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Abstract: This study proposes a fast correlation-based filter with particle-swarm optimization method.
In FCBF–PSO, the weights of the features selected by the fast correlation-based filter are optimized
and combined with backpropagation neural network as a classifier to identify the faults of induction
motors. Three significant parts were applied to support the FCBF–PSO. First, Hilbert–Huang
transforms were used to analyze the current signals of motor normal, bearing damage, broken rotor
bars and short circuits in stator windings. Second, ReliefF, symmetrical uncertainty and FCBF three
feature-selection methods were applied to select the important features after the feature was captured.
Moreover, the accuracy comparison was performed. Third, particle-swarm optimization (PSO) was
combined to optimize the selected feature weights which were used to obtain the best solution.
The results showed excellent performance of the FCBF–PSO for the induction motor fault classification
such as had fewer feature numbers and better identification ability. In addition, the analyzed of the
induction motor fault in this study was applied with the different operating environments, namely,
SNR = 40 dB, SNR = 30 dB and SNR = 20 dB. The FCBF–PSO proposed by this research could also get
the higher accuracy than typical feature-selection methods of ReliefF, SU and FCBF.

Keywords: fast correlation-based filter (FCBF); back propagation neural network (BPNN);
Hilbert–Huang transform (HHT); motor failure; ReliefF; symmetrical uncertainty (SU); feature
selection; particle-swarm optimization (PSO)

1. Introduction

Nowadays, automated production has become a trend. The number of unmanned factories is
increasing, which means that the stability requirements of machinery and equipment are also increasing.
Therefore, failure analysis of the motor and how to determine the type of failure has become an
important subject. In general, motor failures are divided into two categories: electrical and mechanical
failures. Most mechanical damage occurs in stators, rotors and bearings. Among them, bearing failure
is the most common as shown in Table 1 [1].

Table 1. Proportion of motor failure types.

Failure Type Occurrence Percentage

Bearing damage 45%
Stator damage 35%
Rotor damage 10%

Others damage 10%

In this research, the current signal amount was measured and analyzed under different motor
conditions. Current signal was selected for measurement because it was less affected by vibration and
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temperature signals. It also could be used for online monitoring to understand the motor operating
status in real time. There are several studies focusing on data analysis methods, such as fast Fourier
transform (FFT), wavelet transform (WT) and Hilbert–Huang transform (HHT). However, data of
FFT need periodicity and selection of wavelet functions is difficult for wavelet multianalysis [2,3].
The HHT use empirical mode decomposition (EMD) to decompose the signal and allow intrinsic mode
functions (IMF) to hold unique frequency information that can capture more useful features.

In recent years, measurement signals have been converted by analysis methods and classified by
algorithms such as artificial neural network (ANN) [4], probability neural network (PNN) [5,6] and
backpropagation neural network (BPNN) [7,8]. These have been frequently used in different fields.
For the BPNN, its neurons are set in advance. The number of the neurons and the learning rate are
extremely important. The gradient method is used to find the best solution. Therefore, this research
uses BPNN for discussion.

In [9], Yu, Lei and Liu, Huan proposed a fast correlation-based filter (FCBF) feature-selection
method that uses symmetric uncertainty (SU)—instead information gain (IG)—to determine the
correlation between features and categories, or whether there is redundancy between the features.
This study was done through the calculation of the SU value between features and categories, features
and features, and compared with the results of ReliefF feature selection proposed by Kononeill in
1994. The FCBF is one of the feature-weighting algorithms [10] to address complex and multi-category
situations. The comparison results show that the FCBF method is faster than other methods and obtains
corresponding classification results. Furthermore, if a higher correlation threshold is set, the efficiency
of the FCBF can be further improved. In addition, the FCBF method can obtain a better classifier
recognition result by changing the feature selection order [11].

In this study, particle-swarm optimization (PSO) is applied to optimize the weights of important
features after screening. Inspired by the observation of swarming bird behavior during foraging, it is
used to find the best solution to improve the accuracy (Acc) of the classifier. The PSO is a group-based
optimization search technology, similar to a genetic algorithm (GA) [12]. PSO and GA have ability to
randomly initialize, and both use adaptive values for random search. However, although there is no
guarantee that the best solution can be found, for PSO, it has memory.

2. Signal Analysis and Neural Network

2.1. Hilbert–Huang Transform (HHT)

According to the mathematical theory of modern well-known mathematician Hilbert,
HHT proposed by Norden E. Huang in 1998 [13]. The original signal is decomposed into IMF
by EMD [14,15] to obtain the instantaneous frequency of the analysis data. HHT conversion has a good
analysis effect on the analysis of nonstable or nonlinear signals.

2.1.1. Intrinsic Mode Functions

For any function, if the following two conditions are met, it can be called the IMF:

1. The sum of the number of local maximum and local minima must be the same as or different
from the number of zero-crossings, which means that an extreme value must have a zero-crossing
point behind it.

2. At any time, the upper envelope defined by the local maximum and the lower envelope defined
by the local minimum must be averaged to approach zero.

2.1.2. Empirical Mode Decomposition

EMD is the signal processing before HHT, which decomposes the signal into a combination of
IMF. Due to the HHT’s restrictions on the instantaneous frequency, if the general signal data are
directly used, the complete and correct instantaneous frequency cannot be obtained. The steps of EMD
screening IMF are listed as follows:
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Step 1. Input the original signal x(t) to find the local maximum and local minima. Connect their
values to upper envelope H(t) and lower envelope L(t), respectively;

Step 2. Calculate the average of the upper envelope H(t) and the lower envelope L(t) to get the mean
envelope m(t);

Step 3. Subtract the original signal x(t) from the mean line m(t) to get h(t);
Step 4. Check whether h(t) meets the conditions of the IMF. If not, go back to Step 1 and replace x(t)

with h(t). Rescreen until h(t) meets the conditions and termination of IMF, and store h(t) as
the component Ci of IMF;

Step 5. Subtract the h(t) from original signal x(t) to get R(t);
Step 6. Check whether R(t) is monotonic function or not. If yes, stop decomposition. If not, repeat

Step 1 to Step 5.

Therefore, the original data can be decomposed into n IMFs and a trend function, and we can
perform HHT on the IMF for signal analysis. The flowchart of the EMD is shown in Figure 1.
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Figure 1. Flowchart of EMD.

2.2. Hilbert Transform (HT)

The Hilbert transform (HT) method changes the previous analysis of nonlinear and nonsteady
state. For the combination of IMF, HT is used to obtain the instantaneous amplitude and instantaneous
frequency between signals.

Through the equation, the instantaneous amplitude ai(t) and instantaneous phase angle φi(t) can
be obtained, which can be converted into (1) and (2). By differentiating the time with the instantaneous
phase φi(t), the instantaneous frequency ωi(t) can be obtained, as shown in (3).
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ai(t) =
√

Ci2(t) + Hi2(t) (1)

φi(t) = arctan
[

Hi(t)
Ci(t)

]
(2)

ωi(t) =
dφi(t)

dt
(3)

Then, through these calculations, the distribution including frequency, time, and energy can be
obtained using the instantaneous amplitude ai(t) and the instantaneous frequency ωi(t). This result is
called the Hilbert spectrum.

2.3. Neural Network (NN)

2.3.1. Architecture of NN

Neural network (NN) was proposed by Mcculloch and Pitts in 1943. According to the information
processing method established by the biologic nervous system, the network structure is constructed by
several neurons. Through the interconnection of many neurons, the information transmitted from
the outside world is processed and memorized, so that the corresponding response to the resulting
changes can be facilitated. This includes an input layer, n hidden layers and an output layer.

2.3.2. Back Propagation Neural Network (BPNN)

The neural network (NN) is an operational model, consisting of interconnected neurons. Each node
represents a specific output function, called the activation function [16]. Each connection between
two neurons represents a weight. In the initial stage, the weights and offsets of NN are fixed and
there is no learning ability. In 1986, the BPNN feedforward neural network model was proposed
by Rumelhart et al. [17]. The network refers to the hierarchy of neurons. It consists of input layers,
hidden layers and output layers. As shown in Figure 2, this research used the neural network toolbox
(NNTOOL) in Matlab to create and train cascaded artificial neural networks. In the experiment,
a three-layer feedforward neural network is trained by using the scaled conjugate gradient (SCG)
algorithm. The activation function at the hidden layer is a hyperbolic tangent sigmoid transfer function
and output layers are log-sigmoid transfer functions in the network. The numbers of hidden neurons
applied in the verification are 10. As long as its weight, net-input and transfer function have derivative
functions, the network can be trained. Moreover, the reason to choose SCG is that it is based on
supervised learning and is comparatively faster than the standard backpropagation model [18].
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Figure 2. Feature selection method and application.

3. Feature-Selection Method and Application

To achieve the best performance of the algorithm, the choice of features can be regarded as
an extremely important method. Including in feature selection are feature extraction and feature
construction. Among them, Yu and Liu [9] classified the feature subsets into four categories: (a)
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completely irrelevant and noisy features, (b) weakly relevant and redundant features, (c) weakly
relevant and nonredundant features and (d) strongly relevant features. An optimal subset mostly
contains all the features in the category (c) and (d) as shown in Figure 3. In addition, feature
selection involves two main objectives, which are to maximize the classification accuracy and minimize
the number of features [19]. Strongly relevant features are indispensable for the enhancement of
discriminative power and prediction accuracy. Sometimes, weakly relevant features can be useful
for improving prediction accuracy if a feature is nonredundant and compatible with evaluation
measures [20]. Moreover, the curse of dimensionality of data poses a severe challenge to many existing
feature-selection methods with respect to efficiency and effectiveness [21,22]. The results of this
research also compared various feature selection methods to highlight the efficiency and effectiveness
of FCBF [23,24]. In summary, the main purpose of FCBF–PSO proposed in this study is to quickly
screen out important features and improve accuracy.
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3.1. ReliefF

ReliefF is a feature-weighting algorithm proposed by Kira in 1992. Because it is limited to the
classification of two kinds of data, it has not been applied too much. Hence, Kononeill expanded it in
1994. ReliefF feature selection is proposed to deal with more complex multi-category situations [25].
This method is simple and relatively efficient in execution. This feature-selection method uses
correlations between the calculation characteristics and each fault category by randomly selecting
any sample Ym from its training sample set and through the sample set of the same category as Ym,
taking K of the same category as Ym. The neighboring sample H can be called near-hits. Similarly,
find k-nearest neighbor samples M from the sample set and which are different from the Ym category,
which can be called near-misses. This study sorts the weights of the features from high into low to
facilitate the research. However, a limitation of this algorithm is that it cannot effectively remove
redundant features. the steps of ReliefF are listed as follows:

Step 1. Set feature set F = {F1, F2. . . . . . , FN }, sample category, Y = {Y1, Y2. . . . . . , YN}, sampling times
Z, the number of neighbor samples K, the threshold r of feature weights and the initial weight
of each feature are zero;

Step 2. Randomly select any sample Ym from all the sample types of Y;
Step 3. Extract K adjacent samples of the same category as the sample Ym;
Step 4. K Near-misses are also found from the sample set sums different from the Ym category;
Step 5. Calculate the weight of each feature in (4);
Step 6. Repeat sampling to determine whether the number of sampling times Z was reached. If not,

return to Step 2 and repeat until the maximum number of sampling times is reached;
Step 7. Sorting features according to feature weights from large to small is mean the importance of

the selected features;
Step 8. Calculate the sum of the feature weights of the first n items (expressed as W_all)
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Step 9. If W_all < r then n + 1 and repeat Step 8 until W_all > r stops, where r is 90% of the sum of all
feature weights;

Step 10. Output the feature.

W(N) = W(N) −
K∑

j=1

di f f (N,Y,H j)

ZK

+
∑

C<class(Y)

 p(C)
1−p(class(R))

K∑
j=1

di f f (N, Y, H j(C))


/(ZK)

(4)

Among them, N is the number of features, K is the nearest neighbor sample taken by samples of
different categories, Y is the sample category, Z is the number of samplings and k-nearest neighbors
H j( j = 1, 2, . . .K) in the same sample set of Ym can be found, y1 and y2 in di f f (N, y1, y2) can expressed
as the difference from feature N.

3.2. Symmetrical Uncertainty (SU)

3.2.1. Information Entropy

Information entropy is the average amount of information contained in a message, which was
proposed by Shannon in 1948 [26]. Among them, entropy is generally understood as a measure of
uncertainty rather than certainty. Because the more random the message, the greater the entropy
value, which also explains the probability distribution of the sample in information theory. The reason
for using the logarithm of probability distribution as the information measure is that it is additive.
The formula for entropy is shown in (5). Moreover, the information gain is shown in (6).

H(t) = −k
N∑
i

P(xi)I(xi) (5)

I(X) =
N∑
i

ln P(xi) (6)

Among them, P is the probability mass function of x, k is a proportional constant corresponding
to the selected metric, and i is the information body of x.

3.2.2. Symmetrical Uncertainty Method

For variables, the correlation and degree of influence between them is usually the most direct and
fastest method of judgment. By calculating the correlation coefficient, it is usually possible to quickly
obtain the correlation between the two, but if the correlation is used to select features, it usually results
in a tendency to select features with larger values. Therefore, this research uses the method of SU to
calculate the correlation between features and targets [27]. Calculation of SU is shown in (7).

SU(X, Y) =
I(X)

H(X) + H(Y)
(7)

It can also be explained from the definition that it is a form of information gain normalization.
Nonlinear related information variables defined based on information entropy, used to reconstruct the
degree of correlation between nonlinear random variables. Among them, the symmetric uncertainty
is calculated using the SU value, which effectively corrects the bias about the selected feature.
After normalizing the information gain, the SU value is between 0 and 1. Make the two different
types relatively fair when comparing and explain that when SU(X, Y) = 1, it means that X and Y
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are completely related; otherwise, when SU(X, Y) = 0, it can be judged that X and Y are completely
independent individuals.

3.3. Fast Correlation-Based Filter (FCBF)

This research uses the FCBF feature-selection method, which was proposed in 2004. It uses the SU
value to replace the information gain and performs the calculation of selection [28]. This method can be
divided into two parts. First use the features to sort the SU value of the fault type and use the threshold
setting to delete the less influential features. Then compare the features, as shown in Figure 4. Because
the correlation between features T1 and T2, T4 is higher than the relationship between T2, T4 and
category, consider T2, T4 as redundant features with less correlation and delete them. The advantage
of this method is that you can compare the correlation of features and perform feature selection at the
same time and use features with higher correlation to filter other features that have not been deleted.
In this way, the efficiency of calculation while filtering is achieved and the calculation is accelerated,
and the recognition rate is improved.
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The steps of the process of FCBF feature selection are as follows:

Step 1. Set the data set (xi, ti), i = 1, . . . . . . , N and xi= [x i1, xi2, . . . . . . , xid]
T
∈ Rn, ti= [t i1, ti2, . . . , tim]

T
∈

Rm. Sample category is Y = (y1, y2, . . . yN);
Step 2. Calculate the SU value between each feature ti and category Y;
Step 3. Store the SU(ti, Y) values of each feature and category in descending order into the S set;
Step 4. Calculate the sum of SU in the first n items in the S set (expressed as SU_all);
Step 5. If SU_all < r, then n+1 repeat to Step 4 until S_all > r stops, where r is 90% the sum of the

S set;
Step 6. Remove features after nth from S (Remove features with less influence);
Step 7. Select the feature T1 with the largest SU(ti, Y) value from S as the main feature for selecting;
Step 8. Calculate the SU(ti, T1) of other features and main features in order and the SU(ti, Y) values

between this feature and category Y;
Step 9. If SU(ti, T1) ≥ SU(ti, Y), it is regarded as a redundant feature and deleted from S;
Step 10. The main feature is stored in S’ and deleted from S;
Step 11. Repeat Step 7 to Step 10 until S is the empty set and stop;
Step 12. The output S’ is expressed as an important feature.

Among them, the process of FCBF feature screening is divided into two stages. First, the SU value
is used to distinguish the features, and second, by comparing the correlation between the features and
the features, to distinguish whether the features are redundant. The flowchart of this method is shown
in Figure 5.
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3.4. Application of FCBF–PSO

PSO is a type of macro-heuristic algorithm proposed by James Kennedy and Russell Eberhart in
1995. This algorithm was developed from bird watching and foraging behaviors. The principle is that
multiple randomly distributed particles in space represent individuals in the bird population, and the
position of each particle is assumed to be the best potential solution in the optimization problem.
Since each particle is a feasible solution, the particle will have a fitness value after the operation.
Based on the particle’s own experience and the group’s experience, the flight speed and direction are
updated again and iteratively repeated to make all particles converge to the best solution. As shown in
(8) and (9) [29]. Among them, this study combines the feature-selection method of FCBF to optimize
the weight of the selected features. The acceleration factors C1 and C2 are linearly reduced from 2.5 to
0.5. The weight ω is arbitrarily selected from 0.5 to 1 as in (10). Steps of FCBF–PSO is listed as follows:

Vi(t + 1) = ω×Vi(t) + C1(t)r1(t)(Pbest −Xi)

+C2(t)r2(t)(Gbest −Xi)
(8)

Xi(t + 1) = Xi(t) + Vi(t + 1) (9)

ω = 0.5 + rand/2 (10)

Step 1. Initially, in the d-dimensional space, parameters including particle number, number of iteration
T, acceleration factors C1, C2 and its own weight ω are set to form a particle population;
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Step 2. In space, assume that each feature is the coordinate of each particle Xi= (Xi1, Xi2, . . . . . . , Xi j)

and the flying speed of each particle is Vi= (Vi1, Vi2, . . . . . . , Vi j);
Step 3. Use FCBF feature-selection method to output important features F j;
Step 4. Bring the coordinates of the particles into the features Fi= (Xi1×F1, Xi2×F2, . . . . . . , Xi j×F j) to

obtain the individual best solution Pbest and the group best solution Gbest;
Step 5. Use Pbest and Gbest to modify the particle’s flight speed Vi_new as shown in (10);
Step 6. Correct the position Xi_new of the particle with the updated flight speed Vi_new to find a new

position and speed;
Step 7. If it meets the set number of iterations TMax, it will stop, otherwise repeat Step 3 to Step

5, usually the termination condition is to reach the best solution or to reach the number of
iterations set by yourself;

Step 8. All particles converge to obtain the best solution;
Step 9. Finally, after the optimization process, a set of solutions with the optimal particle coordinates

Xbest can be obtained, which is the optimized feature weight.

Among them, the method of optimizing feature weights of FCBF–PSO retains the important
features of FCBF feature-selection method and optimizes the weights. The flowchart of the method
proposed by this institute is shown in Figure 6.
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4. Experiment of Motor Failure and Measurement Signal Method

4.1. Experiment Apparatus

The equipment used in this experiment was a three-phase squirrel-cage induction motor.
Its specifications are shown in Table 2, and the types of induction motor failures used in this study are
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shown in Figure 7a–f. The power test platform is shown in Figure 7g, NI PXI-1033 signal acquisition
device, digital electric meters and personal computers. The power test platform also includes servo
motors, torque sensors and control panels. By using the above equipment, the measurement and
analysis of the motor current signal could be completed.

Table 2. Specifications of the induction motor.

Three-Phase Squirrel-Cage Induction Motor Specifications

Voltage 220 V/380 V Output 2 HP 1.5 kW
Speed 1715 rpm Current 5.58 A/3.23 A

Insulation E Poles 4
Effectiveness 83.5(100%) Frequency 60 Hz
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4.2. Experiment Process

First, the flow of this study uses the servo motor of the power platform to be the load and is
driven by the AC motor to made the motor run. Secondly, the motor current signal of any phase was
captured for four different faulted through the signal picker, in which the sampling time of each data
were 100 s, the acquisition frequency was 1000 Hz and 100 signals were measured for each signal.
Finally, used the compiler analysis program MATLAB to HHT the measured signal on the computer
and combine various feature screening methods. Using BPNN to compare its accuracy, the flow chart
of its experimental architecture is shown in Figure 8a,b. We also repeated the calculation 200 times to
obtain the average accuracy and performed the feature-selection method multiple times to ensure this
study was repeatable and stable.
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5. Identification Result of Motor Fault Type

5.1. Original Signal

The current signals of induction motors were analyzed using EMD. Signal measurement and
result for healthy motor shown as Figure 9a,b. The waveform, vibration and frequency of each IMF
were different.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 22 

(a) (b) 

Figure 8. (a) Setup of actual measurement (b) flowchart of experimental architecture. 

5. Identification Result of Motor Fault Type 

5.1. Original Signal 

The current signals of induction motors were analyzed using EMD. Signal measurement and 
result for healthy motor shown as Figure 9a,b. The waveform, vibration and frequency of each IMF 
were different. 

(a) 

(b) 

Figure 9. (a) Original signal from healthy motor and (b) component after using empirical mode
decomposition (EMD).

5.2. HHT Feature Extraction

In this study, the current signal of the motor was first acquired and the EMD was applied to
extract the IMF of 1 to 8 layers. Then, through HHT analysis, the instantaneous amplitude and
instantaneous frequency of each layer were obtained. Then, we extracted the maximum, minimum,
average, root mean square and standard deviation of the instantaneous amplitude and instantaneous
frequency of each layer as the feature basis (10 features for each layer). Next, we normalized it so that
the eigenvalues of the 4 motor types were distributed between 0 and 1 for easy comparison. Finally, F1,
F2, F3... F79, F80 could be obtained, a total of 80 features, the method was shown in Figure 10.

According to the above extraction method, using HHT to extract a schematic diagram of features,
we could get features F1, F2, F3... F79, F80. According to the features of the normal motor and three
different fault conditions and retrieve 100 data as the basis for discrimination. Then, we used Matlab
software to draw feature maps, where the vertical axis is the number of features and the horizontal
axis is the number of samples. The research also simulated the actual operation of the induction motor,
added the white noise with SNR = 40 dB, SNR = 30 dB and SNR = 20 dB. It could be found from
the feature diagram that the current signal of the motor was analyzed by HHT to extract its features.
The results show that compared to other motor failure the difference in bearing damage between
features F40 to F47 was apparently. This suggests that they were the important features and easy to
identify the fault. As the noise increased to 20 dB, the feature distribution of normal, broken rotor
bar and short circuit in stator windings becomes more similar, which also increased the difficulty of
identification, as shown in Figure 11a,b.
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Figure 11. (a) Feature distribution of motor failure (∞dB); (b) feature distribution of motor failure
(20 dB).

5.3. Results of Induction Motor Fault Classification

First, the features of the measurement signal were extracted by HHT. The number of features was
the most, but there may be more features that cannot clearly distinguish the type of failure, so that the
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accuracy could only reach 88.26%. Second, through ReliefF feature-selection method, features with
lower feature weights could be deleted, removing 72% of the total number of features. If FCBF were
used, it could be divided into two stages for screening features. In the initial stage, comparing the SU
values of features and fault types, most of the features with lower impact could be deleted, removing
76% of the total number of features. Later, through the feature-to-feature correlation screening method,
FCBF could effectively delete redundant features. A total of 87.5% of the total features can be deleted,
as shown in Table 3. In order to prove that FCBF also had the advantage of running time, this study
also calculated the time (Run 200 times to get the methods average running time). The result showed
that FCBF had the ability to achieve a fast identification than ReliefF and SU, as shown in Table 4.
In summary, the feature-selection method FCBF could delete the most features after the selection,
which was the best for the three kinds of feature-selection method.

Table 3. Number of features of each feature-selection method.

Method Number of Features

HHT 80
HHT-ReliefF 22

HHT-SU 19
HHT-FCBF 10

Table 4. Running time (in seconds) of the three feature selection algorithms.

HHT ReliefF SU FCBF

∞ dB 0.413 0.336 0.334 0.311
40 dB 0.418 0.345 0.335 0.320
30 dB 0.407 0.358 0.339 0.326
20 dB 0.413 0.373 0.345 0.330

In this study, BPNN was used to classify each fault condition of the motor and white noise of 40 dB,
30 dB and 20 dB was added for research. It can be observed from Table 5 that in the absence of noise,
the accuracy of HHT was 88.26% and the accuracy using HHT combined with ReliefF, SU value and
FCBF were 90.05%, 90.02% and 90.75%. Among the three methods, FCBF could obtain better accuracy.
Using HHT combined with FCBF–PSO particle group to optimize the weight of the feature, the accuracy
could be increased from 88.26% to 92.85%. Therefore, it could be shown that the FCBF–PSO method
proposed in this research could delete fewer important features and give the corresponding weights to
the selected features after optimization.

Table 5. Accuracy of each feature-selection method (∞ dB).

Normal Accuracy (BPNN%)

Method Normal Bearing Rotor Stator Average

HHT 72.44 95.71 94.01 90.9 88.26
ReliefF 75.64 93.9 96.76 94.03 90.05

SU 75.67 96.34 95.12 92.97 90.02
FCBF 75.21 98.63 96.51 92.68 90.75

FCBF–PSO 78.41 98.73 98.98 95.28 92.85

As seen in Table 6, a slight white noise SNR = 40 dB is added to the signal. The accuracy of
HHT is 87.25% and after effectively removing unnecessary features through three feature-selection
methods, the recognition results obtained are 88.35%, 85.87% and 88.86%. Explain that after screening,
these three methods can also maintain the accuracy. Finally, using the method of FCBF–PSO proposed
in this research to identify the fault condition, the results show that the accuracy can be increased from
87.25% to 91.76%.
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Table 6. Accuracy of each feature-selection method (40 dB).

40 dB Accuracy (BPNN%)

Method Normal Bearing Rotor Stator Average

HHT 70.61 94.52 93.49 90.39 87.25
ReliefF 70.03 95.5 94.75 93.15 88.35

SU 70.56 92.25 91.02 89.66 85.87
FCBF 71.19 96.96 93.4 93.89 88.86

FCBF–PSO 75.56 98.6 96.72 95.16 91.76

Second, as shown in Table 7, when the white noise increases to SNR = 30 dB, the method of
combining HHT with SU value can maintain the accuracy of 81.08% when the number of features
decreases. The feature-selection methods of ReliefF and FCBF can delete features and the accuracy is
improved to 82.06% and 81.62%. With the FCBF–PSO method in this study, accuracy can reach 83.76%,
which is the best of all methods.

Table 7. Accuracy of each feature-selection method (30 dB).

30 dB Accuracy (BPNN%)

Method Normal Bearing Rotor Stator Average

HHT 63.89 91.24 84.56 82.91 80.64
ReliefF 62.17 91.66 87.75 86.69 82.06

SU 63.24 92.56 85.66 82.88 81.08
FCBF 62.67 92.49 87.15 84.19 81.62

FCBF–PSO 65.87 93.57 89.04 86.56 83.76

Finally—as shown in Table 8—in the case of severe noise with SNR = 20 dB, the classification
accuracy of each feature-selection method is significantly reduced. The accuracy of ReliefF is 71.42%,
the SU value is 70.35% and FCBF is 69.84%. The method of combining HHT with FCBF–PSO proposed
in this study can improve the average accuracy to 72.68% when most features are deleted.

Table 8. Accuracy of each feature-selection method (20 dB).

20 dB Accuracy (BPNN%)

Method Normal Bearing Rotor Stator Average

HHT 60.77 83.56 67.55 67.28 69.66
ReliefF 61.06 89.47 66.99 68.18 71.42

SU 58.35 85.1 69.85 68.11 70.35
FCBF 61.54 87.25 64.72 65.88 69.84

FCBF–PSO 65.42 88.78 68.9 67.62 72.68

5.4. Feature Selection and Results

5.4.1. ReliefF Screening and Accuracy

This study uses ReliefF’s feature screening mechanism to select features after HHT analysis. It is
found that applying this feature-selection method can compare neighbor samples with each other
and give corresponding weight to features with different correlations. Through the method to reduce
the number of features, you can delete unimportant features while comparing in a short time and
update the weights in real time. Moreover, through the preset threshold and sampling times have
reached a balance, from which to obtain better recognition results. The number of features of ReliefF is
reduced from 80 features originally analyzed using HHT to 22 features (72.5% of the total number of
features deleted), and its accuracy is calculated using BPNN. The results show that when the number of
features reaches 5, the accuracy can be achieved close to that of the undelete features. After recognition,
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the accuracy can also be increased from 88.69% to 90.05%, as shown in Figure 12. This shows that the
research uses ReliefF method to quickly obtain highly related features and delete the features that affect
the classification to maintain more effective recognition ability. However, this method still has the
disadvantage of being unable to delete redundant features. Hence, that the complexity of the system
operation is relatively increased.
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5.4.2. SU Value Screening and Accuracy

Second, this study uses the feature-selection method of SU value to bring in the correlation
coefficient for calculation. By obtaining the correlation between features and categories, the features
will gradually obtain recognition results from high to low correlation. It is found that when the
number of features reaches 7, the accuracy of this method tends to be stable. Moreover, it can be
reduced to 19 features (76.25% of the total number of features can be deleted). After all features
are identified, the recognition result can be increased from 88.83% to 90.2%, as shown in Figure 13.
However, this method is the same as ReliefF, and it also cannot remove redundant features, so there
are still a few features with more influence to affect the accuracy of classification.
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5.4.3. FCBF Screening and Accuracy

Finally, this study uses the feature selection mechanism of FCBF to select the features after analysis.
The results indicate that this feature-selection method cannot only effectively delete features with less
influence, but also compare features with extremely high correlation. In this way, a two-stage screening
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process is performed to reduce the number of features. While comparing it can delete redundant
features in a short period of time, quickly achieve balance and obtain better recognition results. For the
FCBF method, the selected features are gradually identified from important to relatively unimportant
features. It was found that the number of features was reduced from 80 features originally analyzed
using HHT to 10 features (87.5% of the total number of features was deleted). When using the classifier
to calculate its accuracy, when the number of features reaches 4, the accuracy of this method tends
to be stable. Moreover, when gradually completed, the accuracy of all features can be effectively
increased from 88.72% to 90.75%, as shown in Figure 14. This shows that this screening method can
obtain important features compared to the first two and delete unnecessary features that affect the
classification to maintain effective identification.
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5.4.4. Influence of Various Characteristics on Accuracy

This section mainly discusses the important features by each feature-selection method, which may
be different due to the basis of each method screening, so that the number of important features and
feature numbers also have different results. Therefore, this study ranks the importance of the features
selected by the three different methods. It can be found that the importance and number of features are
also not the same due to the different amount of noise, as shown in Table 9. By comparing the features
in Table 9 with Figures 13 and 14, it can be found that the algorithm of SU value have redundant
features compared to FCBF. Hence, we marked the redundant features are bold.

The FCBF–PSO method proposed by this research, PSO features weights for the important features
after screening. This method retains all FCBF screening features and uses PSO to optimize the weights
of the screening features. Compared with the pre-screening, the accuracy is increased by 4.59%, and the
total number of features of 87.5% can be deleted. Simulate the many influencing factors of the actual
operating environment of the motor, this study also added white noise of 40 dB, 30 dB and 20 dB to the
initial measurement signal for research. Experimental results show that the method has obvious feature
deletion under 40-dB and 30-dB noise conditions. Eleven and 13 important features can be obtained,
respectively, and the accuracy can reach 91.76% and 83.76%. When the noise is 20 dB, the number of
features is reduced to 15 after screening, and the recognition result is significantly reduced, but the
accuracy of 72.68% can still be maintained. The comparison between the classifier and the number of
features shows that the FCBF–PSO method proposed in this study is the best, as shown in Table 10.
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Table 9. Importance and quantity of screening features.

Analytical Method Noise Methods Number of Features Sort by Important Features after Screening
(The Redundant Features are Bold)

HHT

∞ dB

ReliefF 22 F5, F45, F3, F1, F42, F2, F4, F16, F44, F43, F41, F61, F30, F6, F15, F33, F29, F77, F65, F26,
F66, F55

SU 19 F41, F43, F44, F42, F45, F5, F1, F2, F4, F31, F49, F11, F3, F38, F67, F56, F48, F30, F15

FCBF 10 F41, F45, F5, F4, F31, F49, F11, F38, F67, F30

40 dB

ReliefF 28 F3, F5, F45, F1, F42, F5, F44, F43, F2, F31, F56, F26, F23, F6, F28, F37, F66, F53, F13, F14,
F16, F35, F63, F54, F51, F41, F60, F33

SU 19 F41, F43, F44, F42, F45, F5, F1, F4, F2, F69, F33, F25, F80, F3, F54, F35, F67, F22, F40

FCBF 11 F41, F45, F5, F4, F2, F69, F33, F25, F80, F67, F22

30 dB

ReliefF 34 F3, F5, F45, F1, F38, F42, F28, F44, F4, F43, F26, F29, F30, F63, F46, F16, F37, F51, F8, F6,
F75, F9, F20, F61, F10, F11, F48, F41, F15, F64, F50, F40, F68, F49

SU 24 F43, F44, F41, F42, F45, F5, F4, F3, F16, F72, F58, F1, F59, F27, F71, F76, F6, F32, F37, F78,
F62, F68, F70, F56

FCBF 13 F43, F42, F45, F4, F16, F72, F58, F27, F71, F76, F6, F37, F62

20 dB

ReliefF 49
F3, F45, F5, F11, F42, F44, F6, F43, F15, F55, F67, F19, F18, F21, F60, F51, F8, F40, F56, F1,
F4, F70, F37, F10, F23, F26, F72, F62, F9, F66, F16, F61, F2, F25, F22, F24, F30, F20, F54,

F53, F39, F48, F50, F29, F36, F73, F69, F46, F76

SU 29 F43, F44, F45, F42, F41, F4, F74, F10, F76, F65, F11, F9, F3, F78, F8, F73, F22, F80, F63, F29,
F64, F72, F5, F79, F46, F19, F30, F14, F69

FCBF 15 F43, F45, F42, F41, F4, F74, F10, F65, F11, F22, F80, F29, F46, F14, F69
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Table 10. Comparison of the number of features and identification results with this research method.

SNR(dB)

Without Feature
Selection

Feature-Selection Methods
Compare FCBF–PSO

with HHT
Typical Feature-Selection Methods New Method

ReliefF SU FCBF FCBF–PSO

Number of
Features

Acc
(%)

Number of
Features

Acc
(%)

Number of
Features

Acc
(%)

Number of
Features

Acc
(%)

Number of
Features

Acc
(%)

Acc
(%)

∞ 80 88.26 22 90.05 19 90.02 10 90.75 10 92.85 +4.59
40 80 87.25 28 88.35 19 85.87 11 88.86 11 91.76 +4.51
30 80 80.64 34 82.06 24 81.08 13 81.62 13 83.76 +3.12
20 80 69.66 49 71.42 29 70.35 15 69.84 15 72.68 +3.02
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6. Conclusions

This study classifies the current signals of normal, bearing damage, broken rotor bar and short
circuits in stator windings of AC induction motors. Among them, we used the signal extractor to
capture the current signal of the motor and use HHT to extract its maximum, minimum, average,
root mean square and standard deviation features. In addition, we propose feature-selection methods
for comparison, including ReliefF that gives feature weights, calculation of SU value indicating the
degree of feature influence and FCBF to delete redundant features. Finally, we combined the PSO to
optimize the weight of important features and tested the system’s noise immunity by adding white
noise. We repeated results calculations 200 times to obtain an average accuracy and performed the
feature-selection method multiple times. The results showed stable numbers in both features and
accuracy. Moreover, using FCBF–PSO to optimize feature weights to identify fault types had better
results. The following are the main research results of this study:

1. In this study, through the comparison of feature-selection methods, ReliefF, SU value and FCBF
were used to improve the invalid or poor features on the classifier. Under normal circumstances,
the number of features decreased by 72.5%, 76.25% and 87.5%, respectively. In terms of accuracy
of classification, only the SU method values decreased slightly by 1.16%. The other two feature
screening methods were optimized. When adding severe noise (SNR = 20 dB), the number of
features of the three screening feature methods improved. As far as accuracy was concerned,
in addition to the obvious improvement of FCBF, the other two methods still could achieve more
than 70% classification ability.

2. This study also used a PSO optimization model to optimize the feature weights of the three-phase
induction motor signals obtained by the FCBF feature-selection method. This method also
preserved all the features of FCBF. Under normal circumstances, its classification accuracy
through BPNN could reach 92.85%, which was superior to other feature-selection methods.
It also improved the accuracy of 4.59% higher than that of HHT. Then doping it with different
noise SNR = 40 dB, SNR = 30 dB and SNR = 20 dB white noise, its accuracy also increased
by 4.51%, 3.12% and 3.02%. Therefore, it was shown that this method could obtain a higher
classification accuracy.

Author Contributions: Conceptualization, C.-Y.L. and W.-C.L.; Methodology, C.-Y.L. and W.-C.L.; Software,
C.-Y.L. and W.-C.L.; Validation, C.-Y.L. and W.-C.L.; Formal Analysis, C.-Y.L. and W.-C.L.; Investigation, C.-Y.L. and
W.-C.L.; Resources, C.-Y.L. and W.-C.L.; Data Curation, C.-Y.L. and W.-C.L.; Writing-Original Draft Preparation,
C.-Y.L. and W.-C.L.; Writing-Review & Editing, C.-Y.L. and W.-C.L.; Visualization, C.-Y.L. and W.-C.L.; Supervision,
C.-Y.L.; Project Administration, C.-Y.L.; Funding Acquisition, C.-Y.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bazurto, A.J.; Quispe, E.C.; Mendoza, R.C. Causes and failures classification of industrial electric motor.
In Proceedings of the 2016 IEEE ANDESCON, Arequipa, Peru, 19–21 October 2016; pp. 1–4. [CrossRef]

2. Susaki, H. A fast algorithm for high-accuracy frequency measurement: Application to ultrasonic Doppler
sonar. IEEE J. Ocean. Eng. 2002, 27, 5–12. [CrossRef]

3. Borras, D.; Castilla, M.; Moreno, N.; Montano, J.C. Wavelet and neural structure: A new tool for diagnostic
of power system disturbances. IEEE Trans. Ind. Appl. 2001, 37, 184–190. [CrossRef]

4. Jin, N.; Liu, D.-R. Wavelet Basis Function Neural Networks for Sequential Learning. IEEE Trans. Neural Netw.
2008, 19, 523–528. [CrossRef] [PubMed]

5. Perera, N.; Rajapakse, A.D. Recognition of fault transients using a probabilistic neural-network classifier.
IEEE Trans. Power Deliv. 2010, 26, 410–419. [CrossRef]

6. Tripathy, M.; Maheshwari, R.; Verma, H. Power Transformer Differential Protection Based On Optimal
Probabilistic Neural Network. IEEE Trans. Power Deliv. 2009, 25, 102–112. [CrossRef]

http://dx.doi.org/10.1109/andescon.2016.7836190
http://dx.doi.org/10.1109/48.989878
http://dx.doi.org/10.1109/28.903145
http://dx.doi.org/10.1109/tnn.2007.911749
http://www.ncbi.nlm.nih.gov/pubmed/18334370
http://dx.doi.org/10.1109/TPWRD.2010.2060214
http://dx.doi.org/10.1109/TPWRD.2009.2028800


Appl. Sci. 2020, 10, 5383 20 of 21

7. Ying, S.; Jianguo, Q. A Method of Arc Priority Determination Based on Back-Propagation Neural Network.
In Proceedings of the 2017 4th International Conference on Information Science and Control Engineering
(ICISCE), Changsha, China, 21–23 July 2017; pp. 38–41.

8. Wu, W.; Feng, G.; Li, Z.; Xu, Y. Deterministic Convergence of an Online Gradient Method for BP Neural
Networks. IEEE Trans. Neural Netw. 2005, 16, 533–540. [CrossRef] [PubMed]

9. Yu, L.; Liu, H. Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 2004,
5, 1205–1224.

10. Robnik-Šikonja, M.; Kononenko, I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn.
2003, 53, 23–69. [CrossRef]

11. Senliol, B.; Gulgezen, G.; Yu, L.; Çataltepe, Z. Fast Correlation Based Filter (FCBF) with a different search
strategy. In Proceedings of the 2008 23rd International Symposium on Computer and Information Sciences,
Istanbul, Turkey, 27–29 October 2008; pp. 1–4. [CrossRef]

12. Ishaque, K.; Salam, Z. A Deterministic Particle Swarm Optimization Maximum Power Point Tracker for
Photovoltaic System under Partial Shading Condition. IEEE Trans. Ind. Electron. 2012, 60, 3195–3206.
[CrossRef]

13. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H.
The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series
analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [CrossRef]

14. Zhang, H.; Wang, F.; Jia, D.; Liu, T.; Zhang, Y. Automatic Interference Term Retrieval from Spectral
Domain Low-Coherence Interferometry Using the EEMD-EMD-Based Method. IEEE Photonics-J. 2016, 8, 1–9.
[CrossRef]

15. Kijewski-Correa, T.; Kareem, A. Efficacy of Hilbert and Wavelet Transforms for Time-Frequency Analysis. J.
Eng. Mech. 2006, 132, 1037–1049. [CrossRef]

16. Sharma, V.; Rai, S.; Dev, A. A Comprehensive Study of Artificial Neural Networks. Int. J. Adv. Res. Comput.
Sci. Softw. Eng. 2012, 2, 278–284.

17. Kumar, A.; Tyagi, N. Comparative analysis of backpropagation and RBF neural network on monthly rainfall
prediction. In Proceedings of the 2016 International Conference on Inventive Computation Technologies
(ICICT), Coimbatore, India, 26–27 August 2016; Volume 1, pp. 1–6.

18. Upadhyay, P.K.; Pandita, A.; Joshi, N. Scaled Conjugate Gradient Backpropagation based SLA Violation
Prediction in Cloud Computing. In Proceedings of the 2019 International Conference on Computational
Intelligence and Knowledge Economy (ICCIKE), Dubai, UAE, 11–12 December 2019; pp. 203–208.

19. Xue, B.; Zhang, M.; Browne, W.N.; Yao, X. A Survey on Evolutionary Computation Approaches to Feature
Selection. IEEE Trans. Evol. Comput. 2015, 20, 606–626. [CrossRef]

20. Ang, J.C.; Mirzal, A.; Haron, H.; Hamed, H.N.A. Supervised, Unsupervised, and Semi-Supervised Feature
Selection: A Review on Gene Selection. IEEE/ACM Trans. Comput. Biol. Bioinform. 2015, 13, 971–989.
[CrossRef] [PubMed]

21. Gopika, N.; Kowshalaya, A.M.M.E. Correlation Based Feature Selection Algorithm for Machine Learning.
In Proceedings of the 2018 3rd International Conference on Communication and Electronics Systems (ICCES),
Coimbatore, India, 15–16 October 2018; pp. 692–695.

22. Sawhney, H.; Jeyasurya, B. A feed-forward artificial neural network with enhanced feature selection for
power system transient stability assessment. Electr. Power Syst. Res. 2006, 76, 1047–1054. [CrossRef]

23. Song, Q.; Ni, J.; Wang, G. A Fast Clustering-Based Feature Subset Selection Algorithm for High-Dimensional
Data. IEEE Trans. Knowl. Data Eng. 2011, 25, 1–14. [CrossRef]

24. Yu, L.; Liu, H. Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution.
In Proceedings of the Twentieth International Conference on Machine Learning, Washington, DC, USA,
21–24 August 2003; pp. 856–863.

25. Kononenko, I.; Šimec, E.; Robnik-Šikonja, M. Overcoming the Myopia of Inductive Learning Algorithms
with RELIEFF. Appl. Intell. 1997, 7, 39–55. [CrossRef]

26. Armay, E.F.; Wahid, I. Entropy simulation of digital information sources and the effect on information
source rates. In Proceedings of the 2011 2nd International Conference on Instrumentation, Communications,
Information Technology, and Biomedical Engineering, Bandung, Indonesia, 8–9 November 2011; pp. 74–78.

27. Hall, M.A. Correlation Based Feature Selection for Machine Learning. Ph.D. Thesis, University of Waikato,
Hamilton, NewZealand, 1999.

http://dx.doi.org/10.1109/TNN.2005.844903
http://www.ncbi.nlm.nih.gov/pubmed/15940984
http://dx.doi.org/10.1023/A:1025667309714
http://dx.doi.org/10.1109/iscis.2008.4717949
http://dx.doi.org/10.1109/TIE.2012.2200223
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1109/JPHOT.2016.2555625
http://dx.doi.org/10.1061/(ASCE)0733-9399(2006)132:10(1037)
http://dx.doi.org/10.1109/TEVC.2015.2504420
http://dx.doi.org/10.1109/TCBB.2015.2478454
http://www.ncbi.nlm.nih.gov/pubmed/26390495
http://dx.doi.org/10.1016/j.epsr.2005.12.026
http://dx.doi.org/10.1109/TKDE.2011.181
http://dx.doi.org/10.1023/A:1008280620621


Appl. Sci. 2020, 10, 5383 21 of 21

28. Djellali, H.; Guessoum, S.; Ghoualmi-Zine, N.; Layachi, S. Fast correlation based filter combined with genetic
algorithm and particle swarm on feature selection. In Proceedings of the 2017 5th International Conference
on Electrical Engineering-Boumerdes (ICEE-B), Boumerdes, Algeria, 29–31 October 2017; pp. 1–6.

29. Lee, C.-Y.; Tuegeh, M. Optimal optimisation-based microgrid scheduling considering impacts of unexpected
forecast errors due to the uncertainty of renewable generation and loads fluctuation. IET Renew. Power Gener.
2020, 14, 321–331. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1049/iet-rpg.2019.0635
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Signal Analysis and Neural Network 
	Hilbert–Huang Transform (HHT) 
	Intrinsic Mode Functions 
	Empirical Mode Decomposition 

	Hilbert Transform (HT) 
	Neural Network (NN) 
	Architecture of NN 
	Back Propagation Neural Network (BPNN) 


	Feature-Selection Method and Application 
	ReliefF 
	Symmetrical Uncertainty (SU) 
	Information Entropy 
	Symmetrical Uncertainty Method 

	Fast Correlation-Based Filter (FCBF) 
	Application of FCBF–PSO 

	Experiment of Motor Failure and Measurement Signal Method 
	Experiment Apparatus 
	Experiment Process 

	Identification Result of Motor Fault Type 
	Original Signal 
	HHT Feature Extraction 
	Results of Induction Motor Fault Classification 
	Feature Selection and Results 
	ReliefF Screening and Accuracy 
	SU Value Screening and Accuracy 
	FCBF Screening and Accuracy 
	Influence of Various Characteristics on Accuracy 


	Conclusions 
	References

