya on the fuel cell problem.

Metric #zero Diff. n W+ W− W α Critical W Mean of W Std. Dev. of W z-Statistic Left Tail p

Mean of Best-of-Run Fitnesses 0 13 90 1 1 0.05 21 45.5 14.3091 −3.1099 0.0009
Mean of FirstHitEvals 0 12 71 7 7 0.05 17 39 12.7475 −2.5103 0.0060

Table 12. Results of SJaya on the fuel cell problem (each row corresponds to 100 independent runs). Most numbers are shown with rounding at the fourth place after
the decimal.

PopSize Gens
Best-of-Run Fitness FirstHitEvals

Best Mean Std Dev Success Best Mean Std Dev

20 10 13.6162 13.6847 0.0677 6 127 184.0 29.2461
15 20 13.6159 14.6855 10.5138 64 116 249.6094 48.8686
20 20 13.6159 13.6276 0.0336 69 127 322.4203 62.6424
20 25 13.6158 13.6225 0.0278 86 127 348.9767 78.3951
25 40 13.6157 13.6176 0.0136 97 89 486.6598 149.3530
40 25 13.6157 13.6203 0.0143 81 267 693.6543 189.3033
20 100 13.6157 13.6159 0.0005 100 127 422.63 236.1126

100 20 13.6159 13.6203 0.0049 61 365 1422.6230 434.6534
30 100 13.6157 13.6159 0.0006 99 175 581.5859 200.6175

100 30 13.6157 13.6177 0.0022 86 365 1723.3721 616.9152
40 100 13.6157 13.6159 0.0004 100 267 829.13 383.5640

100 40 13.6157 13.6170 0.0019 92 365 1839.6522 743.6137
100 100 13.6157 13.6162 0.0010 99 365 2136.2727 1335.2097

Table 13. Wilcoxon signed rank tests: Algorithm of [24] vs. Sjaya on the fuel cell problem.

Metric #zero Diff. n W+ W− W α Critical W Mean of W Std. Dev. of W z-Statistic Left Tail p

Mean of Best-of-Run Fitnesses 1 12 42 36 36 0.05 17 39 12.7476 −0.2353 0.4070
Mean of FirstHitEvals 0 13 83 8 8 0.05 21 45.5 14.3091 −2.6207 0.0044
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4.4. Performance Comparison with Other Heuristics

Because the performance of EC heuristics depends—often dramatically—on parameter settings,
empirical performance comparison of SJaya with other heuristics may not mean much unless either
those competing heuristics require no other parameters except the population size and the number of
generations, or the comparative study is based on runs with a very large number of parameter setting
combinations. Most stochastic heuristics in the EC family, however, employ additional parameters
(probability of crossover [27], probability of mutation [28], strategy parameters [1,29], to name a few).
A proper head-to-head comparison of SJaya with non-Jaya methods is therefore difficult. Table 14
presents the results of a brief comparative study of SJaya with four well-known EC algorithms, namely
genetic algorithm (GA) [1], particle swarm optimization (PSO) [30], differential evolution (DE) [29]
and artificial bee colony algorithm (ABC) [31]. The metrics used for comparison are the mean and the
standard deviation of the best-of-run solutions of 30 independent runs for each problem, with each
run executed for 500,000 evaluations (population size = 50 and number of generations = 10,000).
(The population size and the number of generations used to produce the data in Table 14 are different
from those used earlier in this paper; and, for Ackley and Rosenbrock, the bounds are not the same as
the corresponding ones in Table 1.) The non-SJaya results in this table are taken from [31]. These results
show that SJaya is competitive with the other methods.

Table 14. Comparative performance: mean and standard deviation of 30 best-of-run fitnesses. For each
function, the top row shows the means and the bottom row the standard deviations (results are rounded
at the fourth decimal place).

Function Dim. Bounds Glob. min. GA PSO DE ABC SJaya

Ackley 30 (−32, 32) 0 14.6718 0.1646 0 0 0.2723
0.178141 0.493867 0 0 0.5022

Rosenbrock 30 (−30, 30) 0 1.96 ×105 15.0886 18.2039 0.0888 0.0009
3.85 ×104 24.1702 5.0362 0.0774 0.0046

Step 30 (−100, 100) 0 1.17 ×103 0 0 0 0.2333
76.5615 0 0 0 0.4955

SumSquares 30 (−10, 10) 0 1.48 ×102 0 0 0 0
12.4093 0 0 0 0

Sphere 30 (−100, 100) 0 1.11 ×103 0 0 0 0
74.2145 0 0 0 0

Boha-3 2 (−100, 100) 0 0 0 0 0 0
0 0 0 0 0

Boha-2 2 (−100, 100) 0 0.0683 0 0 0 0
0.0782 0 0 0 0

Goldstein-Price 2 (−2, 2) 3 5.2506 3 3 3 3
5.8701 0 0 0 0

Matyas 2 (−10, 10) 0 0 0 0 0 0
0 0 0 0 0

5. Conclusions

This paper presented an improvement to the Jaya algorithm by introducing new update policies
in the search process. The usefulness of the present approach is that, unlike most other improvements
to Jaya reported in the literature, our strategy does not require the introduction of any additional
parameter. It retains both the features that the original Jaya is famous for, namely “parameterlessness”
and simplicity, while providing performance that is statistically significantly better (in terms of the
solution quality) and/or faster (in terms of the speed of finding a near-optimal solution) than that
produced by Jaya.
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