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Abstract: Given a video containing a person, the video-based person re-identification (Re-ID)
task aims to identify the same person from videos captured under different cameras. How to
embed spatial-temporal information of a video into its feature representation is a crucial challenge.
Most existing methods have failed to make full use of the relationship between frames during
feature extraction. In this work, we propose a plug-and-play non-local attention module (NLAM)
for frame-level feature extraction. NLAM, based on global spatial attention and channel attention,
helps the network to determine the location of the person in each frame. Besides, we propose a non-local
temporal pooling (NLTP) method used for temporal features’ aggregation, which can effectively capture
long-range and global dependencies among the frames of the video. Our model obtained impressive
results on different datasets compared to the state-of-the-art methods. In particular, it achieved the
rank-1 accuracy of 86.3% on the MARS (Motion Analysis and Re-identification Set) dataset without
re-ranking, which is 1.4% higher than the state-of-the-art way. On the DukeMTMC-VideoReID
(Duke Multi-Target Multi-Camera Video Reidentification) dataset, our method also had an excellent
performance of 95% rank-1 accuracy and 94.5% mAP (mean Average Precision).

Keywords: person Re-ID; video; non-local; spatial-temporal attention

1. Introduction

Person re-identification (Re-ID) aims to use computer vision algorithms for cross-camera tracking,
which means finding the same person under different cameras. Person Re-ID intends to identify a probe
person in a camera by matching his/her images or videos and has many practical applications, including
intelligent surveillance and criminal investigation. Person Re-ID can be divided into image-based and
video-based person Re-ID. Image-based person Re-ID has made significant progress in terms of both
solutions [1,2] and the construction of large benchmark datasets [3,4]. Recently, more work [5–7] has
begun to focus on video-based person Re-ID because of the richer information contained in video
data as compared to image data. By extracting more spatial and temporal cues from video data,
video person Re-ID has the potential to solve some of the challenges faced in image person Re-ID,
e.g., the visual blocking of pedestrians as they walk.

In the video-based person Re-ID task, the video-based dataset is composed of many consequent
sequences of images rather than static images. Here, we need to declare that the video is composed
of several sequences, and a sequence includes several frames of images in this article. The critical
challenge is to make use of the temporal clues embedded in the sequences. Some previous work [5–7]
has typically divided this task into two steps. In the first step, image-based convolutional neural
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networks (CNNs) are used to extract features from each frame in the video to obtain frame-level
features. The second step is to aggregate the features based on each frame to form a video-level
feature that can represent the entire video. The distance between the video-level features of the input
video is generally used to indicate whether the video contains the same target person or not. Ideally,
the probability of including the same person in a video is higher if the distance between two video-level
features is smaller and lower for two videos that are further apart.

The main problem with video-based person Re-ID now lies in the second step, which is temporal
feature aggregation. Depending on their ways of temporal feature learning, existing work can be
roughly divided into the following three categories:

1. Extraction of dynamic features from other CNN inputs, e.g., by optical flux [8].
2. Extracting spatial and temporal features by regarding the video as 3-D data, e.g., via 3-D CNN [9,10].
3. Learning robust person representations by temporally aggregating frame-level features,

e.g., through recurrent neural networks (RNNs) [5,8,11] and temporal pooling or weights [7,12,13].

The third category to which our work belongs is currently dominant in video-based person Re-ID
tasks. Most existing methods represent the frame of the video as a feature map and then use an
average or maximum pooling across frames to obtain a representation of the input video. However,
this approach tends to fail when occlusions are frequent in the video because it processes all images in
the video with equal importance. In order to distill the relevant information from a video and weaken
the influence of noisy samples, some works have learned the temporal attention score of each frame in
a given video by using recurrent neural networks (RNNs) to solve this problem. The limitation of the
RNN method is that it requires sequential calculations to be performed. As a result, it is difficult to
compute in parallel and make full use of the graphics processing unit (GPU) hardware. Additionally,
a single recurrent operation could only calculate the dependency between the current and the latest
frame. In general, it is difficult for RNNs to capture long-range dependencies.

In this paper, we propose a non-local spatial and temporal attention network for video-based
person Re-ID. We improve the non-local neural network [14] and apply it to the video-based person
Re-ID task with excellent results. The novelty of our approach is that we use non-local neural networks
to compute spatial and temporal dependencies over long ranges among video frames. The way each
attention score is calculated depends on all the frames in the video, as shown in Figure 1, not just on the
adjacent frames. This method gives a better video-level feature representation, making the video look
more like a whole rather than merely a few images. Additionally, we apply the improved non-local
neural network to CNN networks at different levels, so that the features at different levels obtain
a better performance. We performed both frame-level feature extraction, and temporal aggregation
using the non-local attention mechanism. Our main contributions can be summarized in three-fold:

1. We propose a plug-and-play non-local attention module (NLAM). It can be inserted into CNN
networks for frame-level feature extraction. In the video-based person Re-ID task, the spatial
position of the target person in the image can be determined more accurately.

2. We propose a non-local temporal pooling (NLTP) method for temporal feature aggregation. We use
it to replace the single average or maximum pooling, which could not order the video frames.

3. We verified the effectiveness of our two methods on different datasets.



Appl. Sci. 2020, 10, 5385 3 of 14

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 15 
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directly finds relevant clues in frames to support its prediction. The ‘blue’ arrow represents the 
similarity between the first frame and the remaining frames, and the ‘green’, ‘red’, and ‘orange’ 
respectively represent the similarity of the second, third, and fourth frames with the remaining 
frames. 
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in a set of images (gallery images) captured by another non-overlapping camera. Existing methods 
are usually divided into two steps to complete this work: (1) Extract special vectors, and (2) calculate 
the similarity of the two feature vectors. With the continuous development of the CNN network [15–
19], learning image features from the CNN network has replaced hand-made features [3,20–22] to 
represent person images. After extracting features from the image, the metric distance is used to 
calculate the similarity/dissimilarity between the features of the two images. Ideally, if two images 
contain the same person, the distance should be smaller than two images that do not contain the same 
person. As suggested by Zheng et al. [23], the calculation of feature vectors can be used for 
discriminant learning and metric learning. Discriminant learning uses cross-entropy loss [17,19] to 
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Figure 1. Some examples of the application of non-local attention in our network. The starting
point of the arrow represents one frame in a video, and the picture pointed by the arrow represents
another frame of the video. For brevity, we only selected four frames in the figure to show how our
model directly finds relevant clues in frames to support its prediction. The ‘blue’ arrow represents
the similarity between the first frame and the remaining frames, and the ‘green’, ‘red’, and ‘orange’
respectively represent the similarity of the second, third, and fourth frames with the remaining frames.

2. Related Works

Person Re-ID has always been a hot field in computer vision. In this section, we review the
development of video-based person Re-ID, from image-based person Re-ID to video-based person
Re-ID. Additionally, we introduced a video-based person Re-ID pipeline.

2.1. Image-Based Person Re-ID

The purpose of image-based person Re-ID is to match a given probe image to the same person in
a set of images (gallery images) captured by another non-overlapping camera. Existing methods are
usually divided into two steps to complete this work: (1) Extract special vectors, and (2) calculate the
similarity of the two feature vectors. With the continuous development of the CNN network [15–19],
learning image features from the CNN network has replaced hand-made features [3,20–22] to represent
person images. After extracting features from the image, the metric distance is used to calculate the
similarity/dissimilarity between the features of the two images. Ideally, if two images contain the
same person, the distance should be smaller than two images that do not contain the same person.
As suggested by Zheng et al. [23], the calculation of feature vectors can be used for discriminant learning
and metric learning. Discriminant learning uses cross-entropy loss [17,19] to learn the deep features
used for identity classification. Metric learning uses triple loss to increase the distance among classes
and reduce the distance within classes. In our work, we use both loss functions to train our network.

2.2. Video-Based Person Re-ID

Video-based person Re-ID can be seen as an extension of image-based person Re-ID efforts.
Compared to static images, video can provide richer information for person Re-ID tasks because it
contains both spatial and temporal information. Video-based person Re-ID is also closer to the real
world for better application. So, in recent years, video-based person Re-ID has also attracted the
attention of more researchers. Some early work [5,24,25] considered frame-level similarities to identify
the person. Recently, deep learning methods have been applied to gain more discriminative video-level
features. They first trained the CNN network to extract image features and then aggregated them into
video features through average or maximum pooling. Mc Laughlin et al. [5] proposed a method for
extracting time information using RNN and the temporal pooling layer. Following [5], Xu et al. [7]
proposed a spatial and temporal attention pooling network (STAPN), which extracts more robust



Appl. Sci. 2020, 10, 5385 4 of 14

features by calculating attention in the spatial and temporal dimensions. Li et al. [13] proposed a new
spatial-temporal attention model to distinguish different body parts automatically.

2.3. A Video-Based Person Re-ID Pipeline

In our article, we follow the state-of-the-art structure that has been summarized by previous
researchers and is the most commonly used base structure for video-based person Re-ID works.
It mainly consists of two parts: (1) Feature extraction: This part can extract meaningful abstract spatial
representations from video frames through pre-trained ImageNet Models [26,27], such as residual
network (ResNet50 [26]) and squeeze-and-excitation residual network (SE-ResNet50 [27]). (2) Temporal
feature aggregation: In this part, the frame-level features extracted in the previous step are aggregated
into video-level features. Gao et al. [28] summarized that the feature aggregation method could be
roughly divided into three types: Average temporal pooling (TPavg) operation, temporal attention
(TA), and the RNN layer. Subramaniam et al. [29] compared different feature extraction methods
and temporal feature aggregation methods. The comparison results are shown in Table 1. Two main
conclusions can be drawn from the comparison results: First, the choice of the backbone network will
affect the overall performance of the system, and SE-ResNet50 has a better performance than ResNet50.
Second, TPavg is superior to attention/RNN. Therefore, we chose SE-Resnet50 + TPavg as the baseline
of our work.

Table 1. Comparison of different basic frameworks on MARS (Motion Analysis and Re-identification
Set) [30] and DukeMTMC-VideoReID (Duke Multi-Target Multi-Camera Video Reidentification) [31].
TPavg, TA, RNN stand for average temporal pooling, temporal attention, and recurrent convolution
network, respectively. The best results are shown in bold.

Feature Temporal
Aggregation

MARS DukeMTMC-VideoReID

Extractor mAP R1 R5 R20 mAP R1 R5 R20

ResNet50 TPavg 75.8 83.1 92.8 96.8 92.9 93.6 99.0 99.7
ResNet50 TA 76.7 83.3 93.8 97.4 93.2 93.9 98.9 99.5
ResNet50 RNN 73.8 81.6 92.8 96.7 88.1 88.7 97.6 99.3

SE-ResNet50 TPavg 78.1 84.0 95.2 97.1 93.5 93.7 99.0 99.7
SE-ResNet50 TA 77.7 84.2 94.7 97.4 93.1 94.2 99.0 99.7
SE-ResNet50 RNN 75.7 83.1 93.6 96.0 92.4 94.0 98.4 99.1

3. Our Approach

In this part, we accurately describe our network structure and the innovations we propose in
the network. In Section 3.1, we explain the role of our proposed NLAM in the frame-level feature
extraction process. In Section 3.2, we take one sequence of a video as an example to analyze our
proposed NLTP method. In Section 3.3, we explain the loss function we adopted. The structure of the
entire network is shown in Figure 2:
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Figure 2. Our overall network architecture. X means the input video; F represents the
frame-level features after passing through the feature extractor; F′ refers to the resulting video-level
representation. NLAM = Non-Local Attention Module; NLTP = Non-Local Temporal Pooling;
FC = Fully Connected layer.

Our overall network architecture is shown in Figure 2. Similar to a standard video-based
Re-ID framework, it mainly includes two parts: Feature extractor and temporal feature aggregation.
The difference is that we insert the non-local attention module (NLAM) we proposed in the feature
extractor, and we adopt the non-local temporal pooling (NLTP) method we proposed in the temporal
feature aggregation part. NLAM is used to insert between CNN blocks for spatial attention and channel
attention extraction. It helps CNN to determine the location of the target person in each frame and
reduce the interference caused by occlusion in the image. NLTP improves on the previous temporal
pooling method by acquiring temporal attention in a non-local way in the first step and embedding
temporal features into video-level features through pooling in the second step. The primary purpose of
NLTP is to give a higher weight to frames that are more representative of the entire sequence, thereby
obtaining a more robust video-level representation.

3.1. Frame-Level Feature Extraction

In the process of frame-level feature extraction, we use the most modern image recognition
network architecture SE-ResNet50 as a feature extractor in video-based Re-ID. SE-ResNet50
contains five consecutive CNN blocks (one initial convolution block, followed by four successive
squeeze-and-excitation (SE) residual blocks). We argue that a single CNN is not sufficient for feature
extraction of an image. With the addition of an attentional mechanism, CNN can extract more critical
spatial information from the image, similar to human visual attention. We add NLAM between CNN
blocks to obtain a better frame-level feature representation. The overall structure of NLAM is shown in
Figure 3.
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Figure 3. Non-local attention module (NLAM) inserted between the Lth and L + 1th blocks of
CNN. NLAM mainly includes two parts: (a) NLAM spatial attention; (b) NLAM channel attention.
X represents the feature maps output by the Lth CNN block; AS expresses the feature maps after
NLAM spatial attention; AC indicates the feature maps after NLAM channel attention as the
input of the L + 1th block. ‘⊕’ denotes the addition operation based on elementwise. ‘⊕’ denotes
matrix multiplication. The green box represents 1 × 1 convolution. GMP = Global Maximum Pooling,
GAP = Global Average Pooling, MLP = Multi-Layer Perceptron.
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In the NLAM spatial attention part, we aim to perform spatial attention calculation on the feature
maps output by the CNN network in the previous layer. Given an input feature tensor X ∈ RN×C×H×W ,
it is obtained from a sequence of N feature maps of size C×H×W. We aim to exchange their spatial
information between all frames in the sequence to determine a better position of the target person
in the image and reduce the interference of occlusion between frames. Let xi be sampled from X.
First, we reduce the dimension of the input feature channel to C′ through three 1× 1 convolution blocks
(a, b, d) to obtain A, B, D ∈ RC′×NHW . The transposition of A is multiplied by B to obtain the attention
score of all positions x j at position xi by using embedded Gaussian instantiation. Then, the weighted
average M ∈ RNHW×NHW of the attention scores of all positions x j is used to calculate the response yi
of each position xi. Finally, Y is recovered to the same size as the input X by 1× 1 convolution, and the
recovered result is added to the original feature tensor X to obtain the final result AS. NLAM spatial
attention can be formulated as follow:

yi =
1∑

∀ j ea(xi)
Tb(x j)

∑
∀ j

ea(xi)
Tb(x j)d

(
x j

)
, (1)

AS = W0(Y) + X. (2)

Equation (1) represents the process of non-local operations, and the overall spatial attention is
formulated as Equation (2). Here, i, j = [1, NHW] refers to all locations of each feature map and
in all frames. The convolution operation is expressed by a, b, and c. W0 recovers Y to the same
size as the input tensor X. The idea contained in the non-local operation is that when extracting
features at a specific location in a particular time, the network should consider the spatial and temporal
dependencies within the sequence by attending on the non-local context.

In the NLAM channel attention part, we pass the feature maps AS outputted from Figure 3a
through global max pooling (GMP) and global average pooling (GAP) based on the width and
height, and then through a multi-layer perceptron (MLP) to get the channel importance of each frame.
The obtained channel importance vectors of all N frames are respectively subjected to maximum pooling
and average pooling in each dimension to estimate the global channel importance. Then, the features
of maximum pooling and average pooling output are subjected to the elementwise addition operation
followed by sigmoid activation to obtain the final channel attention feature maps. Then, the features of
maximum pooling and average pooling output are subjected to the elementwise addition operation
followed by sigmoid activation to obtain the final channel attention feature maps. Finally, the channel
attention feature maps and input feature maps are elementwise multiplied to generate the final output
AC of NLAM, which is used as the input of the L + 1th layer CNN network. The channel attention map
is computed as follows:

AC = σ
{
Max[W2δ(W1(GMP(AS)))] + Avg[W2δ(W1(GAP(AS)))]

}
, (3)

where σ refers to the sigmoid activation function. AS stands for NLAM spatial attention output.
AC refers to the final output of NLAM channel attention and the final result of NLAM. GMP and GAP
are the same as Figure 3b, which represents global maximum pooling and global average pooling;
note that the MLP weights, W1 and W2, are shared for both inputs and the δ (Tanh) activation function
is followed by W1.

3.2. Temporal Aggregation

In video-based person Re-ID, a key challenge is how to combine frame-level features into
video-level features to express the temporal features in the video better. In previous works, researchers
generally used temporal pooling to perform temporal feature aggregation. Table 1 makes a detailed
comparison of three different temporal aggregation layers (TPavg, TA, RNN), from which we can see
that temporal pooling shows the best performance indicators. However, temporal pooling naturally
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ignores the temporal relationship between frames. The calculation of each attention score in non-local
attention depends on all the frames in the sequence, so it can capture the remote dependencies in the
deep neural network well.

In this part, we propose a non-local temporal pooling (NLTP) method for temporal feature
aggregation. The specific architecture is shown in Figure 4. Our proposed method aims to use
the non-local attention mechanism to frame-level feature sequences in the temporal dimension.
Our proposed method aims to use the non-local attention mechanism for the extracted frame-level
features to perform feature aggregation in the temporal dimension. Enhancing the frame-to-frame
relationship allows frames with a closer relevance to obtain a higher weight, resulting in a more reliable
person Re-ID model. The NLTP operation we proposed is as follows:

F′ = Avg[W(Y) + F], (4)

where F represents the frame-level features of a sequence extracted through Section 3.1. Equation (4)
represents the entire NLTP process, and the result Y after the non-local operation is restored to the
same scale as the input F through W (1 × 1 Conv) and elementwise addition is performed with F.
Finally, the average pooling operation is performed in the temporal dimension to obtain the final
output result F′ of NLTP.
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Figure 4. Description of non-local temporal attention (NLTP). The size of the input feature maps F is
N×C×H×W (N represents the number of frames included in the input video, C is the number of
channels of each frame feature map, and H and W indicate the height and width of the input feature
map, respectively). The symbol ‘T’ stands for the transpose function. ‘1/N’ is used for normalization.
‘⊕’ denotes the addition operation based on elementwise. ‘⊗’ denotes matrix multiplication. The yellow
box defines four different 1× 1 convolution blocks. We used the dot product method to calculate the
attention score and generate an N×N attention matrix.

We assume that a continuous image sequence contains N frames, and fi(i ∈ {1, 2, . . . , N}) is one
frame of N frames of the video. We use the function h

(
xi, x j

)
∈ RN×N to calculate the scale value

between the current frame xi and each frame x j( j ∈ {1, 2, . . . , N}). There are many different choices
for the pairwise function h

(
xi, x j

)
[14]. In our work, we use the “dot product” pairwise function to
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compute the correlation between frames. Recall that each frame is represented as a C×H×W tensor
(see Section 3.1). We apply a 1× 1 convolution on fi to reduce its channel dimension to C′ = C/2 as a
way to reduce computation. Then, fi is reshaped to a vector. We use θ( fi), ϕ

(
f j
)
, and g

(
f j
)

to indicate

three such vectors. The pairwise function is then defined as the point product between θ(xi) and ϕ
(
x j

)
.

The pairwise function is defined as:

h( fi, f j)
= θ(xi)

Tϕ
(
x j

)
. (5)

Then, we multiply the output of the pairwise function by 1/N as the normalization operation.
We call the normalized result the “attention score” to indicate the influence of all frames f j on fi. We then
compute a “weighted frame feature” yi using the attention scores and frames g

(
f j
)
. The weighted

frame feature yi is as follows:

yi =
1
N

∑
∀ j

h
(

fi, f j
)
g
(

f j
)
. (6)

Note that since yi is computed based on all frames in the video, yi implicitly contains
information of the frame fi and all the other frames f j in the video. To obtain the video-level
feature, we simply perform temporal pooling over these weighted frame features and original frame
features. Since the weighted frame features already capture long-range dependencies in the video,
the output (e.g., video-level feature) of the temporal pooling will implicitly capture rich long-range
dependencies in the video.

3.3. Loss Function

We use Softmax cross-entropy loss and batch triplet loss as a loss function for our work.
On the one hand, these two loss functions are used for a fair comparison with the baseline.
On the other hand, because these two loss functions are proved to be our work is very suitable.
We randomly select P identity samples and randomly select K sequences (each sequence contains
N frames) from each identity sample to form a batch. Therefore, a batch contains P ×K sequences.
The overall loss function can be described as:

L = Lso f tmax + Ltriplet, (7)

where Lsoftmax and Ltriplet refer to the cross-entropy loss and batch triplet loss, respectively.
The cross-entropy loss function encourages the network to classify the P ×K sequences to the

correct identities. The cross-entropy loss function is defined as follows:

Lso f tmax = −
1
B

B∑
i=1

pi log qi, (8)

where pi and qi are the groundtruth identity and the prediction of sample i. B represents all sequences
in a batch.

Batch triplet loss is generally used to reduce the intra-class distance between each sequence and
to increase the inter-class distance. The training instances contain an anchor, a positive instance, and a
negative instance. The positive instance belongs to the same class as the anchor, and the negative
instance belongs to a different class than the anchor. Let

{
fIA , fIP , fIN

}
be the video-level descriptors

of three different sequences, where IA, IP, and IN are the anchor, positive, and negative examples,
respectively. The triplet loss function is defined as:

Ltriplet =
B∑

i=1

[
m + D

(
fIA , fIP

)
−D

(
fIA , fIN

)]
+

, (9)



Appl. Sci. 2020, 10, 5385 9 of 14

where m is the margin between positive and negative samples, and D(i, j) indicates the distance
function between two video-level descriptors i, j. B represents all sequences in a batch, and I represents
the Ith sequence in a batch.

The Softmax cross-entropy loss function follows the fully connected (FC) layer for probabilities
obtained for the identities. The batch triplet loss is applied to the video-level descriptors to
backpropagate the gradients.

4. Experiment

In this part, we introduce the datasets used in the training process, the evaluation method used
after the training is completed, and some parameter settings throughout the experiment. Finally,
our experimental results are listed and explained.

4.1. Datasets and Evaluation

We evaluated the proposed model on two commonly used video-based person Re-ID datasets:
MARS, DukeMTMC-VideoReID.

MARS: The MARS [30] dataset is an extended version of the Market1501 [3] dataset and is also the
first large-scale video-based dataset. Since all bounding boxes and tracks are automatically generated,
it contains disruption terms, and each identification may contain multiple tracks. It is the largest
video-based person Re-ID dataset with 1261 identities and 20,478 videos, with multiple frames per
person captured across six non-overlapping camera views. Among the total identities, about half of
the identities are used for training, and the other half are used for testing. Additionally, the MARS
dataset includes 3248 identities (disjoint with the train and test set) that are used as distractors.

DukeMTMC-VideoReID: The DukeMTMCVideoReID [31] is a subset of the DukeMTMC
multicamera dataset [32], which was collected on an outdoor scenario with varying viewpoints,
illuminations, backgrounds, and occlusions using eight synchronized cameras. The dataset contains
1404 identities for training and testing and 408 identities as distractors. In total, there are 2196 videos
for training and 2636 videos for testing. Each video contains person images sampled every 12 frames.
During testing, a video for each ID is used as the query, and the remaining videos are placed in
the gallery.

In Table 2, a detailed comparison of the two datasets MARS and DukeMTMC-VideoReID is shown
from the following aspects:

• The total number of people included;
• The number of people used for training;
• The number of people used for testing;
• The number of people used as distractors;
• The total number of videos contained in the dataset; and
• The number of cameras used in data collection.

Table 2. Comparison of MARS and DukeMTMC-VideoReID, Duke = DukeMTMC-VideoReID dataset.

Dataset Identity Train Test Distractor Video Camera

MARS [30] 1261 625 636 3248 20478 6
Duke [31] 1404 702 702 408 4832 8

We used the same evaluation indicators as those used in the literature [12,13,30,33]:
CMC (cumulative matching characteristics) and mAP (mean average precision). CMC refers to the
probability of finding the correct identity among the first k matches based on the retrieval ability of the
algorithm. We chose to use CMC when only one gallery instance exists for every identity. We tested the
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probability of rank-1, rank-5, and rank-20. The mAP metric is used when there are multiple instances
of the same identity in the gallery.

4.2. Implementation Details

The proposed method was implemented using the PyTorch framework [34]. During training,
each sequence consists of N = 8 frames, which is somewhat different from the baseline, and the video
frames are resized to 256× 128. It should be noted that during training, we used a random approach
to obtain N frames from the video to form a sequence as input. In testing, we split the video into
several sequences of length N in temporal order. The network was trained using the Adam optimizer.
The batch size was set to 32, and if the total memory usage was over the GPU memory limit, the
batch size was reduced accordingly to the maximum possible extent. The learning rate was initialized
to 0.0001, while the learning rate decreased as the number of epochs increased with the parameter
γ = 0.1. The margin of triple loss was m = 0.3. We trained the network for 800 epochs, and the

learning rate was multiplied by 0.1 after every 200 epochs.

4.3. Result

In our experiments, first, every video of the person was divided into multiple sequences containing
N frames, then each sequence was passed through the network to obtain sequence-level features,
and finally, the sequence-level features were averaged to obtain a video-level descriptor. We used the L2

distance to calculate CMC and mAP. The following is a comparative analysis of some experimental data:
Location of the NLAM within the network: In the first step, we explored the effect of NLAM at

different locations within the network. We inserted an NLAM layer after one or more feature extraction
CNN blocks to compare their capability. In order to ensure the uniqueness of variables, we used NLTP
as the temporal aggregation layer. The network was trained and tested on two datasets, MARS and
DukeMTMC-VideoReID. The results are shown in Table 3. It can be derived from Table 3 that when we
added a single NLAM layer to the network, the network performed better when inserted into deeper
blocks (e.g., block3, block4, block5). So, we tested the insertion of multiple NLAM layers for the deeper
blocks in Table 4. We found that inserting the NLAM layer after block4 and block5 achieved the best
results. The results are as follows:

Table 3. Evaluation of the effect of inserting a single NLAM layer after different CNN blocks.
The number in the location column represents adding the NLAM layer after this CNN block.

Location
MARS Duke

mAP R1 R5 R20 mAP R1 R5 R20

2 70.6 80.6 92.3 96.3 92.7 94.0 98.8 99.6
3 79.5 85.7 94.8 97.5 93.8 94.7 98.9 99.8
4 79.4 85.8 95.2 97.6 94.0 94.9 99.1 99.9
5 79.5 85.5 95.3 97.5 94.1 95.0 99.0 99.9

Table 4. Evaluation of the effect of inserting a single NLAM layer after different CNN blocks
simultaneously. The number in the location column indicates that the NLAM layer is added after these
CNN blocks. For example, ‘3,4’ represents that an NLAM layer is inserted after the third and fourth
CNN blocks, respectively.

Location
MARS Duke

mAP R1 R5 R20 mAP R1 R5 R20

3,4 79.3 86.1 94.9 97.6 94.0 94.2 98.9 99.8
3,5 79.5 85.3 95.7 97.7 94.0 94.8 99.1 99.9
4,5 79.8 86.3 95.8 97.8 94.5 95.0 99.3 99.9

3,4,5 80.1 86.0 95.5 97.4 94.4 95.1 99.0 99.9
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Different temporal aggregation methods: In order to directly compare the superiority of our
proposed NLTP feature aggregation method, we compared our proposed method with the temporal
pooling method used in the baseline (Table 1). Both experiments were conducted based on using
SE-ResNet50 as the feature extractor and adding the NLAM module after the fourth and fifth CNN
layers to make sure there was only one variable. Table 5 shows the performance evaluation of the
model. Compared with the temporal pooling method, our proposed NLTP method achieved a better
performance. Especially on the MARS dataset, NLTP improved mAP by 0.2% and increased the
accuracy of rank-1 by 0.5%. The specific data are shown in Table 5.

Table 5. Different time feature extraction methods NLTP and TP are compared on the MARS and
DukeMTMC-VideoReID datasets. NLTP = non-local temporal pooling, TP = temporal pooling.

Temporal
Aggregation

MARS Duke

mAP R1 R5 mAP R1 R5

TP 79.6 85.8 95.7 94.1 94.9 99.1
NLTP (ours) 79.8 86.3 95.8 94.5 95.0 99.3

Effect of different sequence lengths (N): In this step, we studied the impact of the different number
of frames in each sequence on our model. N represents the length of the sequence which is the number
of frames we captured from a video. We compared the performance of the model on the MARS
dataset at N = 2, 4, 8, and the results are shown in Table 6. In order to ensure the uniqueness of the
experimental variables, we conducted an experimental comparison based on the SE-ResNet50 with the
NLAM module added after the fourth and fifth CNN layers as the feature extractor and NLTP as the
temporal aggregation layer. It can be seen from Table 6 that our network achieved a better performance
when N = 8, which is different from the conclusion in our baseline (the model performs best when
N = 4). In the MARS dataset, the accuracy of Rank1 was improved by 0.8% relative to N = 4, and mAP
was improved by 0.9% relative to N = 4. Such a result is also expected because for both the NLAM
and NLTP, we inserted a non-local mechanism. Hence, a more extended sequence is more helpful for
our model to extract long-range dependencies and obtain a more robust video-level feature descriptor.

Table 6. Evaluation of the effect of different sequence lengths N on the MARS dataset on our best
model (SE-RestNet50 + NLAM (4,5) + NLTP). NLAM (4,5) means to add the NLAM layer after the
fourth and fifth CNN blocks.

Sequence
Length

MARS

mAP R1 R5

N = 2 77.1 83.6 94.2
N = 4 78.9 85.5 95.3
N = 8 79.8 86.3 95.8

Comparison with state-of-the-art methods: We compared our method with the state-of-the-art
method [15,22,28,33,35–38] in the MARS and DukeMTMCVideoReID datasets. The results are shown in
Table 7. Our final model selection was tested on the basis of N = 8 using SE-ResNet50 with the NLAM
module added after the fourth and fifth CNN layers as the feature extractor and NLTP as the temporal
aggregation layer. It is observed that our proposed model achieved a good performance. Especially in
the MARS dataset, our method improved by 2.3% on CMC Rank-1 and nearly 1.8% on mAP compared
to our baseline (Table 1). Compared with the state-of-the-art method [29], our method also improved
the CMC Rank-1 by 1.4%. Our model also achieved impressive results in the DukeMTMCVideoReID
dataset. Compared to the baseline (Table 1), our network improved by 0.9% and 1.3% on mAP and
CMC Rank-1, respectively. We attribute this improvement to NLAM in frame-level feature extraction
and NLTP in temporal feature aggregation to better obtain global information, resulting in a more
robust feature representation.
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Table 7. Comparison of our model with our baseline and a series of state-of-the-art models on the two
datasets MARS and DukeMTMCVideoReID. TPavg = average Temporal Pooling. NLAM (4,5) means to
add the NLAM layer after the fourth and fifth CNN blocks.

Network
MARS

mAP R1 R5

JST-RNN [6]
Context Aware Parts [36]

50.7
56.1

70.6
71.8

90.0
86.6

Region QEN [37] 71.1 77.8 88.8
TriNet [15] 67.7 79.8 91.4

Comp. Snippet Sim. [38] 69.4 81.2 92.1
Part-Aligned [33] 72.2 83.0 92.8

RevisitTempPool [28] 76.7 83.3 93.8
[28] + SE-ResNet50 + TPavg (Baseline) 78.1 84.0 95.2
SE-ResNet50 + COSAM + TPavg [29] 79.9 84.9 95.5

SE-ResNet50 + NLAM (4,5) + NLTP (ours) 79.8 86.3 95.8

Network
Duke

mAP R1 R5

ETAP-Net [31]
RevisitTempPool [28]

78.3
93.2

83.6
93.9

94.6
98.9

[28] + SE-ResNet50 + TPavg (Baseline) 93.5 93.7 99.0
SE-ResNet50 + COSAM + TPavg [29] 94.1 95.4 99.3

SE-ResNet50 + NLAM (4,5) + NLTP (ours) 94.5 95.0 99.3

5. Conclusions

Person Re-ID based on video is an important task that has received much attention in recent
years. In this paper, we proposed a non-local attention model (NLAM) that can be added between
CNN blocks for frame-level feature extraction and a non-local temporal pooling (NLTP) method for
temporal feature aggregation. The experiments showed that the two methods we proposed have
shown excellent results on the video-based person Re-ID datasets. Compared with most existing
methods, the advantage of our proposed network architecture (SE-ResNet50 +NLAM (4,5) + NLTP)
is that it better describes the relationship between frames in the video. It focuses on the spatial and
temporal relationships of all frames in a non-local way and gives different weights, thus forming
a more accurate representation of the video. The results performed better compared to state-of-the-art
methods. Our proposed NLAM and NLTP methods can also be applied to other video-based tasks,
such as target tracking and pose estimation.
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