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Featured Application: This research has certain reference significance for improved wind turbine
performance. It can also provide reference value for wind shear related study.

Abstract: Aerodynamic performance of a wind turbine at different tilt angles was studied based on
the commercial CFD software STAR-CCM+. Tilt angles of 0, 4, 8 and 12◦ were investigated based on
uniform wind speed and wind shear. In CFD simulation, the rotating motion of blade was based
on a sliding mesh. The thrust, power, lift and drag of the blade section airfoil at different tilt angles
have been widely investigated herein. Meanwhile, the tip vortices and velocity profiles at different
tilt angles were physically observed. In addition, the influence of the wind shear exponents and the
expected value of turbulence intensity on the aerodynamic performance of the wind turbine is also
further discussed. The results indicate that the change in tilt angle changes the angle of attack of
the airfoil section of the wind turbine blade, which affects the thrust and power of the wind turbine.
The aerodynamic performance of the wind turbine is better when the tilt angle is about 4◦. Wind
shear will cause the thrust and power of the wind turbine to decrease, and the effect of the wind
shear exponents on the aerodynamic performance of the wind turbine is significantly greater than the
expected effect of the turbulence intensity. The main purpose of the paper was to study the effect of
tilt angle on the aerodynamic performance of a fixed wind turbine.

Keywords: wind turbine; tilt angle; unsteady aerodynamics; computational fluid dynamics

1. Introduction

The use of wind energy has increased over the past few decades. Today, wind energy is the
fastest growing renewable energy source in the world [1]. Despite the amazing growth in the installed
capacity of wind turbines in recent years, engineering and science challenges still exist [2]. The main
goals in wind turbine optimization are to improve wind turbine performance and to make them more
competitive on the market. Studies have shown that the wind turbine tilt angle affects the shear
force and bending moment at the tower top and the blade root [3], and the interaction between the
blade and the tower also affects the aerodynamic performance of the wind turbine [4]. Therefore, it is
necessary to study the effect of tilt angle on wind turbine performance and analyze the characteristics
of blade–tower interaction, aiming to improve the wind turbine performance.

In recent years, more and more scholars have been paying attention to the interaction between
the blades and towers of wind turbines. Kim et al. [4] studied the interaction between the blade
and the tower using the nonlinear vortex correction method. They concluded that as the yaw angle
and wind shear exponent increase, the interaction between the blade and the tower decreases. The
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influence of the tower diameter on the interaction between the blades and the tower is higher than that
of the tower clearance. Meanwhile, this interaction may increase the total fatigue load at low wind
speed. Guo et al. [5] used blade element moment (BEM) theory to study the interaction between the
blade and tower. Their results show that the blade–tower interaction is much more significant than
that of the wind shear. Wang et al. [6] researched the blade–tower interaction using computational
fluid dynamics (CFD). Their research shows that the influence of the tower on the total aerodynamic
performance of the upwind wind turbine is small, but the rotating blade will cause an obvious periodic
drop in the front pressure of the tower. At the same time, we can see the strong interaction of blade
tip vortices. Narayana et al. [7] researched the gyroscopic effect of small-scale wind turbines. Their
findings show that changing the tilt angle can improve the aerodynamic performance of small-scale
wind turbines. Recently, Zhao et al. [3] proposed a new wind turbine control method. In their control
method, tilt angle increases as wind speed increases, with the purpose of reducing the blade loading
and maintaining the power of the wind turbine at high wind speeds. Their research shows that the
new control method can reduce the shear force at the top and bottom of the tower when compared
with the yaw control strategy.

Many researchers have studied the effect of tilt angle on the structural performance of a wind
turbine. For example, Zhao et al. [8] studied the structural performance of a two-blade downwind
wind turbine at different tilt angles. However, there is little research on the effect of tilt angle on the
aerodynamic performance of wind turbines. In this paper, aerodynamic performance of a wind turbine
at different tilt angles is studied. All simulations are performed in CFD software STAR-CCM+ 12.02.
Through a comparison of aerodynamic performance of the wind turbine at different tilt angles, the
effects of tilt angle on the thrust, power and wake of the wind turbine are studied.

2. Numerical Modeling

2.1. Physical Model

In this study, the governing equation uses the unsteady Reynolds-averaged Navier–Stokes
equation. The SST k−ω turbulence model was used in current simulations. A separated flow model
was used to solve the flow equation. SIMPLE solution algorithm was used for pressure correction.
Convection terms used the second-order upwind scheme. In the unsteady simulation, the time
discretization used the second-order central difference scheme. In addition, due to the sliding mesh
approach, no hole cutting was necessary, making the calculations more efficient than with the use of an
overset mesh. Thus the sliding mesh technique was used to handle rotating motion of a blade [9].

2.2. Turbulence Model

The SST k−ω turbulence model can consider the complex flow of the adverse pressure gradient
near the wall region and the flow in the free shear region. Thus, the SST k −ω turbulence model is
suitable for simulating the rotational motion of the blade [10]. In addition, this turbulence model can
accurately capture wind turbine wake [11,12].

In the Reynolds-averaged N-S equations, τi j = −ρu′i u′j refers to the Reynolds stress tensor.
Reynolds stress tensor and mean strain rate tensor (Si j) are related by the Boussinesq eddy viscosity
assumption:

τi j = 2νtSi j −
2
3
ρkδi j (1)

where νt refers to the eddy viscosity, ρ refers to the density, k refers to the turbulence kinetic energy
and δi j refers to the Kronecker delta function.

To provide closure equations, in the SST k−ω turbulence model, the turbulent kinetic energy (k)
and specific dissipation of turbulent kinetic energy (ω) also need governing transport equations, which
are given as follows:
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In the formulas above, the model coefficients are defined as follows:

β∗ = F1β1
∗ + (1− F1)β2

∗ (4)

β = F1β1 + (1− F1)β2 (5)

γ = F1γ1 + (1− F1)γ2 (6)

σk = F1σk1 + (1− F1)σk2 (7)

σω = F1σω1 + (1− F1)σω2 (8)

The blending function F1 is defined as follows:

F1 = tanh


min

max

 √k
β∗ωy

,
500υ∞

y2ω

,
4ρσω2k
CDkωy2

4 (9)

where CDkω refers to the cross-diffusion term, y refers to the distance to the nearest wall and υ refers to
the kinematic viscosity. F1 is equal to zero in the region away from the wall (k− ε turbulence model)
and one in the region near the wall (k−ω turbulence model).

The eddy viscosity is

νt =
a1k

max(a1ω, ΩF2)
(10)

where Ω is the absolute value of the vorticity and F2 is the second blending function, defined as

F2 = tanh

max

 2
√

k
β∗ωy

,
500υ
y2ω

2 (11)

A more detailed description of the SST k−ω turbulence model is provided in [10]. In this study,
the parameters for the SST k−ω turbulence model are as follows:
σk1 = 0.85 σω1 = 0.5 β1 = 0.075 a1 = 0.31 β∗ = 0.09 k = 0.41 σk2 = 1

σω2 = 0.856 β2 = 0.0828 γ1 =
β1
β∗ −

σω1k2
√
β∗

γ2 =
β2
β∗ −

σω2k2
√
β∗

2.3. Computational Domain

The computational domain was divided into the rotating and outer domains, as shown in Figure 1.
The size of the entire outer domain was 12D(x) × 5D(y) × 4D(z). The distance from the wind turbine
to the velocity inlet was 3D, and the distance to the pressure outlet was 9D, where D is the diameter
of the wind turbine. Due to the complex geometry of the blades, we used the trimmed cell mesh
technology to generate high-quality meshes. In order to capture the complex flow around the blade, a
fine mesh was used around the blade. A 10-layer boundary layer mesh was generated near the blade
and the hub. The total thickness of the boundary layer was 0.03 m, and the growth rate was 1.2. A
six-layer boundary layer mesh was generated near the tower and the nacelle. The total thickness of the
boundary layer was 0.1 m, and the growth rate was 1.2. Figure 2b shows the refined sliding mesh
regions around the blade. Figure 2c,d shows a close-up view of the blades and nacelle tower.
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(e) close-up view of nacelle and tower.

2.4. Boundary Conditions

Figure 2a illustrates the setting of the boundary conditions in this study. In the computational
domain, the inlet boundary, bottom and top surfaces were set as velocity inlets. The pressure outlet was
set at the outlet boundary. The sides of the computational domain were set to the plane of symmetry.
In this simulation, all of the y+ wall treatment of near-wall modeling was applied. In order to reduce
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the convergence order and improve the solution accuracy, the maximum internal iterations within
each time-step was 10 [13].

3. Results and Discussion

3.1. Validations

The 1/75 scale model of a DTU 10 MW reference wind turbine was used for the mesh independence
test. In the numerical verification, the tilt angle of the wind turbine was not considered. The main
parameters of the scale model are given in Table 1. A detailed introduction of the blade parameters at
40 different blade sections is provided by [14]. Figure 3 shows the wind turbine geometric model and
the surface grid. After scaling according to the scale factor, the boundary layers near the blade and
hub surface have five layers of refined grid with the total layer thickness of 0.004 m and a progression
factor of 1.2.

Table 1. Principal dimensions of the scale model.

Specifications DTU Down-Scaled

Number of Blades 3
Rotor Diameter (m) 2.37
Hub Diameter (m) 0.178

Rated Wind Speed (m/s) 5.53
Rated Rotor Speed (rpm) 330
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The blade surface mesh size includes the maximum mesh size and the minimum mesh size. The
number of meshes corresponding to different mesh sizes is shown in Table 2. According to previous
study, the time-step size corresponding to 1◦ increment of azimuth angle of the wind turbine per
time-step was applied in all simulations [15]. Moreover, the simulation was run under unsteady
conditions. The comparison of thrust and torque for different grid resolutions with the same wind
speed of 5.53 m/s, rotor speed of 330 rpm and time-step size of 5 × 10−4 s is presented in Tables 3
and 4. It can be observed from Tables 3 and 4 that the grid resolution of Case 3 is sufficient to solve
the unsteady aerodynamics of the wind turbine. Therefore, the grid resolution of Case 3 was used in
subsequent simulations.
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Table 2. Mesh size of blade surface.

CFD Mesh Type Case 1 Case 2 Case 3 Case 4

Maximum Size (mm) 3.000 2.000 1.500 1.100
Minimum Size (mm) 0.500 0.350 0.250 0.180

Total Mesh Number (million) 1.850 3.240 4.630 9.400

Table 3. Comparison of thrust between experiment and CFD simulation at different grid densities.

CFD Mesh Type LIFES50+Wind Tunnel Data (N), [14] Present Study (N) Error (%)

Case 1

68.631

70.010 2.000
Case 2 69.660 1.500
Case 3 69.520 1.300
Case 4 69.500 1.300

Table 4. Comparison of torque between experiment and CFD simulation at different grid densities.

CFD Mesh Type LIFES50+Wind Tunnel Data (N·M), [14] Present Study (N·M) Error (%)

Case 1

6.232

5.690 8.700
Case 2 5.850 6.100
Case 3 5.900 5.300
Case 4 5.920 5.000

Simulations at different wind speeds were performed, and the simulation results were compared
with wind tunnel experiment data, as presented in Figure 4. In this paper, we always keep the pitch
angle at 0◦, so we have not considered the working conditions above the rated wind speed. When the
wind speed is close to the rated wind speed, the thrust and torque of the CFD simulation are lower
than those of the wind tunnel experiment, but the maximum error is not more than 10%. This means
that STAR-CCM+ can accurately simulate the aerodynamic performance of the wind turbine under
rotating motion.
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Figure 4. Comparison of thrust and torque between wind tunnel experiment and CFD simulation at
different wind speeds (Case 3).

In order to ensure the reliability of the NREL 5 MW real-scale wind turbine simulation, the NREL
5 MW real-scale wind turbine was used for grid convergence analysis. Major properties of the NREL
5 MW reference wind turbine are given in Table 5 [16]. Figure 5 shows the blade alone geometric
model and full configuration geometric model with the tower. The blade alone model was used
for numerical verification, and the full configuration model was used to investigate the effect of tilt
angle on the aerodynamic performance of the wind turbine. Near the wall surface of the blades and
hub, the boundary layers have 10 layers of refined grid with the total layer thickness of 0.03 m and a
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progression factor of 1.2. The same wind speed of 11.4 m/s and rotor speed of 12.1 rpm were applied in
all simulations. Meanwhile, in all simulations, the time step is the time taken by the wind turbine to
increase the azimuth angle by 1◦.

Table 5. Principal dimensions of the NREL 5 MW reference wind turbine.

Specifications

Rated Power (MW) 5
Rotor Orientation, Configuration Upwind, 3 blades

Rated Wind Speed (m/s) 11.4
Rated Rotor Speed (rpm) 12.1

Rotor Diameter (m) 126
Hub Diameter (m) 3

Hub Height (m) 90
Tower Base Diameter (m) 6
Tower Top Diameter (m) 3.87

Pre-cone (◦) 2.5
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full configuration model.

The number of meshes corresponding to different mesh sizes is shown in Table 6. The comparison
of power for different grid resolutions with the same wind speed of 11.4 m/s and rotor speed of 12.1 rpm
is presented in Table 7. It can be observed from Table 7 that the grid resolution of Case 2 is sufficient to
solve the unsteady aerodynamics of the wind turbine. Therefore, the grid of Case 2 was used for the
simulation of NREL 5 MW real-scale wind turbines at different wind speeds.

Table 6. Mesh size of blade surface.

CFD Mesh Type Case 1 Case 2 Case 3

Maximum Size (m) 0.20 0.10 0.05
Minimum Size (m) 0.04 0.02 0.01

Total Mesh Number (Million) 1.52 4.80 9.53

Table 7. Comparison of power between NREL data and CFD simulation at different grid densities.

CFD Mesh Type NREL Data (MW), [16] Present Study (N) Error (%)

Case 1
5.000

4.767 4.700
Case 2 4.981 0.380
Case 3 5.020 0.400
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Aerodynamic simulations of a wind turbine with various wind speeds were tested and compared
with the FAST results. The obtained thrust and power were compared with the corresponding NREL
data calculated by FAST V8, as presented in Figure 6. The power agrees well with the NREL data,
but the thrust tends to be smaller than that from NREL data. The reason for the difference between
the CFD method and the FAST can be summarized as follows: (a) the FAST does not consider the
three-dimensional flow effects around blades; (b) in the BEM method, in order to calculate a rotor with
a limited number of blades, a tip loss correction model needs to be added. The results obtained by
different tip loss correction models are also quite different [17]. FAST uses a Prandtl tip loss correction
model [16]. Therefore, the CFD result of the thrust is significantly lower than the FAST result. A similar
phenomenon appeared in [18]. However, at the rated wind speed, compared with FAST data, the
errors of the thrust and power obtained by CFD are less than 5% Through the above analysis, the
grid of Case 2 can accurately simulate the aerodynamic performance of NREL 5 MW real-scale wind
turbines. Therefore, the grid of Case 2 was used to simulate the effect of tilt angle on the aerodynamic
performance of the wind turbine.
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3.2. The Effect of the Tilt Angle on the Aerodynamic Performance of the Wind Turbine

In this study, nacelle tilt angles of 0, 4, 8 and 12◦ were investigated. Figure 7 shows the structure
of the wind turbine at different tilt angles. In the picture, β is the pre-coning angle, and γ is the shaft
tilt angle. The azimuth of the rotor is defined as ψ, as presented in Figure 8. In Figure 8, the blue rotor
is the initial position with the 0-azimuth angle. Subsequent analysis is based on the results after the
wind turbine has stabilized. Under different tilt angles, the change in wind turbine thrust and power
with the azimuth is shown in Figure 9. Comparing the no-tower curve with the other four curves,
it can be seen that the thrust and power generate periodic fluctuations due to the influence of the
tower. When the blades pass through the tower, the thrust and power will periodically decrease. This
phenomenon is called the blade–tower interaction (BTI) [19]. The BTI effects begin at approximately
30◦ rotor azimuth and dissipate at approximately 100◦ rotor azimuth, as presented in Figure 10. This
agrees with previous studies, which all show effects in approximately this same 70◦ range [19].

Figure 9 shows the difference between the thrust and power at approximately 60, 180 and 300◦

azimuth with the same nacelle tilt. This phenomenon is due to the interaction between the blade and
the tower creating a random vortex. As the nacelle tilt increases, the blade and tower interactions
gradually weaken. Therefore, this phenomenon becomes less important as the nacelle tilt increases. In
Figure 10, when ψ is approximately 65◦, the thrust and power of the wind turbine at 4 and 8◦ nacelle
tilt are higher than 0 and 12◦ nacelle tilt.
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The position of the blade relative to the tower with the 60◦ azimuth is shown in Figure 11.
Instantaneous pressure magnitude and streamlines at blade sections r/R = 0.5, r/R = 0.7 and r/R = 0.9
(Blade 1) of the wind turbine are presented in Figures 12–14. In the low span (r/R = 0.5) suction side, the
flow separation phenomenon can be observed. However, the flow remains attached for higher radial
sections (r/R = 0.7 and r/R = 0.9). In addition, with the increase of the nacelle tilt, the flow separation of
the low span suction side is gradually weakened. The variation of the pressure distribution around
different sections airfoil with the nacelle tilt can also be observed.
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H. Rahimi et al. [20] studied different methods of calculating the angle of attack of the wind
turbine section airfoil. However, in CFD, when considering the interaction between the blade and
the tower, it is difficult to calculate the angle of attack of the blade section airfoil. Therefore, only the
effect of tilt angle on the blade section airfoil load is considered in this paper. Figure 15 shows the
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distribution of azimuth average thrust and tangential force along the blade span. From the figure, we
can see that in terms of thrust, when the tilt angle is 4◦, the distribution of the thrust along the blade
span does not change much compared to the 0◦ tilt angle. However, when the tilt angle is increased
to 8 and 12◦, the thrust of the section airfoil at the blade tip is lower than the values at 0 and 4◦ tilt
angle. In terms of tangential force, the tangential force gradually decreases as the tilt angle increases,
for up to 0.5 of the span. However, the tangential force at 4◦ tilt angle does not change much compared
to 0◦ tilt angle. Figure 16 shows the distribution of thrust and tangential force along the blade span
when the blade is located in front of the tower. In terms of thrust, the thrust of the section airfoil
gradually increases as the tilt angle increases, for up to 0.7 of the span. Regarding the tangential force,
the increase of the tilt angle also increases the tangential force, for up to 0.6 of the span. However,
regardless of thrust or tangential force, the value at 8◦ of tilt does not change much compared to 12◦ of
tilt. This means that the influence of the tower becomes weaker after the tilt angle exceeds 8◦.
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Thrust force per unit of span along the rotor span for Blade 1 is shown in Figure 17. In the blade
root, the thrust will fluctuate with the change of the azimuth angle, which is mainly caused by the
three-dimensional flow of the blade root. In the middle of the blade, when the azimuth angle is 0-180◦,
the thrust is the largest at 4◦ tilt angle, and the thrust is the smallest at 12◦ tilt angle. When the azimuth
angle is 180-360◦, the thrust gradually decreases as the tilt angle increases. In the vicinity of the blade
tip, when the azimuth angle is 0-180◦, except for the tilt angle of 0◦, the thrust has a change that
increases first and then decreases with the change of the azimuth angle. When the azimuth angle is
180-360◦, the thrust curve decreases first and then increases, and the thrust gradually decreases as the
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elevation angle increases. Figure 18 shows the tangential force per unit of span along the rotor span for
Blade 1. We can see that in the middle of the blade and near the tip of the blade, the tangential force of
the section airfoil in the 180-360◦ angle range is higher than the value in the 0–180◦ angle range, except
for the case of the 0◦ tilt angle. At the same time, we found that in the middle of the blade and near the
tip of the blade, when the azimuth angle is 180◦, the thrust and tangential force at 0◦ tilt are the smallest,
which is mainly due to the maximum interaction between the blade and the tower at 0◦ tilt angle.
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At the same time, it can be seen that there are slight differences in the tower-generated vortexes of 
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3.3. The Effect of the Tilt Angle on the Wind Turbine Wake

The instantaneous isovorticities occurring when the blade is in front of the tower are presented in
Figure 19. One can clearly see that these instantaneous diagrams with nacelle tilt angle shows that
there is a strong flow interaction between the wake generated by the blade root, hub and tower regions.
Because of the existence of the tower, there are strong unsteady flow interactions between tower vortex
and blade tip vortex during downstream propagation. This interaction caused the blade tip vortex to
break behind the tower. In addition, an increase in tilt angle will cause the blade tip vortex tube to tilt.
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The instantaneous x-vorticities at different sections in four tilt angles are presented in Figure 20.
We can observe that there is a clear difference in the blade tip vortex at different tilt angles. At 0 and 4◦

tilt angles, the blade tip vortex has only negative x-vorticities. When the tilt angle is changed to 8◦,
positive x-vorticity and negative x-vorticity appear in the right half of the blade tip vortex. When the
tilt angle is changed to 12◦, the left part of blade tip vortex is negative and right part is positive. At the
same time, it can be seen that there are slight differences in the tower-generated vortexes of the four
cases. By comparison, at the positions of x/D = 0.25 and x/D = 0.5, the vortex generated by the tower
behind the rotor at the tilt angle of 4◦ is slightly less than other cases. When the tilt angle reaches 12◦,
the vortex generated by the tower is broken.
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Figure 20. Instantaneous x-vorticities at different sections for four tilt angles.

The corresponding vertical x-velocity profiles are presented in Figure 21. When the tilt angle is
0◦, as the downstream distance increases, the velocity field behind the wind turbine is approximately
symmetrical about the centerline and keeps a circular shape. However, as the tilt angle increases,
the velocity field behind the wind turbine shows asymmetry and gradually moves to the upper
right. Meanwhile, the low-velocity region at the end of the wake gradually decreases with increasing
tilt angle.
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Figure 22 shows the distribution of instantaneous axial velocity along blade span at the wind
turbine downstream positions of 0.5D, 2.5D, 3.5D and 4.5D, which represent the development of the
velocity in the wake. Observing the instantaneous axial velocity distribution at the position of X/D = 0.5,
it can be seen that the upper half of the curve does not change much with the tilt angle, but the lower
half of the curve changes significantly with the tilt angle. In addition, it can be seen that the lower half
of the curve has the smallest fluctuation at the 4◦ tilt angle, which means that the interaction between
the blade tip vortex downstream of the wind turbine and the tower wake vortex is the weakest at a tilt
angle of 4◦. We can also observe a similar phenomenon in Figure 21. Observing the instantaneous
axial velocity distribution at the positions of X/D = 2.5 and X/D = 3.5, we can see that as the tilt angle
increases, the minimum velocity in the wake gradually increases and shifts upwards. However, at the
position of X/D = 4.5, there is a slight decrease in the minimum velocity as the tilt angle increases. This
is due to the upward shift of the wake-end deceleration zone.
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3.4. Wind Shear

The change in wind speed with height was determined according to the power function given in
International Electrotechnical Commission (IEC) 61400-1 [21] and presented as follows:

VZ

VZr

=
( Z

Zr

)γ
(12)

where VZ refers to the wind speed at height z, VZr refers to the reference wind speed at height Zr and
γ refers to the wind shear exponent. Zr refers to the hub height. In this study, the reference wind speed
is 11.4 m/s. In this paper, wind shear exponents are 0.09, 0.2 and 0.41. The wind shear exponent of 0.09
indicates a very unstable atmospheric state, 0.20 represents a neutral state and 0.41 represents a very
stable state [4].

The turbulence intensity was calculated according to the formula in IEC 61400-1 [21] and given
as follows:

IT = Ire f (0.75Vhub + 5.6)/Vhub (13)

where IT is the turbulence intensity, Ire f is the expected value of the turbulence intensity and Vhub is the
reference velocity at the hub. In this paper, Ire f values are 0.12, 0.14 and 0.16. Ire f of 0.12 represents
lower turbulence characteristics, 0.14 describes medium turbulence characteristics and 0.16 describes
higher turbulence characteristics.

Table 8 shows the average power along one rotation of the wind turbine after it has stabilized. It
can be seen from Table 8 that, compared with uniform wind, wind shear will cause the average power
of the wind turbine to decrease by about 14%. At the same time, it can be found that the average power
of the 4◦ tilt angle is close to that of the 0◦ tilt angle and is higher than the average power of the 8 and
12◦ tilt angles under uniform wind or wind shear conditions. The deviation (|Pa − Pm|) of the power
relative to the average power at an azimuth angle of 180◦ gradually decreases as the tilt angle increases
(see Figure 23, Table 8). When the tilt angle reaches 8◦ and continues to increase, |Pa − Pm| will remain
unchanged. This means that as the tilt angle increases, the interaction between the blade and the tower
gradually weakens. When the tilt angle exceeds 4◦, the influence of the tilt angle on the interaction
between the blade and the tower can be ignored. However, when the tilt angle exceeds 4◦, it will cause
a significant decrease in the average power of the wind turbine. Therefore, considering the power of
the wind turbine and the interaction between the blade and the tower, it is more appropriate to set the
wind turbine tilt angle to about 4◦.



Appl. Sci. 2020, 10, 5380 18 of 21

Table 8. Power for uniform wind and wind shear flow conditions at Vhub = 11.4 m/s (γ = 0.2, Ire f = 0.14).

Tilt
Angle (◦)

Average Power Pa (MW) Power Pm at 180◦ Azimuth
Angle (MW) |Pa−Pm| (MW)

Uniform
Wind

Wind
Shear

Error
(%)

Uniform
Wind

Wind
Shear Error (%) Uniform

Wind
Wind
Shear

0 4.92 4.20 14.63 4.73 4.08 13.74 0.19 0.12
4 4.91 4.21 14.26 4.79 4.15 13.36 0.12 0.06
8 4.85 4.18 13.81 4.78 4.14 13.39 0.07 0.04

12 4.75 4.12 13.26 4.68 4.08 12.82 0.07 0.04
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Figure 23. Thrust and power versus azimuth angle for various tilt angles at Vhub = 11.4 m/s (γ = 0.2,
Ire f = 0.14).

Figure 24 describes the influence of wind shear exponents (γ) on the aerodynamic performance of
the wind turbine. It can be seen from Figure 24 that the thrust and power of the wind turbine when the
wind shear exponent is 0.41 are higher than the values when the wind shear exponents are 0.09 and
0.20. It can be found from Table 9 that the average thrust and power of the wind turbine under different
wind shear exponents have the smallest error when the wind shear factor is 0.41 compared with the
uniform wind, and the average thrust and power of the wind turbine are almost the same when the
wind shear factors are 0.09 and 0.2. In Table 9, the wind shear exponent of 0.00 means uniform wind
inlet conditions. In Figure 24, it can be seen that the fluctuation of the wind turbine thrust and power
curve when the wind shear factor is 0.09 is significantly higher than the other two cases. This means
that the wind shear exponent has an effect on the interaction between the blade and the tower.Appl. Sci. 2020, 10, x FOR PEER REVIEW  19 of 21 
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Table 9. The power for various wind shear exponents (γ) at Vhub = 11.4 m/s (Ire f = 0.14, tilt angle = 4◦).

Wind Shear
Exponents

Average Power Pa (MW) Average Thrust Ta (KN)

Power Relatively Uniform
Wind Error (%) Thrust Relatively Uniform

Wind Error (%)

0.00 4.91 0.00 709.16 0.00
0.09 4.19 14.66 677.89 4.41
0.20 4.21 14.26 678.38 4.34
0.41 4.30 12.42 680.64 4.02

At the same time, as can be seen from Figure 25, at different turbulence intensity expectations, the
thrust and power of the wind turbine are basically the same. This shows that the expected value of the
turbulence intensity has little effect on the thrust and power of the wind turbine. Therefore, when
using wind shear to simulate a wind turbine, it is necessary to focus on the size of the wind shear
exponents according to simulated working conditions.
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4. Conclusions

The computational fluid dynamics (CFD) method was used to simulate the aerodynamic
performance of a fixed wind turbine with different tilt angles. By comparing the aerodynamic
performance of a wind turbine at different tilt angles, it was found the aerodynamic performance of
the wind turbine is better when the tilt angle is about 4◦. The main purpose of the paper was to study
the practical importance of effect of tilt angle on the aerodynamic performance of a wind turbine. The
main conclusions of the paper are as follows:

1. In order to balance the power generation efficiency of the wind turbine and the interaction
between the blade and the tower, the tilt angle of a wind turbine can be set at about 4◦ to obtain better
aerodynamic performance.

2. The increase of the tilt angle will cause the load of the section airfoil to change, thus affecting
the thrust and power of the wind turbine. When the blade is located in front of the tower, increasing
the tilt angle will increase the load of the section airfoil. At the same time, after the tilt angle reaches 8◦,
the change in the load of the section airfoil with the tilt angle will not be obvious.

3. Wind shear will cause the thrust and power of the wind turbine to decrease, and the effect of
the wind shear exponents on the aerodynamic performance of the wind turbine is significantly greater
than the expected effect of the turbulence intensity. When performing wind turbine simulations, it
is recommended to use a wind shear that is closer to that found in the real environment instead of
uniform wind.
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In summary, in order to ensure that a fixed wind turbine has an improved aerodynamic
performance, the tilt angle of the wind turbine when installed should be about 4◦. In reality,
for a floating offshore wind turbine, a tilt angle of about 4◦ may not be appropriate, so the effect of tilt
angle on a floating offshore wind turbine should be further studied in future works.
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