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Abstract: To further improve the efficiency and accuracy of the vehicle part inspection process,
this paper designs an accurate and efficient vehicle body part inspection framework based on
scattered point cloud data (PCD). Firstly, a hybrid filtering algorithm for point cloud denoising is
designed to solve the problem of multiple noise points in the original point cloud measurement data.
Secondly, a point cloud simplification algorithm based on Fuzzy C-Means (FCM) is designed to solve
the problems of a large amount of data and many redundant points in the PCD. Thirdly, a point cloud
fine registration algorithm based on the Teaching-Learning-based Optimization (TLBO) algorithm
is designed to solve the problem where the initial point cloud measurement data cannot be located
properly. Finally, the deviation distance between the PCD and Computer-Aided-Design (CAD) model
is calculated by the K-Nearest Neighbor (KNN) algorithm to inspect and analyze the point cloud
after preprocessing. On the basis of the design algorithm, four groups that contain measurement data
for eight vehicle body parts are analyzed and the results prove the effectiveness of the algorithm,
which is very suitable for the inspection process of vehicle body parts.

Keywords: scattered point cloud data; vehicle body part; point cloud denoising; point cloud
simplification; point cloud registration; vehicle parts inspection

1. Introduction

In the field of vehicle engineering, the design, manufacturing, inspection and evaluation of body
parts constitute the whole life cycle of vehicle part production under the background of “Industry
4.0” [1]. Each of the above links will have a great impact on the final matching process of the vehicle
body. In the production of the parts, the inspection and evaluation processes of the parts, in later
stages of production, is the key to ensuring the accuracy of the parts and the quality of late matching.
According to the actual engineering experience, rework or repair caused by the incorrect matching of
parts accounts for a relatively high proportion [2]. On the other hand, given the continuous growth in
the market demand for automobile quality, the matching quality requirements of the parts that have the
greatest influence on body shape are correspondingly increasing. Generally speaking, the inspection
process of the parts at this stage mainly includes two aspects—one is the manufacturing status of parts
themselves, such as the evaluation of dimensional tolerance, form and position error; the other is the
matching state of parts with other parts—that is, gap and interference evaluations between the body
parts. However, no matter the necessary inspection and evaluation processes, the technical parameters
of the parts themselves should be satisfied first.
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Above all, as a key link of each product’s lifecycle, the quality inspection of mechanical parts has
been given increasing attention. In the process of vehicle assembly, during the actual late matching
process, some parts of the body will be deformed during stamping, welding and painting prior to
final assembly, which will directly affect the assembly accuracy of the whole vehicle [3]. Therefore,
to ensure the quality of the late assembly of the parts, engineers and technicians estimate the matching
state of the parts by means of measurements and later data processes to predict and adjust the parts
in the later stage. However, traditional manual inspection techniques have low matching accuracy,
a tedious matching process and a large workload. To further improve the matching precision of parts
and guarantee the quality of the body, a new technical scheme based on scattered point cloud data
(PCD) has been increasingly used in the assembly process [3,4]. This new inspection process relies on
high data quality. Poor data quality which contain many invalid and redundant points can lead to
many problems, such as high computational demand of point cloud processing, low work efficiency
and large errors in the matching results. Therefore, the inspection process of vehicle body parts has
been a research subject with practical engineering value.

The development of computer technology and three-dimensional (3D) point cloud measurement
technology has provided a reliable technical tool for vehicle parts inspection. As part of an interdisciplinary
field, the basic principle of this technology is to obtain PCD coordinate information for manufacturing
molded parts by scanning them on their surface and to preprocessing them through denoising,
simplification, registration and so forth, to provide reliable PCD data for subsequent quality inspection
analyses. However, for the pre-processing step of PCD, selecting or designing effective algorithms can
improve the inspection accuracy of vehicle body parts.

Therefore, further design and research of related algorithms are needed. On the basis of the above
factors, this paper aims to study a set of computing processes to improve the inspection efficiency
and accuracy of the vehicle body parts based on scattered PCD. We used the actual project data to
analyze the location relationship between the scattered PCD to provide important data support and
technical guarantee for the inspection of vehicle body quality. The main contributions of this paper are
as follows:

(1) For the inspection process of vehicle body parts, an analytical workflow based on point cloud
data is established, which is an effective method for the inspection of vehicle body parts.

(2) For the denoising process of the PCD of vehicle body parts, a hybrid denoising algorithm based
on straight-through filtering and statistical filtering is proposed, which can extract the target
point cloud data accurately.

(3) For the simplification process of PCD, a point cloud subsampling method based on the Fuzzy
C-Means (FCM) algorithm is designed, which can keep the vehicle part features while simplifying
the point cloud.

(4) For the fine registration process of PCD, the Teaching-Learning-based Optimization (TLBO)
algorithm is applied to solve the mathematical model based on the Iterative Closest Point (ICP)
algorithm, which can further improve the precision of the fine registration.

The structure of this paper is as follows. In Section 1, the research background is introduced.
Section 2 describes and summarizes the research on parts assembly. In Section 3, the materials and
methods of this paper are described in detail. In Section 4, the algorithm is tested and discussed.
The final section summarizes the paper.

2. Related Work

2.1. Preprocessing of Point Clouds

For point cloud denoising, Fleishman et al. applied a bilateral filtering algorithm based on image
denoising to the PCD filtering process [5]. In 2005, Fleishman et al. used the moving least squares
(MLS) method to construct a point cloud neighborhood and then designed a forward search paradigm
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for PCD smoothing, which achieved good results [6]. Gu et al. first removed abnormal points through
statistical filtering and then filtered and smoothed the point cloud using an improved tri-lateral filtering
algorithm [7]. Hermosilla et al. used unsupervised learning to denoise large-scale point clouds and
achieved good results [8]. Liu et al. used the double-tensor voting algorithm to detect the features of
PCD and combined Ransac and the multi-normal strategy to carry out point relocation to complete the
point cloud denoising [9]. Zhou et al. designed a non-iterative double-threshold de-noising process
based on the Canny detection algorithm for image processing [10]. This algorithm performed phased
de-noising of the point cloud through the threshold and improved the denoising efficiency.

For the point cloud simplification process, Chen et al. introduced a triangular grid into the
point cloud processing process and then simplified the grid using a vector weighting algorithm to
complete the point cloud simplification process [11]. Lee et al. simplified the point cloud data through
the geometric information of parts and validated the algorithm by using two sets of part PCD [12].
Dyn et al. designed an adaptive point cloud simplification strategy and the experiment proved the
accuracy and efficiency of the algorithm [13]. Han et al. used the octree to construct the topological
relationship between points and designed different sampling strategies for edge points and non-edge
points, respectively, to simplify the point cloud data [14]. The test set was analyzed and verified.
Shao et al. introduced the improved particle swarm optimization algorithm to the average distance
method in the simplified point cloud algorithm and applied the algorithm to the online measurement
of the 3D scanning of the granary [15]. The experiment shows the effectiveness of the algorithm.

For the point cloud registration process, Senin et al. provided a point cloud registration method
based on different levels for a measurement scheme of multiple sensors. This method registers the
data according to the accuracy requirements of the point cloud and improves the registration accuracy
and efficiency of the point cloud [16]. Huang et al. designed a point cloud registration algorithm based
on spherical feature constraints for curved point cloud data. By constructing virtual overlapping areas,
the point cloud movement parameters were calculated and the effectiveness of the algorithm was
verified by experiments [17]. Du used deep learning to register three-dimensional images with noise
and the effectiveness of the algorithm was proven through experiments [18]. Li et al. first carried
out a rough registration of point clouds using a weighted lq-norm and then completed the process
of fine registration by using topology diagram theory. This algorithm is considered to have good
stability [19]. Based on the registration algorithm of the fast point feature histogram, Wu optimized the
neighborhood density of points to complete the coarse registration process and ultimately carried out
fine registration with ICP to improve the registration accuracy of the point cloud [20].

It can be seen from the relevant literature that there are various pre-processing methods for point
clouds. For point cloud denoising algorithm, although bilateral filtering has a great advantage in
feature retention, it needs to calculate the feature information of point cloud. When the noise points
are relatively dense, the error cannot be controlled. However, clustering and other algorithms cannot
effectively identify target point cloud and outlier groups.

For point cloud simplification algorithm, it not only need to consider the number of point cloud
in the downsampling process but also retain the point cloud features. In addition, in the field of
vehicle body part inspection, the number of point cloud data is large, it is necessary to compress the
point cloud, which can improve the efficiency of analysis and reduce workload in further exploration
and research.

For point cloud registration, it is still mainly based on ICP algorithm, althrough various improved
method has improved the efficiency of the point cloud registration process. However, there are still the
problems such as a lower calculation precision. Therefore, fine registration process is important to
improve its computation accuracy.

Based on above analysis, it is important to select an appropriate algorithm for the point cloud
data of vehicle body parts.
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2.2. Parts Inspection

In the field of parts inspection, Ramaswamy et al. designed a robotic virtual disassembling system
based on Agent technology in 1999 [21]. Tching et al. developed a virtual assembly system based on
virtual reality (VR) technology and computer aided design (CAD). This system first used computer
graphics to position the parts and then applied the kinematic principle to assemble the parts [22].
Liang et al. built a set of virtual assembly modeling systems for a satellite. This technique improved
the assembly efficiency of the satellite parts through a tree structure [23]. Jiang et al. combined
Unity 3D and Computer Aided Three-dimensional Interactive Application (CATIA) to build a virtual
assembly training platform based on the Kinect V2 technology. The platform was tested and good
experimental results were obtained [24]. For the above techniques, parts inspection technology is a
more design-oriented process and based more strongly on an ideal model than measured data; thus,
it cannot simulate a real state. Thus, the actual state of the parts cannot be evaluated. At present,
the development of non-contact laser scanning technology has helped improve inspection objectivity
and simulate a real matched state based on PCD. This research is developing rapidly and has made
significant advancements in many areas, there are many scholars and engineers apply it to all walks
of life [25,26], Li provided new technology for a complex curved surface quality inspection method
based on PCD [27]. An experimental analysis of complex parts proved the efficiency of the algorithm.
Bao et al. proposed a quasi-physical assembly method and successfully applied it to the aerospace
cabin inspection process [28]. Zhu et al. used PCD inspection technology, such as the trial assembly
process, for mining machinery equipment, thereby providing a new method for the inspection process
of mining machinery and equipment [29]. Yu studied composite part inspection based on PCD [30].
Zhao applied PCD inspection technology to the automobile body inspection field by using a non-contact
measuring device to obtain the PCD [31].

The essence of the part inspection process is the processing and analysis of PCD. The PCD obtained
by non-contact measurements can reflect the actual state of the parts more truly and can help analyze
the actual matching position of the parts more accurately. For the initial PCD, the problems of noise
data, large data volumes and inaccurate spatial positions greatly affect the quality of PCD.

In the above studies, most PCDs were handled by manual operation or commercial software.
Although these methods function, they are usually inefficient and require a large workload. Moreover,
at present, most of the research in this field is limited to one of the modules such as denoising or
registration and there are few studies on the systematic process of body parts inspection. Therefore,
based on the relevant research, a new vehicle body part inspection framework is established in this
paper. Firstly, a hybrid filtering denoising algorithm is designed for point cloud noise. Secondly, a point
cloud simplification algorithm based on FCM is designed to solve the lightweight point cloud problem.
This method simplifies the point cloud by obtaining the normal vector, curvature and point density of
the PCD based on the 3D coordinates of the point cloud and constructs eight-dimensional PCD sets
using the FCM clustering algorithm to classify the characteristics area and non-characteristics area of
the PCD. The curvature method and bounding box method are used to simplify the different areas.
Finally, a point cloud fine registration algorithm based on the TLBO algorithm is designed to solve
the point cloud positioning problem. This method constructs a mathematical model of point cloud
registration based on the Iterative Closest Point (ICP) principle and then uses the TLBO algorithm for
further calculations to obtain the best registration position. In addition, four groups of point cloud
measurement data were verified and analyzed to assess the proposed method, including the processes
of denoising, simplification and registration. Moreover, K-Nearest Neighbor (KNN) is introduced into
the inspection of the vehicle body parts.
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3. Materials and Methods

3.1. Materials

In this study, the data of vehicle body parts were mainly obtained via optical non-contact
measurement equipment. The data obtained by this method are provided in a in 3D format using
spatial coordinates (x, y, z) and the principle of this method is to obtain the spatial coordinate
information of the measured part’s surface by laser scanning. In general, according to the distribution
of the PCD, the PCD can be divided into regular PCD and irregular PCD which is also called scattered
PCD shown in Figure 1 [32], Where Figure 1a shows the regular PCD, Figure 1b shows the irregular
PCD. Regular PCD is generally acquired by a single scan. However, in order to obtain more sufficient
PCD, it is usually necessary to carry out random multiple scans on parts, so the PCD become messy
and irregular. Scattered PCD is the most common data distribution form.
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3.2. Methods

3.2.1. The Scheme Proposed

For the inspection process of vehicle body parts, this paper preprocesses the initial PCD to
obtain and analyze the data in high quality. Based on the PCD data, this paper proposes the
following framework.

(1) A new hybrid filtering algorithm is proposed for point cloud denoising.
(2) A new point cloud simplification algorithm is proposed to reduce the amount of point cloud data.
(3) A new point cloud registration strategy is used to the measurement point cloud in the vehicle

coordinate system.
(4) The K-Nearest Neighbor (KNN) algorithm performs point cloud error inspection, which is also

applied to the above three computing processes.
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The scheme flow proposed in this paper for the inspection process of vehicle body parts is shown
in Figure 4. This paper processes the initial point cloud data acquired by non-contact measurement
equipment through pre-processing steps such as denoising, simplification and registration and
ultimately assesses the real quality of the parts. The specific algorithm will be discussed in detail in the
following section.
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3.2.2. Denoising of PCD Based on a Hybrid Filtering Algorithm

The initial PCD generally features a great deal of noise and many outliers, as shown in Figures 2
and 3. These factors will affect subsequent analyses of the point cloud. Therefore, to avoid the
impact of noise points on the simplified registration process, the PCD first needs to be filtered.
The noise-denoising process is performed using the following steps.

Step 1. Invalid point removal based on straight-through filtering [34]; the calculation process is
shown in Equation (1). 

xmin ≤ xi ≤ xmax

ymin ≤ yi ≤ ymax

zmin ≤ zi ≤ zmax

, (1)

where xi, yi and zi are the coordinate values of point pi; xmin, ymin and zmin are the minimum coordinate
values in the x, y and z directions; and xmax, ymax and zmax are the minimum coordinate values in the x,
y and z directions. Thus, the invalid point cloud is removed by setting the part range of the PCD.

However, the pass-through filtering algorithm needs to get the specific size of the parts according
to the drawing information firstly and set the parameters manually. This method is subjective to
some extent.

Step 2. Outlier removal based on statistical filtering. Because of the large amount of the PCD,
the k- dimensional (k-d) tree [35] and KNN [36] are introduced into the traditional statistical filtering
algorithm to further improve the efficiency of the algorithm [37]. The algorithm flow is as follows.

(1). Read into the PCD set Pi(p1, p2, . . . , pn) and build the k-d tree;
(2). For each point pi, calculate the average distance between point pi and its k neighborhood

point. di j is the distance between point pi and p j, and di is the mean distance of the k neighborhood
point in pi. This process is shown in Equations (2) and (3).

di j =

√(
pi,x − p j,x

)2
+

(
pi,y − pi,y

)2
+ (pi,z − pi,z)

2 (2)

di =
1
k

∑i=n

i=1

∑ j=k

j=1
di j. (3)

(3). Calculate the mean value d and the standard deviation dstd of all di. This is shown in
Equations (4) and (5).

d =
1
n

i=n∑
i=1

di (4)

dstd =

√∑n
i=1

(
di − d

)2

n− 1
. (5)

(4). For each selected point pi, if its di is greater than the set threshold L, remove it from
Pi(p1, p2, . . . , pn). If not, keep point pi. Threshold L is shown in Equation (6).

L = d + σ× dstd, (6)

where σ a coefficient.
(5). After calculations are complete, output the PCD after noise removal.
Algorithm 1 provides pseudo-code of the hybrid denoising algorithm.
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Algorithm 1 Pseudocode of hybrid denoising algorithm

Begin
1. Input Pi(p1, p2, . . . , pn);
2. Initialization Parameter k, σ, xmin, ymin, zmin, xmax, ymax, zmax;
3. Denoise point data according to Equation (1);

Output Pi(p1, p2, . . . , pn′ );
4. Create k-d tree

For i = 1 to n′

Build all point k-d tree;
End;

5. Creat KNN
For i = 1 to n′

Build all point kd-tree;
End;

6. Statistical filter
For i = 1 to n′

Calculate point KNN mean distance di according to Equations (2) and (3);
Calculate mean value d and standard deviation dstd of all di according to Equations (4) and (5);
Determine whether point pi is a noise point according to the Equation (6);
End;
Output Pi(p1, p2, . . . , pn′′ );

End

Based on the above discussion, this paper uses the measured part data and related denoising
algorithm to verify the hybrid denoising method. The experimental results are shown in Figure 5.
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Figure 5. Point cloud denoising experiment. (a) is the initial point cloud data, (b) is the calculation
result of Laplace filtering, (c) is the calculation result of neighborhood filtering, (d) is the calculation
result of statistical filtering, (e) is the calculation result of straight- through filtering, and (f) is the
calculation result of hybrid filtering in this paper.

From the experimental results, in the results of Figure 5b, the Laplace denoising effect is poor.
Figure 5c present the neighborhood filter and Figure 5d shows the statistical filtering denoising results.
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Here, the external data noise density distribution characteristics are similar to those of the target point
cloud and the area is larger. The two algorithms with good performance in the random denoising
process cannot effectively remove the noise and invalid points outside the target point cloud. Therefore,
it is necessary to adopt different strategies to remove different types of noise data from the point cloud.
It can be seen from the experimental results in Figure 5e that the straight-through filtering algorithm
can effectively filter invalid point cloud data. As shown in Figure 5f, the hybrid algorithm can remove
large-scale noise points and outliers from the initial point cloud. The new algorithm can ensure the
precision and accuracy of denoising for the vehicle point cloud data measured in this paper.

3.2.3. Simplification of PCD Based on FCM

Initial point cloud data usually feature a large amount of data, which will greatly affect the
efficiency of subsequent point cloud analyses. To simplify the point cloud data, this paper designs a
point cloud simplification algorithm based on feature retention. The specific calculation process is
as follows.

Normal Vector Estimation of PCD

Principal component analysis (PCA) [38] is a dimensionality reduction algorithm for data analysis
without parameter limitations. The normal vector of a point is estimated by fitting the neighborhood
of that point into a plane. For a point cloud P = (p1, p2, . . . pk)

T with a certain point pi first build a k-d
tree and KNN; then, constructs the local plane E by using a fitting process for these points, as shown in
Equations (A1), (A2), (7) and (8).

C0 =
C
n
=

1
n

n∑
i=1

(pi − p)T(pi − p) (7)

C0·em = γm·em, (8)

where C0 is a symmetric semidefinite matrix; eigenvalues γ0,γ1,γ2 which satisfy that γ0 ≤ γ1 ≤ γ2 and
the three eigenvalues are non-negative real numbers. The eigenvector corresponding to the minimum
eigenvalue is a normal vector l(i, j, k) of the least-squares fitting plane required.

Although the direction estimated by the point cloud has a certain randomness, the surface fitting
result will divide the normal vector into two directions inside and outside, meaning that the same
surface normal cannot be unified and affecting subsequent analyses. However, it can be corrected with
an algorithm [38], as shown in Equation (9).

l′ =
{

l l(v− p) ≥ 0
−l l(v− p) < 0

, (9)

where, l is the normal vector and v is the viewpoint direction.

Curvature Estimation of the PCD

The curvature information of the point also reflects the degree of bending deformation in the
point position. In general, the characteristic value can be obtained by the covariance matrix of the local
point cloud by PCA. Then, the characteristic value can be estimated by the eigenvalues. Because the
normal vector was adjusted by PCA in Equation (9). The eigenvalues change accordingly. On the other
hand, the accurate point cloud normal vector provides parameter information for the local surfaces
in Equations (7), (8) and (9). Based on the above analysis and discussion, this paper uses the move
least square method (MLSM) [39] to calculate the point cloud curvature. The calculation process is
as follows.

Step 1. Input the point cloud coordinate pi(xi, yi, zi) and the normal vector l(i, j, k);
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Step 2. Establish a surface implicit function that enables the local energy function E(x) to be
minimal in the n-direction vector field as shown in Equations (A3) and (A4);

Step 3. Further calculations can obtain Gaussian curvature, as shown in Equation (10):

GC = −

det
[
∇(∇ f (x)) ∇

T f (x)
∇ f (x) 0

]
‖ ∇ f (x) ‖ ˆ4

(10)

The mean curvature is shown in Equation (11):

MC =
‖ ∇ f (x) ‖2tr∇−∇ f (x)∇(∇ f (x))∇T f (x)

‖ ∇ f (x) ‖ ˆ3
, (11)

where ∇ is the gradient operator and ∇( f (x)) is the black plug matrix. In this paper, the average
curvature is taken as the calculation parameter of the curvature of the point cloud.

Point Cloud Density Calculation

The density of the point cloud is also an important parameter to measure the location of the point
cloud. There are many ways to estimate the density of the point cloud. In this paper, the reciprocal of
the average distance between the point and the neighborhood point k is taken as the density parameter
ρi of point pi, as shown in Equation (12):

ρi =
1

1
k
∑i=n

i=1
∑ j=k

j=1 di j

, (12)

where ρi is the density parameter of point pi.

Feature Retention Point Cloud Simplification Algorithm Based on Fuzzy C-Means (FCM)

At present, the clustering algorithm is one of the important methods for data classification. In this
paper, the point cloud is segmented by clustering and then different regions are simplified to achieve
point cloud sampling.

Unlike a traditional hard clustering algorithm which is represented by K-means clustering [40],
FCM [41] adopts a soft partition method. Similarly, unlike traditional deterministic sets, the data
ownership of fuzzy sets is uncertain and the degree of data ownership is measured by the degree of
data membership. For point set p =

{
p1, p2, . . . , pn

}
, combining the point cloud coordinate data and

point cloud geometric information calculated, point cloud data set is expanded from three-dimensional
coordinate data pi(x, y, z) to eight-dimensional data pi(x, y, z, i, j, k, MCi,ρi). Then, data set p is divided
into c classes by clustering segmentation. The subsample data is pc =

{
pc,1, pc,2, . . . , pc,i

}
, where the

membership function of the fuzzy set is F(pc). The closer F(pc) is to 1, the greater the degree that it
belongs to the same set and vice versa. Fuzzy set is closer to a real description of the objective world.
The basic calculation process of the point cloud is as follows.

Step 1. Input the point data set p =
{
p1, p2, . . . , pn

}
, where pi is (x, y, z, i, j, k, MCi,ρi). Then go to

Step 2;
Step 2. Parameter initialization. These parameters mainly include the cluster number C,

fuzzy index m, iteration termination threshold ε and maximum iteration number T. The random
initialization membership matrix U = [uki]c×n, which satisfies Equation (13). Then, go to Step 3;

uki ∈ [0, 1],∀i = 1, 2, . . . , n,∀k = 1, 2, . . . , c∑c
k=1 uki = 1,∀i = 1, 2, . . . , n

0 <
∑n

i=1 uki < n,∀k = 1, 2, . . . , c
, (13)
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where U = [uki]c×n is the membership matrix.
Step 3. Calculate the clustering center c, as shown in Equation (14).

ci =

∑n
j=1 um

ij xi∑n
j=1 um

ij
. (14)

Step 4. The value of the objective function is calculated according to Equation (15).

J(U, V) =
∑c

k=1

∑n

i=1
um

ki ‖ xi − vk ‖
2 . (15)

c ∈ [2, n] is the clustering number, ‖ xi − vk ‖ is the Euclidean distance between sample i to clustering
center k and m ∈ [1,+∞ ) is the fuzzy index used to control data partitioning. The value of this
parameter is generally set as 2. and V = {v1, v2, . . . , vc} is the clustering center.

Step 5. Calculate the new membership matrix J, as shown in Equation (16).

ui j =
1∑c

k=1

(
di j
dkj

) 2
m−1

. (16)

Step 6. The termination judgment is calculated. When the maximum iteration number meets
the requirements or reaches the threshold, the algorithm is terminated and the result is output. If not,
return to Step 2. until the iteration number meets the requirements.

In this article, PCD is clustered by FCM and the feature area and non-feature area of the PCD
are divided by the mean curvature of each clustered area. The average curvature MCi of each area is
obtained from the above calculation and the overall average curvature of the MC and the standard
deviation MCstd can be calculated, as shown in Equations (17) and (18):

MC =
1
n

c∑
i=1

MCi (17)

MCstd =

√∑C
i=1

(
MC−MCi

)2

n− 1
. (18)

This determines whether the area is a feature part. When MCi > L, this area is a feature area and
the other area is a non-featured area, as shown in Equation (19):

L = MC + σ×MCstd, (19)

where the value of σ is 1 to 5.
Considering the above discussion, the calculation process of the new point cloud algorithm based

on FCM is shown below.
Step 1. Input point cloud data P = (p1, p2, . . . pk)

T. Initialize the algorithm parameters and then
go to Step 2.

Step 2. Calculate the normal vector l(i, j, k) of the PCD using the PCA algorithm and correct the
direction of the normal vector, then go to Step 3.

Step 3. Based on the results in Step 2 calculate the mean curvature and point density of the point
cloud data by MSLM; then, go to Step 4.

Step 4. Divide the point cloud by the coordinates of the point cloud combined with the vector,
the mean curvature and density, then go to Step 5.

Step 5. The non-feature area simplification of the PCD. The non-feature area point clouds are
relatively flat and evenly distributed. It is useful to simplify the distribution of non-featured areas by
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using the bounding box algorithm [42], which can provide a reliable way to simplify non-feature areas
by setting the required simplification parameters. The algorithm flow is as follows:

Step (1). Input the non-feature area point cloud and the minimum and maximum values for x, y
and z in each direction.

Step (2). For the data in Step (1), obtain the bounding box edge length and split the bounding
box at a simplified scale.

Step (3). Reserved the center point of each bounding box and output it.
Step 6. Point cloud feature area simplification. For feature areas, the curvature sampling principle

is used to calculate the average curvature MCi of the points. as shown in the Equation (20).∣∣∣MCi −MC
∣∣∣ > ε, (20)

where a set of point cloud data is retained by value ε.
Step 7. Calculating complete. Output simplified point cloud.
The Algorithm 2 is pseudocode of the proposed simplification algorithm.

Algorithm 2 Pseudocode of Simplification Algorithm

Begin
Input Pi(p1, p2, . . . , pn);
Define parameter k, C, m, ε, T;
For i = 1 to n
Calculated the normal vector li by PCA as Equations (7) and (8);
Correction point cloud normal vector as Equation (9);
Build the new point cloud pi(xi, yi, zi, i, j, k) ;
For i = 1 to n
Calculated the Mean curvature MCi and point density ρi as Equations (10)–(12), respectively;
Build the new point cloud pi(xi, yi, zi, i, j, k, MCi,ρi) ;

End
Segment the point cloud data pi(xi, yi, zi, i, j, k, MCi,ρi) by FCM as Equations (13) to (19);
Simplify point cloud data as bounding box algorithm and Equation (20);
Output the simplified point cloud data.
End

End

This set of point cloud experimental data is derived from the actual measurements of vehicle
body parts. The total number of vehicle body parts contained in this file is 227,970 in txt format.
The experiment provided a 90% point cloud simplification rate, which means that only 10% of the
original point cloud data were retained. The simplified results are shown in Figure 6.

Figure 6 illustrates the calculation results of the vehicle body part point cloud under different
simplified algorithms. In Figure 6, from (b) to (f), the number of remaining data after the point cloud
was simplified were 22797. In Figure 6, a is the original point cloud data for the vehicle part, b is the
simplified result of random sampling [43], c is the simplified result of curvature sampling [44], d is the
simplified result of grid sampling [45], e is the simplified result of octree-based sampling [46] and f is
the simplified result of our sampling algorithm.

As can be seen from Figure 6, the points clouds simplified by random sampling (Figure 6b) and
the curvature method (Figure 6c) are not evenly distributed, while the grid sampling (Figure 6d) and
octree-based sampling (Figure 6e) results are too evenly distributed and cannot accurately reflect the
feature area. Compared to the above algorithm, our algorithm (Figure 6f) can fully reflect the feature
areas and non-feature regions.
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result of grid sampling, (e) is the calculation result of octree-based sampling, and (f) is the calculation
result of our sampling algorithm in this paper.

To further improve the effectiveness of the FCM algorithm in simplifying point clouds, we again
adopt the application of curvature information and curvature information entropy commonly used by
other scholars [46] to study the computational effects of different simplified algorithms. Curvature
information entropy is used to quantitatively express the features of point clouds and its entropy
function Eni is calculated by Formulas (21) and (22) [47].

Eni = −
MCi

MCi+
∑k

j=1 MC j
log2

MCi

MCi+
∑k

j=1 MC j

−

k∑
j=1

MC j

MCi+
∑k

j=1 MC j
log2

MC j

MCi+
∑k

j=1 MC j

(21)

En =
∑n

i=1
Eni. (22)

Figure 7 shows the information entropy of PCD under different simplified algorithms, as can be
seen from the Figure 7, according to the calculation results of entropy under the condition of the same
reduction rate, the FCM simplified point cloud entropy value is the largest and the retained point
cloud feature information is the most. Therefore, compared with the other four algorithms, the FCM
point cloud algorithm proposed in this paper has better point cloud simplification effect.
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3.2.4. Registration of PCD

The ICP (Iterative Closest Point) algorithm is a classical point cloud registration algorithm
proposed by Besl [48], which established the foundations of this field. The basic principle of this
algorithm is to find the closest corresponding location between two sets of point clouds. The ICP
algorithm does this by calculating the mean square of the distances between the target point cloud
and the measurement point cloud in Euclidean Space. Specifically, through matrix transformation,
this method transfer the moving point cloud to the target point cloud’s location and completes the
point cloud registration via a number of iterations of point cloud movements. To move a spatial point,
the point’s initial coordinate is defined as p = (x, y, z), while the coordinate after moving is defined as
p′ = (x′, y′, z′), When p is shifted in space, its motion is as follows:

Based on the ICP calculation principle, its general error function [48], F, can be described as:

F
(
α, β,γ, dx, dy, dz

)
= Min(

1
N

∑N

i=1
‖ Vi − (Rpi + T) ‖2), (23)

where Vi is the target point cloud. When F is the minimum value, the final position of the point
cloud registration and the spatial motion parameters

(
α, β,γ, dx, dy, dz

)
of the measurement point cloud

are calculated. In this way, point cloud registration is transformed into a minimization problem.
The remaining parameters are shown in the Appendix A (A5)–(A9).

However, the point cloud registration process is a complex nonlinear problem, which generally
needs to be solved in two stages.

Coarse Registration of PCD

The coarse registration process of the point cloud is an important step to complete the spatial
alignment. The coarse registration process can provide a good initial position for fine registration and
avoid the process of fine registration falling into the local optimum too early. There are many kinds of
coarse registration algorithms. We chose the sample consensus initial alignment (SAC-IA) [49] because
of its good coarse registration performance. In this paper, the SAC-IA algorithm is used to complete
the coarse registration process of the point cloud. The calculation process is as follows:

Step 1. For the measurement point cloud P(p1, p2, . . . , pn), first, the normal vector information of
the point cloud is obtained from the Equations (7)–(9), and m sampling points are selected from P to
construct their fast point feature histograms (FPFH). To avoid similarities among the selected feature
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points, the distance threshold value dε is set to distinguish them. F
(
pi,k

)
is the FPFH feature of point pi,

as determined in Equation (24):

F
(
pi,k

)
= SPFH

(
pi,k

)
+

∑k
j=1 ω j·B

(
pi,k

)
k

, (24)

where, B
(
pi,k

)
is the relative relationship between point pi and its KNN; ω j is the characteristic weighted

value of SPFH of point j.
Step 2. Similarly, for the reference point cloud P′

(
p′1, p′2, . . . , p′n

)
, the FPFH is calculated via

the normal calculations and a group of points with similar features in the measurement point
cloud P(p1, p2, . . . , pn) is searched through the FPFH corresponding to the sampling points from the
measurement points.

Step 3. This step calculates the transformation matrix between the corresponding points and
then judges the performance of the current registration transformation by solving the distance error
function after the corresponding point transformation. The distance error function here is mostly
represented by the Huber penalty function, denoted as:

H(εi) =

{
0.5× ε2

i ‖ εi ‖< dε
0.5× dε(2 ‖ εi ‖ −dε) ‖ εi ‖ ≥ dε

, (25)

where, εi is a preset value and dε is the distance difference after transformation of the point corresponding
to the i th group.

Step 4. Returns Step 1~Step 3 until the maximum number of iterations is reached and outputs
the transformation matrix and the spatial coordinates after coarse registration.

Fine Registration of the PCD

Although many algorithms have been applied in the field of point cloud registration, they all
show a strong initial value dependency and easily fall into local optimization [48]. In addition,
their convergence speed is slow, among other issues. In this paper, an intelligent optimization
algorithm that provides a new technical tool for this kind of nonlinear optimization problem is adopted
to solve the issue of point cloud registration problem.

The Teaching-learning-based optimization (TLBO) algorithm is a classic intelligent optimization
algorithm proposed by Rao in 2012 [50]. The TLBO algorithm has few parameters. Its basic principle is
to simulate the communication process of teachers and students in the class. The calculation process of
fine registration using TLBO is as follows:

Step 1. Input the PCD P(p1, p2, . . . , pn) after coarse registration and CAD model PCD P′
(
p′1, p′2, . . . , p′n

)
.

Then go to Step 2.
Step 2. Algorithm initialization. Initialize the class of students X = (x1, x2, . . . , xn), where n is the

number of students. Student xi in the class is defined as xi =
(
xi1, xi2, . . . , xi j

)
, j = 1, 2, . . . , D, j = 1, 2 . . .

where xi j represents the subject j learned by student i, D is the total subjects learned (6 in this paper),
the upper and lower limits of each subject are U and L, the total number of iterations is T and xbest is
the optimal solution. The objective function is shown in Equation (23). The students are randomly
generated as shown in Equation (26). Then go to Step 3.

xi j = L + rand× (U − L), (26)

where, rand is the random number generation function.
Step 3. Teaching process. The fitness value is calculated for the students in the class using

Equation (23). This process primarily simulates the teaching process of the class from the teacher to the
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students. The teacher transmits knowledge to the students through teaching to continuously improve
the students’ performance as follows:

x′i j = xi j + rand×
(
xbest, j − round(1 + rand)M j

)
, (27)

M j =
1
n

∑n

i=1
xi j, (28)

where x′i j is the updated score; xi j is the current score; rand is a random number between 0 and 1;
xbest, j is the result of the teacher’s subject j; M j is the average score of subject j; and round is the round
function. Then go to Step 4.

Step 4. Learning process. The learning process is a process in which students communicate
with each other and update their scores. Based on the teacher’s teaching, students learn from their
classmates. The updated formula for the minimization problem after comparing the fitness values is
shown in Equation (29).

x′a = xb + rand× |xa − xb|, (29)

where: x′a is the updated academic performance; xa is the current academic performance; xb is student
b’s current academic performance. Then go to Step 5.

Step 5. Terminate the conditional judgment. After each iteration, judge whether the total number
of iterations T is reached. When the number of iterations reaches, the calculation is completed and the
global optimal value and global optimal solution

(
α, β,γ, dx, dy, dz

)
are output. When the number of

iterations is less than T, return to Step 3 and continue the iterations.
Algorithm 3 is the pseudocode of fine registration.

Algorithm 3 Pseudocode of fine registration

Begin
Input data P(p1, p2, . . . , pn) and p′ = (x′, y′, z′)
Initialize U, L, D, T, N
Generate initial solutions randomly
While t < T do
For i =1 to N
x′i = xi + rand× (xbest − round(1 + rand)M)

If f (x′i ) < f (xi)
xi = x′i
End if
xa,b = random select(solutions)
If f (xb) < f (xa)
x′a = xb + rand× |xa − xb|

End if
End for
End while
Output

(
α, β,γ, dx, dy, dz

)
For the fine registration process of the point cloud, this paper uses the measured point cloud data

as a case for simulation experiments.
Figure 8 illustrates the calculation results of the vehicle body part point cloud under different

registration algorithms. In Figure 8, a is the original point cloud data position of the vehicle part, b is
the coarse registration result of FPFH, c is the fine registration result of ICP, d is the fine registration
result of Harmony search (HS) [51], e is the fine registration result of Dragonfly algorithm (DA) [52]
and f is the fine registration result of TLBO algorithm. Table 2 shows the parameters and error of the
fine registration calculation results under different algorithms. The TLBO algorithm has the smallest
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error which the value is 0.0132, so the registration effect is the best and the accuracy is the highest
compared with the other three algorithms.Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 27 
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Figure 8. Point cloud fine registration experiment. (a) is the initial point cloud data position of the
vehicle part, (b) is the coarse registration result of FPFH, (c) is the fine registration result of ICP, (d) is the
fine registration result of Harmony search (HS), (e) is the fine registration result of Dragonfly algorithm
(DA) and (f) is the fine registration result of TLBO algorithm.

Table 2. PCD after registration in Figure 3a.

Part α β γ dx dy dz F

Fine registration

ICP 0.135 −1.393 6.823 −4.142 −1.486 −2.198 0.331
HS 0.133 −1.341 6.790 −4.139 −1.450 −2.137 0.1132
DA 0.132 −1.347 6.797 −4.140 −1.433 −2.139 0.0740

TLBO 0.131 −1.332 6.792 −4.148 −1.455 −2.139 0.0132

4. Results and Discussion

To verify the method of the vehicle body part inspection scheme, four group experimental parts as
shown in Section 3.1, were used to analyze the algorithms. Among them, the point cloud measurement
data in Section 3.1 included 134,724 points (Figure 3a), 169,424 points (Figure 3b), 186,483 (Figure 3c),
326,535 (Figure 3d), 214,834 (Figure 3e), 437,752 (Figure 3f), 239,626 (Figure 3g) and 319,955 (Figure 3h).
In addition to the PCD of the measured vehicle parts, this paper also includes CAD model data of the
vehicle parts which are input in the form of point clouds. The reference point cloud data is obtained
by converting CAD file format into STereoLithography (STL) model and then sampling from STL
model by Meshlab. In this experiment, the computer’s operating system was Windows 7 64 bit and the
processor was an i5-4200U CPU @ 1.60GHz.
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4.1. Denoising Experiment

To reduce the influence of noise points on the subsequent point cloud processing process, the point
cloud denoising algorithm described in Section 3.2.2 is first used to denoise the initial point cloud data.
The denoising results of the PCD are shown in Figure 9.
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Figure 9. PCD after denoising. (a)–(h) are a series of denoising results of vehicle body parts PCD in
Figure 3, respectively.

In Figure 9, the amount of PCD after denoising was 97,868 (Figure 9a), 75,456 (Figure 9b),
143,516 (Figure 9c), 267,308 (Figure 9d), 164,473 (Figure 9e), 410,265 (Figure 9f), 228,189 (Figure 9g) and
289,115 (Figure 9h). Therefore, the number of data removed by the point cloud denoising algorithm
was 36,856 (Figure 9a), 25,908 (Figure 9b), 42,967 (Figure 9c), 59,227 (Figure 9d), 50,361 (Figure 9e),
27,487 (Figure 9f), 11,437 (Figure 9g), 30,840 (Figure 9h). The pass-through filtering parameters are
defined according to different parts, while the statistical filtering parameters are k = 10, σ = 1. As can
be seen in Figure 9, the point cloud noise data were largely removed through the denoising algorithm
designed in this paper and the target PCD was thus accurately extracted, providing an accurate data
foundation for the subsequent point cloud processing.

4.2. Simplification Experiment

The target PCD extracted after denoising retained a large amount of data and redundant point
clouds, resulting in a heavy workload for subsequent analysis and low analytical efficiency. Therefore,
the point cloud simplification algorithm designed in Section 3.2.3 was used to simplify the PCD.
The simplified point cloud model is shown in Figure 10. For the point cloud simplification algorithm,
the relevant calculation parameters are k = 15, m = 2, C = 20, σ = 2, ε = 0.02 and T = 50.

To reduce the influence of redundant points on the subsequent analysis of PCD, a feature preserving
retention FCM algorithm was designed to simplify the PCD. Figure 10 illustrates the simplified point
cloud model. The number of point clouds after simplification was 13,911 (Figure 10a), 9,794 (Figure 10b),
13,576 (Figure 10c), 30,502 (Figure 10d), 15,150 (Figure 10e), 41,367 (Figure 10f), 22,019 (Figure 10g),
28,528 (Figure 10h). The number of redundant points removed was 83,957, 65,662, 129,940, 236,806,
149,323, 368,898, 206170 and 260,587. The simplified rate equation is as:

rate =
Nbe f ore −Na f ter

Nbe f ore
× 100%, (30)
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where, Nbe f ore is the number of point clouds before simplification and Na f ter is the number of point
clouds after simplification.
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Figure 11. PCD after registration in Figure 10a. (a) is the initial position of the point cloud, (b) is the 
result of coarse registration, and (c) is the result of fine registration 

Figure 10. PCD after simplification in Figure 9. (a)–(h) are a series of simplification results of vehicle
body parts PCD in Figure 9, respectively.

According to Equation (30), the point cloud simplification rate was 85% (Figure 10a),
87% (Figure 10b), 90% (Figure 10c), 88% (Figure 10d), 90% (Figure 10e), 90% (Figure 10f), 90% (Figure 10g)
and 90% (Figure 10h). These simplification rates can maximize the removal of redundant data points
while retaining the features of the point cloud model, providing a good data foundation for subsequent
point cloud processing to reduce the workload and improve the computing efficiency.

4.3. Registration Experiment

After denoising and simplifying of the PCD, the PCD was registered with its CAD model.
The registration process was first performed through coarse registration based on SAC-IA and placed
in a good initial position. Then the fine registration process based on TLBO was used to complete the
whole point cloud registration process. The parameters of the registration process were set as follows:
T = 500, U = 100, L = 100, N = 30, D = 6. The registration process is shown in Figures 11–17 where the
data (yellow) is the PCD of CAD model and the blue data comprise the simplified measurement PCD.
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Table 3. Registration parameters.

Part α β γ dx dy dz

Coarse registration

Figure 11 9.0387 3.793 90.823 1196.752 −1590.586 460.298
Figure 12 −65.745 −20.340 −94.093 1166.474 426.493 314.908
Figure 13 177.283 2.508 173.269 2132.986 −728.748 291.238
Figure 14 138.172 −77.432 143.629 1299.793 −697.308 −732.713
Figure 15 146.283 5.299 100.222 2432.986 −511.439 543.314
Figure 16 155.333 −54.520 166.877 1115.545 −555.358 −753.234
Figure 17 −88.344 −9.453 −13.342 2563.111 −657.546 300.455

Fine registration

Figure 11 0.500 0.079 0.685 −6.414 −9.381 6.173
Figure 12 8.161 0.056 −0.165 1.157 7.854 7.963
Figure 13 0.132 −1.342 6.782 −4.144 −1.451 −2.137
Figure 14 1.397 −0.537 2.823 −2.060 −5.086 1.711
Figure 15 3.445 0.043 −0.133 0.160 3.444 2.323
Figure 16 0.111 −0.554 2.820 −1.155 −0.775 −1.444
Figure 17 1.337 −0.666 2.823 −1.041 −2.168 0.911

4.4. Inspection Results

According to the above analysis process of PCD, the initial PCD were denoised, simplified and
registered, respectively. The PCD after the pre-processing is further analyzed, mainly including the
dimensional deviation of the part itself and the matching state analysis with other parts by KNN.
The inspection results are shown in the Figures 18 and 19. Figure 18 shows the color deviation diagram
of the inspection result. Figure 19 shows the histogram of the inspection results.
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Figure 18. The color deviation diagram of inspection results in Figure 3. (a)–(h) are a series of 
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Figure 18. The color deviation diagram of inspection results in Figure 3. (a–h) are a series of inspection
results color deviation diagram of vehicle body parts in Figure 3, respectively.

Figures 18 and 19 show the inspection results of four groups of vehicle body parts based on the
denoised PCD and the spatial matrix registered, where Figure 18 is the dimensional deviation of the
single part and Figure 19 the deviation histogram of vehicle parts. Take Figure 18a as an example,
the minimum, maximum, mean and standard deviation of part deviation are 0.0105 mm, 3.1606 mm,
0.6576 mm and 0.3838 mm in Table 4, respectively. The inspection results of other vehicle parts are also
shown in Figures 18 and 19 and Table 4.
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Table 4. Inspection results (mm). 

Part Min Max Mean Std 
Figure 18a 0.0105 3.1606 0.6576 0.3838 
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Figure 18c 0.0068 3.1068 0.8512 0.7559 
Figure 18d 0.0182 2.2808 0.3487 0.1715 
Figure 18e 0.0496 0.2346 0.2243 0.0070 
Figure 18f 0.0109 0.0125 0.1146 0.0046 
Figure 18g 0.0171 1.8814 0.3311 0.1806 
Figure 18h 0.0156 7.3595 0.4190 0.3115 

From the point cloud deviation of the above parts shown in Figure 18a–h, although the 
maximum and minimum values are relatively large, their mean values and standard deviations are 
within the standard value range. This is due to the large amount of point cloud data, the processing 
process is very complex, there may be some individual noise points, affecting the results of the 
maximum and minimum values. Therefore, the mean value and standard deviation of statistical data 
have more practical guiding significance. 

Therefore, in order to more objectively reflect the actual state of the measured data, the deviation 
histogram is shown in Figure 19a–h. It can be seen from the figure that, except for Figure 19c, the 
deviation distribution of the other point cloud is relatively uniform, indicating that the algorithm 
designed has a good computing effect and can accurately complete the point cloud pre-processing 
process and carry out the actual state analysis of the point cloud. As for the deviation histogram of 
vehicle body part shown in Figure 18c, some points have large deviation (1.5 mm~2.5 mm), so it is 
necessary to further inspect and analyze whether the dimension of parts meets the design 
requirements. 
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Table 4. Inspection results (mm).

Part Min Max Mean Std

Figure 18a 0.0105 3.1606 0.6576 0.3838
Figure 18b 0.0171 1.1075 0.3469 0.1761
Figure 18c 0.0068 3.1068 0.8512 0.7559
Figure 18d 0.0182 2.2808 0.3487 0.1715
Figure 18e 0.0496 0.2346 0.2243 0.0070
Figure 18f 0.0109 0.0125 0.1146 0.0046
Figure 18g 0.0171 1.8814 0.3311 0.1806
Figure 18h 0.0156 7.3595 0.4190 0.3115

From the point cloud deviation of the above parts shown in Figure 18a–h, although the maximum
and minimum values are relatively large, their mean values and standard deviations are within the
standard value range. This is due to the large amount of point cloud data, the processing process is
very complex, there may be some individual noise points, affecting the results of the maximum and
minimum values. Therefore, the mean value and standard deviation of statistical data have more
practical guiding significance.

Therefore, in order to more objectively reflect the actual state of the measured data, the deviation
histogram is shown in Figure 19a–h. It can be seen from the figure that, except for Figure 19c,
the deviation distribution of the other point cloud is relatively uniform, indicating that the algorithm
designed has a good computing effect and can accurately complete the point cloud pre-processing
process and carry out the actual state analysis of the point cloud. As for the deviation histogram of
vehicle body part shown in Figure 18c, some points have large deviation (1.5 mm~2.5 mm), so it is
necessary to further inspect and analyze whether the dimension of parts meets the design requirements.

Finally, we compare this algorithm framework with other algorithms. Considering that any link
in the inspection process will have an impact on the calculation results, in this test, TLBO algorithm
in the process of fine registration is replaced by the HS algorithm, while the rest of the calculation
process remains unchanged. The vehicle part in Figure 2h is taken as the research object. The deviation
histogram of the two algorithm framework is shown in Figure 20.
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The histogram of point cloud deviation can be seen in Figure 20. The deviation distribution of
point cloud tends to be larger under the HS algorithm. This reflects that, although the deviation of
parts has a manufacturing error, the algorithm selected also greatly affects the evaluation results of
parts in the inspection process. Therefore, the vehicle part inspection workflow in this paper provides
a reliable method for vehicle body quality inspection.

5. Conclusions and Future Work

Under the background of “Industry 4.0,” it was found that the whole vehicle factory interfered
in the measurement and matching of vehicle parts, resulting in the reworking of parts and assembly
failure, which greatly increased the workload of engineers and technicians and reduced production
efficiency. Therefore, using optical non-contact measurements and computer science technology,
combined with an analysis of the research status of virtual matching technology at home and abroad,
we proposed an inspection technology for vehicle body parts based on point cloud data. Optical
measurement equipment is used as a tool based on the measured point cloud data of the acquired parts.
Firstly, the point cloud noise data were removed by the hybrid filtering algorithm and the target point
cloud data were extracted. Secondly, to reduce the subsequent calculation workload and improve the
efficiency of the analysis, a fuzzy clustering simplification algorithm based on feature retention of the
PCD was designed. Thirdly, in combination with the CAD model data of the parts, the SAC-IA and
TLBO algorithms for point cloud data were used from the coarse registration to the registration process
to complete the complete data alignment operation. In the final analysis after pretreating the actual
state PCD for the parts, this paper offers an effective technical proposal for an examination process of
automobile body parts.

In future work, we will continue to carry out quantitatively research the matching of vehicle
parts, especially when the interference is found in the parts, the interference value is obtained in
advance through the related algorithm design to pre-adjust the parts and reduce the assembly error
rate. In addition, the influence of point cloud noise should be further reduced during the point cloud
pretreatment process, so future work is also needed in this area.
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Appendix A

ax + by + cz = (A1)

C =


∑n

i=1(xi − x)2 ∑n
i=1(xi − x)(yi − y)

∑n
i=1(xi − x)(zi − z)∑n

i=1(xi − x)(yi − y)
∑n

i=1(yi − y)2 ∑n
i=1(yi − y)(zi − z)∑n

i=1(yi − y)(zi − z)
∑n

i=1(yi − y)(zi − z)
∑n

i=1(zi − z)2

, (A2)

where (a, b, c) is the normal vector of selected point.

E(x) =
n∑

i=1

((x− εi)
Tn(x)2G(x, εi)) (A3)

n(x) =
∑n

i=1 n(εi)G(x, εi)

‖
∑n

i=1 n(εi)G(x, εi) ‖
, (A4)

where G is Gaussian function; x is projection point,; εi is the neighborhood of x.

T =


1
0
0
0

0
1
0
0

0
0
1
0

dx

dy

dz

1

 (A5)


x′

y′

z′

1

 = T ·


x
y
z
1

. (A6)

When p is rotated in space, its motion is as follows:

R =


cos β cos γ+ sin α sin β sin γ

cos α sin γ
− sin β cos γ+ sin α sin β sin γ

0

− cos β sin γ+ sin α sin β sin γ
cos α cos γ

sin β sin γ+ sin α cos β cos γ
0

sin β cos α
− sin α

cos α cos β
0

0
0
0
1

 (A7)


x′

y′

z′

1

 = R ·


x
y
z
1

 (A8)

Therefore, when p moves arbitrarily in space, its motion process can be written as:

p′ = R · p + T, (A9)

where T is the translation matrix in space; R is the rotation matrix; dx, dy and dz are the translation
distances in the directions of X, Y and Z, respectively; and α, β and γ are the rotation angles on the X, Y
and Z axes, respectively.
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