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Abstract: The write-only oblivious RAM (ORAM) is proposed to efficiently protect the privacy of
applications such as cloud storage synchronization and encrypted hidden volumes. For N blocks with
size B = Ω(log2N), the most efficient write-only ORAM, DetWoORAM, achieves O(B) communication
complexity with O(logN) rounds per logical write. We propose a two-level write-only ORAM and
achieve O(B) communication complexity with O(1) rounds. Similar to the traditional bucket-based
ORAM schemes, we set a rate for the write operation to further reduce the communication complexity.
The top-level stores data blocks in a flat array and the write pattern is protected by writing blocks
uniformly at random. The second level employs a binary tree to store the position map of data blocks.
To avoid recursive storage, a static position map for blocks in the second level is used. Both the
analysis and experiments show that, besides the achieved low communication complexity and rounds,
the stash sizes in the top level and the second level are bounded to O(B) and ω(B), respectively.
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1. Introduction

For applications like outsourced storage, a client’s data is stored on an untrusted server [1,2].
Even if the data is fully encrypted, sensitive information might still be leaked to the server or adversaries
that can observe the entire communication between the client and the server [3]. Oblivious RAM
(ORAM) is a protection guaranteeing that the server and such adversaries cannot distinguish an access
pattern from another. ORAM has been widely studied and its performance has been improved both in
theory [4–8] and in practice [9,10]. In addition to the outsourced storage, it has also been applied in other
various applications, such as secure processor [11–13] and secure multi-party computation [14–18].

1.1. The Emergence of Write-Only ORAM Schemes and Their Efficiencies

The traditional ORAM schemes protect the privacy of both the read access pattern and write
access pattern. However, for some applications such as the encrypted hidden volume [19] and cloud
storage synchronization [20], the server is able to see the entire history of write operations, but it
cannot see which blocks are being read. In this case, only the write access pattern is required to be
protected, which brings a weaker security notion of ORAM. If using the traditional ORAM schemes to
these applications, a substantial amount of shuffling is required for a write operation, which incurs an
expensive overhead. To address this problem, a new concept, the write-only ORAM is proposed [21],
in which only the privacy of the write access pattern is protected.

Unlike the traditional ORAM schemes which perform well based on a binary tree [22,23], when
setting asides the privacy of the read access pattern, data structure in the write-only ORAM schemes
can be simplified as a flat array, such as HiVE and DetWoORAM [19,24]. HiVE is a write-only ORAM
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proposed by Blass et al. to protect the privacy of Hidden Volume Encryption on a disk. In the write
operation, a data block is written to the hidden volume uniformly at random. Clearly, the data block
transmitted between the client and the server is O(1) in a write operation. However, HiVE stores the
position map recursively on the disk. If setting the block size in these recursive levels to O(logN),
the overhead of communication in a write operation is O(log3N) or O(B), where N is the number of
data blocks and B is the size of data block. DetWoORAM is a stateless write-only ORAM proposed by
Roche et al. In the write operation, the data block is sequentially appended into a holding area on
the server. Then, a refreshment is executed to evict the data blocks in the holding area to the main
area. In DetWoORAM, a pointer-based technique is used to store the position map and the overhead of
communication in a write operation is O(BlogN).

By setting the data block size B = Ω(log2N), both schemes have O(BlogN) communication complexity.
Moreover, both schemes require O(logN) communication rounds to accomplish a write operation.
However, if setting aside the position map, the overheads of communication in both schemes achieve
O(B). Therefore, the cost of the position map dominates the efficiency. In our work, we aim to reduce
the cost caused by the position map.

1.2. The Quest for ORAMs with Optimal Complexity Brought by Position Map

For N blocks, the size of position map is O(NlogN), which is prohibitively large to be stored at the
client side. One solution of the previous write-only schemes to address it is the recursive position-based
technique, such as HiVE. Concretely, a series of ORAMs such as ORAM0, ORAM1, . . . , ORAMX are
constructed where ORAM0 stores the data blocks and the position map of ORAMi is stored in ORAMi+1.
The client stores the position map of ORAMX. If the block size in these position map ORAMs is χ·logN
for some constant χ ≥ 2, O(logN) recursive levels are constructed until the final ORAM is small enough
to fit for the client storage. Although HiVE has a better asymptotic communication complexity than
the traditional ORAMs in a non-recursive setting, the costs of position map in the two kinds of ORAM
schemes are identical. In the tree-based schemes, both the read operation and write operation must
occur for every recursive level, which incurs O(log3N) communication [22,23]. In Hive, the write
operation also occurs for every recursive level. Moreover, when writing at a certain level, all lower
recursive levels must be read. Therefore, the overhead of the communication is also O(log3N) [19].

In addition to the recursively storage, the pointer-based technique is another solution for the
storage of position map, in which an oblivious data structure (ODS) in the form of Trie [25] is used to
store the position map, such as the DetWoORAM [24]. Every node except the leaves in the Trie stores a
pointer to its child node. Instead of a logical address, the physical address of the child is stored in the
pointer. Therefore, it is no longer necessary to translate a logical address to a physical address within
the Trie itself. Hence, the position map for the Tire itself is eliminated. A path in the Trie is supposed
to be traversed when reading the data block or its corresponding physical address. Although the cost
of position map is reduced to O(log2N), it incurs O(Blog2N) cost to read the data blocks. Moreover,
the DetWoORAM requires O(logN) rounds to get the physical address of a block as a node in Trie can
only be read from the server after its parent has been read already.

We propose a write-only scheme to improve the efficiency of communication complexity
and communication rounds. The construction of position map follows the idea proposed by
Gordon et al. [26]. In their scheme, a static position map is used for a two-server-setting ORAM. After
initialization, the position map does not change anymore. The privacy of read operation in their
scheme is protected by private information retrieval (PIR) [27,28]. In this case, both servers cannot
locate the desired data block. The remaining security requirement is identical with that in write-only
ORAM. Therefore, the static position map can be employed to our write-only scheme, which brings an
overhead of O(B) communication if B = Ω(log2N) and O(1) rounds.
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1.3. On Tightness of Asymptotic Efficiency in Random Write-Only ORAM

In previous write-only ORAM schemes, both the random order and deterministic order are
competent to protect the privacy of write access pattern [19,24]. We prefer to the random order, as it
generates stash which helps to implement the corresponding write-only ORAM schemes in hidden
volume encryption. Additionally, the stash involved could act as an optimization of the communication
complexity if the access rates of data blocks are not equal, but this is out of scope of this paper.

HiVE is random write-only ORAM [19], in which the parameters (r, k) manipulate the asymptotic
efficiency, where r is the ratios of physical storage to the logical storage. In the evaluation, it only
evaluates the stash size on a specific pair of (r, k), without given both the upper bound of stash size
and the relationship between r and k to bound the stash size. Based on the mechanism of write access
pattern in HiVE, we carry out a tight analysis on the upper bound of stash size. To further reduce
the communication complexity, we use the traditional bucket-based data structure to implement our
write-only scheme, in which a pair of parameters (Z, A) are defined, where Z is the capacity of blocks
in a bucket and A is the rate of a write operation. Parameters Z and A can be traded off to reduce the
communication complexity.

1.4. Technical Highlights

We construct a two-level ORAM scheme named constant rounds write-only ORAM (CWORAM).
The top level stores all data blocks and the second level stores the position map of the data blocks.
The position map of the second level is static and does not need to be stored, as the client can compute
it at any time.

1.4.1. Construct of the Top Level ORAM

In write-only ORAM schemes, as privacy of a write operation can be achieved by writing a block
to a random physical address, a flat array is employed to store blocks in the top level. The dynamic
position map of the blocks in the flat array is stored in the second level.

In the flat array, we use the traditional bucket-based structure to store the blocks and set the
bucket size as Z. In this case, only a bucket is randomly chosen for a write operation. In the analysis,
as long as the expected number of blocks and the capacity of blocks included in a write operation are
determined, the upper bound of stash size could be evaluated by calculating the deviation.

1.4.2. Construct of Position Map

In this level, it stores the position map of data blocks. Moreover, the position map of the blocks in
this level is static. Therefore, a deterministic order has to be used in a write operation of the blocks in
this level. We employ a binary tree in this level to support the deterministic order of write operations.
There is a requirement of the static position map that the physical address of each block should be
randomly distributed. In this case, the stash size can be bounded well. Gordon et al. carry out a
pseudo-random permutation (PRP) for each logical block and the result is the physical address of the
block. After PRP, the physical addresses of all blocks are randomly distributed.

The main contributions of our work are as follows.

• We use the static position map to reduce the communication complexity of the write-only ORAM.
The overhead of communication is reduced from O(BlogN) to O(B), where B is the size of data
block and N is the number of data blocks. Moreover, the communication rounds are reduced from
O(logN) to O(1).

• We carry out a theoretical analysis on the stash in our scheme, in which both the upper bound of
stash and the parameter-setting condition are taken into account. The analysis expresses that the
probability of the stash size exceeding R is (A/Z)−R if Z(ln Z/A) −Z + A− ln 2 > 0.
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The rest of the paper is organized as follows. Section 2 introduces the preliminaries, including the
concept of write-only ORAM, the random write-only scheme HiVE, and the technique of static position
map proposed by Gordon et al. Section 3 describes our scheme. Section 4 analyzes and evaluates the
efficiency of our scheme. Section 5 gives a conclusion.

2. Preliminaries

2.1. Write-Only ORAM

ORAM was first proposed by Goldreich and Ostrovsky [29] to protect the privacy of access pattern
on the RAM. Later, it was used to the client–server scenario, in which the server is treated as honest
but curious and the client is trustful. Traditionally, the access pattern protected by ORAM contains the
logical address and the type of operation, read, or write. First, the logical address is translated into
a group of physical addresses. Second, no matter the logical operation is read or write, it is always
translated into a group of physical reads and physical writes.

Definition 1. (ORAM Security): Let physicaladd&op(
→
y ) represents the access pattern containing the

physical addresses and operations translated by ORAM from access sequence
→
y. ORAM is secure as long as, for

any two access sequences with the same length, e.g.,
→
y 1 and

→
y 2, the two access patterns output by ORAM are

computationally indistinguishable.

physicaladd&op(
→
y 1) ≈c physicaladd&op(

→
y 2)

where ≈c denotes computational indistinguishability (with respect to a computational security parameter κ).

The write-only ORAM is a relaxed security notion of ORAM. It sets aside the read access pattern
and only protects the write access pattern.

Definition 2. (Write-Only ORAM Security): Let physicaladd(
→
y ) denote the physical addresses translated

from access sequence
→
y by a write-only ORAM. For two access sequences

→
y 1 and

→
y 2 with the same length,

it holds
physicaladd(

→
y 1) ≈c physicaladd(

→
y 2)

2.2. HiVE

HiVE is designed to protect the encrypted hidden volume from powerful adversaries which
are possible to get multiple-snapshot of a disk and infer the existence of encrypted hidden volume
according to the updated locations in the disk.

Data blocks in HiVE are stored in a flat array as the form (a, d) ∈{0,1}logN
×{0,1}B, where a is the

logical address of a block and d is the payload. At the client side, there is a stash storing the blocks
which have not been written back to the disk yet.

The data structure and the write operation in each recursive level are identical. Specifically,
the blocks in each level are stored in a flat array. In a write operation, k blocks are read uniformly at
random from the server and the blocks in the stash are inserted into the free spaces of the k blocks if
existing any.

In the evaluation, it sets parameters (r, k) = (2, 3) to bound the stash size. The size of block in all
position map ORAMs is set to O(logN). Hence, there are O(logN) recursive levels and the communication
complexity in position map is O(log3N). When the data block size is B = Ω(log2N), the overhead of
communication complexity in HiVE is O(BlogN) and the communication rounds is O(logN).
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2.3. The Static Position Map

The static position map first proposed by Gordon et al. avoids recursive storage of position map
for two-setting setting ORAM. In the initialization, each data block is randomly mapped to a path in a
binary tree and the path does not change anymore. In this case, both the read operation and the write
operation can be accomplished just with constant communication rounds.

For a logical access, the client first computes the physical path to which the desired block is
mapped. Then, the private information retrieval (PIR) implemented by Function Secret Sharing [30] is
used to read the desired block from the two servers. On each sever, it takes the entire list of blocks as
the inputs of PIR and outputs the secret share of the desired block. Then, the client adds the desired
block into the stash. Meanwhile, a path chosen by the reverse lexicographic order [31] are read from
one of the servers and the blocks in the stash are written back into it with a greedy algorithm.

There is a requirement for the static position map. That is, each block must be randomly mapped
to a physical path, otherwise the stash size cannot be bound. Therefore, the position map is constructed
by a pseudo-random permutation FK: [N]→[N], with K managed at the client side.

3. CWORAM

In this section, we describe the detail of CWORAM, in which only the privacy of write access
pattern is protected. For a read operation, the data block and its position map are directly read
according to their physical addresses. Notations in CWORAM are listed in Table 1, in which the main
ORAM is the top level ORAM and the posMap ORAM is the second level ORAM.

Table 1. Notations in CWORAM.

Notations Meanings

N Number of blocks in the main ORAM

B The size of data block in the main ORAM

Z Maximum number of blocks per bucket in the main ORAM

A The rate of write operation in the main ORAM

S Maximum number of blocks per bucket in the posMap ORAM

A’ The rate of write operation in the posMap ORAM

Mi The i-th bucket in the main ORAM

Pl Path l in the posMap ORAM

P(l,i) The i-th bucket on Pl in the posMap ORAM

3.1. Data Structure

Figure 1 shows the detail of the data structure in CWORAM. At the top level, the ORAM is filled
with data blocks and the data structure is a flat array. We call it the main ORAM, in which each element
is a bucket, which possesses a capacity of Z blocks. Data blocks are formed as (a, d)∈{0,1}logN

×{0,1}B,
where a is the logical address and d is the payload.

At the second level, the ORAM is filled with position map of the main ORAM. We call it the
posMap ORAM. The data structure in the posMap ORAM is a binary tree, in which each node is a
bucket that can hold S blocks. The blocks are formed as (a, pos(a), off (a))∈{0,1}logN

×{0,1}logN
×{0,1}logZ,

where a is the logical address of a data block, pos(a) is the physical address indicating where the bucket
contains block a is located in the main ORAM, and off (a) is the offset of block a in the bucket. In our
scheme, the buckets in both the main ORAM and the posMap ORAM only contain real blocks even if
they are not fulfilled, since the dummy block only contributes to the privacy protection of read access
pattern [23].
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At the client side, it contains two stashes and the key related information. Due to the randomness
in the write operations of both the two ORAMs, stashes are required to store the blocks which have not
yet been written back to the server. We define MStash as the stash in the main ORAM and PStash as the
stash in the posMap ORAM. In addition, the client stores key related information.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 15 
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3.2. Initialization

Data blocks can be stored anywhere in the main ORAM since their addresses are located by the
position map. For simplicity, we let one bucket store exactly one block in the main ORAM. Hence,
a flat array with N buckets is required. Concretely, the block a is stored in the bucketMa and the rest
space of bucketMa is empty.

In the posMap ORAM, it stores the position map of each block in the main ORAM. The position
map of the posMap ORAM is static which is computed by the client directly if needed. Therefore, the
recursive storage of position map is unnecessary anymore. For instance, the physical address of data
block a, i.e., (a, pos(a), off (a)), is stored in the posMap ORAM, and the physical address of (a, pos(a),
off (a)) is computed by the client. Moreover, the physical address of (a, pos(a), off (a)) is the index of a leaf
node in the posMsp, which indicates that (a, pos(a), off (a)) is stored along the path from the root to this
leaf node.

To bound the stash size in posMap ORAM, it requires that the physical addresses of all position
blocks (x, pos(x), off (x)) is randomly distributed, where x = 0,1, . . . , N-1. Similar to Gordon’s scheme,
a pseudo-random permutation is used to randomly map each position block to a physical address.
Precisely, let F be a pseudo-random permutation and FK:[N]→[N] be a mapping from a position block
to its physical address, where K is only known by in the client. Then, the position block (a, pos(a), off (a))
is always stored along the path PF(K,a) in the posMap.

At the beginning, since all blocks in the main ORAM are stored according to their logical addresses
explicitly, the posMap ORAM is set to empty.

3.3. ORAM Read

As the privacy of the read access pattern does not need to be protect, ORAM Read takes a logical
address a as input and responds with block a to the client directly. The detail of ORAM Read is shown
in Algorithm 1. First, pathPF(K, a) is firstly read from the posMap ORAM. According to the permutation
defined in the initialization, pos(a) and off (a) can be found in path PF(K, a). Then, block a is read from
bucketMpos(a) with the offset off (a) in the main ORAM. Note that all blocks stored in the server are
encrypted and the client needs to decrypt them. The decryption is treated as a default operation and
so is not included in the algorithm.

Algorithm 1: ORAM Read(a)

1: (pos(a),off (a)):=read PF(K,a) from posMap ORAM and choose the position of block a.
2: (a, d):=read the block with the offset off (a) in bucketMpos(a) from the main ORAM.
3: Return block (a, d) to the client
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3.4. ORAM Write

The ORAM Write carries out a write operation and the detail is illustrated in Algorithm 2.
The inputs are the block a responded in ORAM Read and its new payload, i.e., ((a, d), d’). First, the
payload of block a is replaced with the new payload d’. Then, block a is re-encrypted and put into
MStash. Afterwards, the sub process Mwrite is executed to write the blocks stored in MStash to the
main ORAM. In the end, since the physical address of each block involved in the Mwrite is changed, the
sub process Pwrite is executed to accomplish the update in the posMap ORAM. Similar to the classical
schemes, both the Mwrite and Pwrite are invoked at fixed rates. We denote the two configurable
rates as A and A’ for Mwrite and Pwrite, respectively. Furthermore, a persistent variable ctr is set as
a counter.

Algorithm 2: ORAM Write((a, d), d’) Persistent Variables ctr:=0

1: d:=d’, ctr:=ctr+1
2: MStash: = MStash∪(a, d)
3: if ctr%A = 0 then Mwrite()
4: if ctr%A’ = 0 then Pwrite()

3.4.1. MWrite

After every A ORAM Reads, MWrite is executed to write blocks from MStash into the main ORAM.
A bucket is chosen from the server to find free spaces. Then the blocks in MStash are written back into
these free spaces. The information hidden from adversaries per Mwrite includes (1) which block is
being written back (2) the lifetime of the block being written back. To grant the two requirements, both
a deterministic order and a random order can be used to choose a bucket. As mentioned above, we
employ the random order to set a rate for the MWrite operation.

Suppose bucket b is chosen uniformly at random. There might be two states for its included
blocks, fresh or stale. Only the fresh blocks are kept, and the stales are deleted to free up the spaces.
The states of these blocks are obtained by querying the posMap ORAM. For block a, if its physical
address pos(a) stored in posMap ORAM equals the address of bucket b, then it is fresh. Otherwise,
it is stale.

Afterwards, the client chooses the blocks from MStash to insert them into the free spaces of bucket
b with either a random order or a sequential order. Since dummy blocks are not included in our
scheme, no padding is required even if there still exists free space in bucket b. After re-encryption,
the bucket b is sent back to the server. Finally, the new physical address of each block written into
bucket b are added into PStash. The detail of Mwrite is described in Algorithm 3. All blocks written
back to the server are re-encrypted, which is also treated as a default operation and so is not included
in the algorithm.

3.4.2. PWrite

After every A’ ORAM Reads, PWrite is executed to write blocks from PStash into the posMap.
A path PW is chosen to be written according to the reverse lexicographic order of persistent variable
ctr. First, the path PW is read from the server. Then, the stale blocks are cleared out and the fresh
blocks are added into PStash. In the end, a greedy algorithm is executed to push the blocks in PStash
down to the path PW as far as possible. Specifically, for a block (a, pos(a), off (a)), the bucket furthest
from the root along path PW is found as long as (1) the bucket is on PF(K, a), and (2) the bucket has free
space. Algorithm 4 shows the detail of Pwrite.
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Algorithm 3: Mwrite (MStash)

1: addr:=UniformRandom(1,n), b:=Maddr
2: for (a,d) in b
3: pos:=read PF(K,.A) from posMap ORAM and choose the address of block a.
4: if pos,addr then S(BA):=free
5: while b has free space and MAtash,null
6: put blocks into b and delete them from MStash
7: for (a,d) in blocks
8: PStash:= PStash∪(a, addr)

Algorithm 4: Pwrite (PStash)

1: PW :=the path determined by the reverse lexicographic order of ctr/A’.
2: Clear out the stale block in PW and put the rest fresh blocks into PStash
3: for l from logN-1 to 0
4: if PW ,L, has free space and PStash ,null
5: then choose blocks which can reside in bucket PW ,l, and delete them from PStash

3.5. Security Analysis

3.5.1. Encryption Mode

At any time, data blocks and their position map stored on the server are encrypted. To ensure
the semantic security for all data blocks and their position map, an encryption scheme against
chosen-plaintext attacks (CPA) is used in our scheme. CPA security is often called IND-CPA security
which products indistinguishable ciphertexts from random strings, such as the Advanced Encryption
Standard (AES) in Cipher Block Chaining (CBC) or counter mode. In this case, the server cannot learn
any information from the ciphertexts stored on it.

3.5.2. Security of CWORAM

In the initialization, all data blocks are stored in the main ORAM after encryption. In addition, the
key used for static mapping is managed by the client. Hence, no information is leaked to the server.

In the sub process Mwrite, the sequence of physical addresses written to the main ORAM are
random, which does not depend on the access sequence. Furthermore, the sequence of physical
paths written to the posMap are deterministic, which also does not depend on the access sequence.
In addition, the IND-CPA encryption mode is used to encrypt the data. Hence, the server is unable to
get any information from the ciphertexts. Therefore, let

→
y 1 and

→
y 2 be two access sequences with the

same length, it holds
physicaladd(

→
y 1) ≈c physicaladd(

→
y 2)

4. Evaluation

In our evaluation, we set the block size B = Ω(log2N) in the main ORAM and the block size
B’ = Ω(logN) in the posMap. In the following, we evaluate the storage in both the client and server, as
well as the communication complexity of the write operation.

4.1. Server Storage

All the blocks are encrypted on the server with a computational security parameter κ. In the
main ORAM, there are N-buckets which have the capacity of Z blocks. Encryption adds less than κ
additional bits to each block. When the block size is B = Ω(log2N), the length of encrypted block is
DM=O(log2N), which results O(N·log2N) server storage. In the posMap ORAM, there are N-buckets that
have the capacity of S blocks. Similar to the main ORAM, the encryption adds less than κ additional
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bits to each block. When the block size is B’ = Ω(logN), the length of encrypted block is DP = O(logN),
which results O(N·logN) server storage. Therefore, the server storage could be concluded as O(N·B).

4.2. Communication Complexity

A logical read from the client is translated into an ORAM Read, which responds with a block to
the client. The physical reads in ORAM Read include (1) a block read from the main ORAM, and (2)
a path read from the posMap ORAM. Hence, the communication complexity for a logical read is
Dm + S · log N ·Dp .

A logical write from the client is translated into an ORAM Read and an ORAM Write. The ORAM
Write writes the blocks from the client to the server. First, a physical read is executed in Mwrite to
read a random bucket from the main ORAM. Then, to check the states of the blocks in the random
buckets, at most Z paths are physically read from the posMap ORAM in Mwrite. Afterwards, a physical
write is executed to write the random bucket back. In the end, both a physical read and physical
write of a deterministic path are executed in Pwrite to update the position map of the blocks in the
main ORAM. Comparing a logical read, the extra communication complexity for a logical write is
2Z ·DM/A + Z · S · log N ·Dp/A + 2S · log N ·Dp/A′.

As DM=O(B) and DP=O(logN), the total communication complexity is O(B) or O(log2N).
If B=Ω(log2N), the total communication complexity per logical write or logical read is O(B). When N
and B are fixed, we can trade off Z and A to reduce the communication complexity in the main ORAM.
Likewise, S and A can be traded off to reduce the communication complexity in the posMap ORAM.

Furthermore, for a logical read, the physical reads in ORAM Read can only be executed sequentially,
which results two communication rounds. For a logical write, ORAM Read and ORAM Write can be
executed in parallel. In ORAM Write, the first communication round is the physical read to a random
bucket and the second communication round is the physical read to a set of paths in posMap ORAM
to check the states of blocks in the random bucket. For the remaining operations, all of them can
piggyback on the two physical reads. Specifically, the physical write to the random bucket as well as
the physical read and physical write to update the position map could be executed together with the
following physical reads to a random bucket or a set of paths. As a result, two communication rounds
are required for a logical write.

4.3. Stash Size

Due to the randomness of Mwrite and Pwrite, both the main ORAM and the posMap ORAM
require a stash to store the blocks which have not been written back yet. Since the detail analysis on
tree-based ORAM has been discussed by Gordon et al. [29], we only make a brief discussion on it,
but we will carry out a detail analysis of the stash size in the main ORAM.

4.3.1. PosMap ORAM

First, the scheme ORAMP,L
∞ with infinite bucket size is introduced. The original scheme with bucket

size S is denoted as ORAMP,L
S . After running the same access sequence with the same randomness in

the two schemes, ORAMP,L
∞ after a post-process algorithm has exactly the same state with ORAMP,L

S .
Specifically, the two schemes have the same distribution of blocks over all buckets and the stash.
For any rooted subtree T in ORAMP,L

∞ , if the number of blocks in T (denoted as X(T)) is larger than the
capacity of the same subtree in ORAMP,L

S , the extra blocks in T are the ones stored in PStash. Using a
union bound and Catalan sequence bound, the probability that the size of PStash is more than R is as
follows, where n(T) is the number of nodes in subtree T.

Pr[PStash ≥ R] <
∑
n≥1

4n
· max

T:n(T)=n
Pr[X(T) ≥ n(T) · S + R] (1)
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The bound of expected block number in any subtree T (E[X(T)]) is calculated firstly. Following
the analysis of Gordon et al. ([26], Section 3.2), we have E[b∞] ≤ 1 for the buckets in leaf nodes and
E[b∞] ≤ A′/2 for other buckets.

In the end, based on the capacity of each rooted subtree n(T)·S and the expected number of blocks
E[X(T)] in ORAMP,L

∞ , a Chernoff-like bound is used to analysis the size of PStash. If N ≥ 4 and A’=1,
it holds E[X(T)] ≤ 0.8 · n(T), which brings a conclusion that as long as S ≥ 3, the PStash overflow
probability decreases exponentially in its size R. Table 2 shows the extrapolated the size of PStash for
different (S, A’) with overflow probability of 2−λ, where λ is a statistical security parameter.

Table 2. The bound of PStash with the overflow probability 2−λ.

(S,A’)

λ (3,1) (4,3) (5,4) (6,5)

40 15 32 33 34
80 37 63 64 65

128 67 91 93 94

4.3.2. Main ORAM

The analysis of stash size in the main ORAM could follow the idea proposed by Path ORAM [13].
Similar to the posMap ORAM, ORAMM,L

∞ is defined in which the bucket size is infinite and ORAMM,L
Z

is defined in which the bucket size is Z. First, the states of ORAMM,L
Z and ORAMM,L

∞ after a post-process
algorithm are discussed. Then, the overflow probability of ORAMM,L

Z is analyzed. Afterwards, the
influence of access sequence on the stash size is analyzed. Finally, the bound of stash size is calculated.

Let b∞ be a bucket in ORAMM,L
∞ and bZ be a bucket in ORAMM,L

Z . Suppose ORAMM,L
∞ and

ORAMM,L
Z are running the same access sequence with the same randomness. A post-process of

ORAMM,L
∞ is carried out as follows. The buckets involved in ORAM Write are visited one-by-one.

At time stamp i, if b∞,i has more blocks than bZ,i, the extra blocks are stored in the client. If b∞,i has less
blocks than bZ,i, the blocks which do not reside in b∞,i must be stored in the client. Then, these less
blocks are stored in b∞,i. Therefore, the state of ORAMM,L

∞ after post-process is identical to ORAMM,L
Z .

Let T represents a sequence of buckets randomly chosen by ORAM Writes in ORAMM,L
∞ , X(T)

denote the number of fresh blocks in T, and n(T) denote the number of buckets in T.

Lemma 1. The MStash size is more than R if and only if there exists a sequence of buckets T such that X(T)>
Z·n(T)+R.

If there exists a sequence of buckets T such that X(T)>Z·n(T)+R, then the client storage generated
by post-process of ORAMM,L

∞ is larger than R. As the MStash has the same state with the client storage
generated by post-process of ORAMM,L

∞ , the MStash size in ORAMM,L
Z is also larger than R. Otherwise,

the MStash size is no more than R.
For n buckets, it contains the most numbers of n(n+1)/2 sequences mentioned in Lemma 1.

By using a union bound, we have

Pr[MStash ≥ R] = Pr[∃T ∈ ORAML
∞, X(T) ≥ Z · n(T) + R]

<
∑

n≥1
n(n + 1)/2 max

T:n(T)=n
Pr[X(T) ≥ Z · n(T) + R] (2)

Lemma 2. For all access sequences constructed by N blocks, the probability Pr[X(T) ≥ Z · n(T) + R] is
maximized under the access sequence in which the logical address of each block only appears exactly once.
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Suppose there is a logical address in access sequence a that has been written twice. Then, there
exists two indices i and j, i < j, such that ai = aj. Let T be the sequence of buckets such that X(T) is
maximized under sequence a. Without the j-th ORAM Write, X(T) remains the maximum. On the
contrary, if there is no duplicated logical address in an access sequence, then the j-th logical address is
distinct with other logical addresses. In the j-th ORAM Write, if the j-th logical block is stored in T,
the maximum number of blocks in T becomes X’(T) = X(T)+1, as the bucket size is infinite. Therefore,
the access sequence in which each logical address only appears once maximizes the stash size.

If the maximum of X(T) generated by the access sequence mentioned in Lemma 2 has an upper
bound, MStash is bounded. Let Xi(T)∈{0,1} indicates whether the i-th accessed block is in T and
pi = Pr[Xi(T) = 1]. As the uniform randomness, the probability that each bucket is chosen in ORAM
Write is 1/N. For a N-length access sequence, we have E[X(T)] ≤ n(T)·A. Since the logical address of
each block is distinct, it means that Xi(T), i = 0,..., N-1 are all statistically independent. According to
Ring ORAM ([2], Section 4.3), the generate function of E[etX(T)] is bounded as enA(et

−1), where n = n(T)
and t > 0. By the Markov Inequality, the Chernoff-bound on X(T) is

Pr[X(T) ≥ nZ + R] = Pr[eX(T)
≥ enZ+R]

≤ E[etX(T)] · e−t(nZ+R)
≤ e(e

t
−1)An

· e−t(nZ+R)

= e−tR
· e−n(Zt−A(et

−1))
(3)

From Equations (2) and (3), the probability that the size of MStash exceeds R is

Pr[MStash ≥ R] ≤
∑
n=1

n(n + 1)/2 · e−tR
· e−n(Zt−A(et

−1)) <
∑
n≥1

e−tR
· e−n(Zt−A(et

−1)−ln 2) (4)

The above inequality holds since n(n + 1)/2 ≤ 2n when n≥1. Let t = lnZ/A, as long as q =

Z ln Z/A − Z + A − ln 2 > 0, the overflow probability of MStash is (A/Z)R
· e−q
· (1 − e−q), which

decreases exponentially in its size R.
The analysis shows that the size of MStash only relies on parameters (Z, A) and the number of

blocks N has little influence on it. We simulate our scheme for a single long run. The access sequence
is designed in a round-robin pattern from Lemma 2, i.e., {1,2,...,N,1,2,...,N,1,2,...}. In the initialization,
we store number of N distinct data blocks to the main ORAM according to their logical addresses, e.g.,
block a is stored inMa.

We ran 225 logical writes and the first N logical writes were used to warm up the main ORAM to a
steady state. The parameters (Z,A) are set to (3, 1). Figure 2a shows the size of MStash under different
N. Four curves with different values of statistical security parameter λ are analyzed. Each curve
represents the size of MStash by varying the number of blocks (N), which concludes that N has little
impact on the size of MStash.
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Figure 2. (a) Maximum size of MStash with the failure probability 2−λ under different N; (b) Maximum
size of MStash with the failure probability 2−λ under different (Z, A), N = 215.
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By setting N = 215, Figure 2b plots the size of MStash is no more than R with a failure probability
2−λ. The two curves correspond to (Z, A) = (3, 1) and (Z, A) = (4, 2). Both curves are linear, which
shows that the size of MStash exceeds R with probability of 2−cR, where c is a constant depending
on (Z, A).

We have analyzed and evaluated the client storage required by both the main ORAM and posMap
ORAM. The results show that the client storage required in posMap ORAM is ω(log2N) and the client
storage required in main ORAM is O(B). Since B = Ω(log2N), the total client storage can be concluded
as ω(B).

Table 3 compares the efficiency of CWORAM with those of the previous write-only ORAM
schemes, as well as that of Gordon’s. For a logical write operation, the previous works have the
minimum communication complexity O(BlogN). In CWORAM, since neither the recursive storage nor
the ODS storage of position map is required, it achieves O(B) communication complexity if the size of
blocks in the posMap is set to O(logN). For a logical read operation, the overhead of communication in
CWORAM is the same with HiVE, i.e., O(B), which improves a factor of logN comparing to that in
DetWoORAM. Further, CWORAM brings a constant communication rounds which is the minimum
rounds achieved by the previous works. Moreover, CWORAM also performs well in terms of the
storage of the stash and that of the server.

Table 3. The efficiency of ORAMs in a uniform block setting, i.e., B = Ω(log2N).

Schemes

Parameters Communication Rounds
Stash

Server
Storage

SecurityLogical
Read

Logical
Write

Logical
Read

Logical
Write

HiVE O(B) O(BlogN) O(logN) O(log2N) ω(B) O(BN) W
DetWoORAM O(BlogN) O(BlogN) O(logN) O(logN) O(B) O(BN) W

Gordon’s O(BlogN) O(BlogN) O(1) O(1) ω(BlogN) O(BN) R&W
CWORAM O(B) O(B) O(1) O(1) ω(B) O(BN) W

5. Conclusions

By leveraging the property that the position map can be static, we propose a write-only
ORAM called CWORAM with O(B) communication complexity. Moreover, for each logical write,
the communication is accomplished with a constant number of rounds. Additionally, the storages
required in both the server and the client are bounded well, with O(NB) and ω(B), respectively. As our
scheme contains a stash, it increases the management complexity in the cloud storage synchronization.
However, as aforementioned, the stash could be used to further reduce the communication complexity
if allowing it to store the high-frequency data blocks. Therefore, in our future work, we will study the
trade-off between the stash size and the communication complexity under different update rates of
data blocks.
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Practical oblivious computation in a secure processor. In Proceedings of the Computer and Communications
Security, Berlin, Germany, 4–8 November 2013; pp. 311–324.

13. Fletcher, C.W.; Ren, L.; Kwon, A.; Van Dijk, M.; Devadas, S. Freecursive ORAM: [Nearly] Free Recursion
and Integrity Verification for Position-based Oblivious RAM. In Proceedings of the Architectural Support
for Programming Languages and Operating Systems, Istanbul, Turkey, 14–18 March 2015; Volume 50,
pp. 103–116.

14. Zahur, S.; Wang, X.; Raykova, M.; Gascón, A.; Doerner, J.; Evans, D.; Katz, J. Revisiting Square-Root ORAM:
Efficient Random Access in Multi-party Computation. In Proceedings of the 2016 IEEE Symposium on
Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2016; pp. 218–234.

15. Wang, X.S.; Chan, T.H.; Shi, E. Circuit ORAM: On tightness of the Goldreich-Ostrovsky Lower Bound.
Cryptology ePrint Archive. In Proceedings of the CCS’15: The 22nd ACM Conference on Computer and
Communications Security, 12–16 October 2015; Association for Computing Machinery: New York, NY,
USA, 2015.

16. Wang, X.S.; Huang, Y.; Chan, T.H.; Shelat, A.; Shi, E. Scoram: Oblivious Ram for Secure Computation; CCS:
Beijing, China, 2014; pp. 191–202.

17. Gordon, S.D.; Katz, J.; Kolesnikov, V.; Krell, F.; Malkin, T.; Raykova, M.; Vahlis, Y. Secure Two-Party Computation
in Sublinear (Amortized) Time; CCS: Beijing, China, 2012; pp. 513–524.

18. Doerner, J.; Shelat, A. Scaling ORAM for Secure Computation; CCS: Beijing, China, 2017; pp. 523–535.
19. Blass, E.; Mayberry, T.; Noubir, G.; Onarlioglu, K. Toward Robust Hidden Volumes Using Write-Only Oblivious

RAM; CCS: Beijing, China, 2014; pp. 203–214.
20. Aviv, A.J.; Choi, S.G.; Mayberry, T.; Roche, D.S. ObliviSync: Practical Oblivious File Backup and Synchronization;

NDSS: New York, NY, USA; The Internet Society: San Diego, CA, USA, 2017.
21. Li, L.; Datta, A. Write-Only Oblivious RAM based Privacy-Preserved Access of Outsourced Data. IACR

Cryptology ePrint Archive. Int. J. Inf. Secur. 2013, 16, 23–42. [CrossRef]
22. Stefanov, E.; Dijk, M.V.; Shi, E.; Fletcher, C.; Ren, L.; Yu, X.; Devadas, S. Path ORAM: An extremely simple

oblivious RAM protocol. In Proceedings of the Computer and Communications Security, Berlin, Germany,
4–8 November 2013; pp. 299–310.

23. Ren, L.; Fletcher, C.W.; Kwon, A.; Stefanov, E.; Shi, E.; Van Dijk, M.; Devadas, S. Constants Count: Practical
Improvements to Oblivious RAM; USENIX: Washington, DC, USA, 2015; pp. 415–430.

http://dx.doi.org/10.1109/TKDE.2019.2891581
http://dx.doi.org/10.1145/2775054.2694385
http://dx.doi.org/10.1007/s10207-016-0329-x


Appl. Sci. 2020, 10, 5366 14 of 14

24. Roche, D.S.; Aviv, A.J.; Choi, S.G.; Mayberry, T. Deterministic, Stash-Free Write-Only ORAM; CCS: Beijing,
China, 2017; pp. 507–521.

25. Wang, X.S.; Nayak, K.; Liu, C.; Chan, T.H.; Shi, E.; Stefanov, E.; Huang, Y. Oblivious Data Structures; CCS:
Beijing, China, 2014; pp. 215–226.

26. Dov, G.S.; Katz, J.; Wang, X. Simple and Efficient Two-Server ORAM. In Proceedings of the International
Conference on the Theory and Application of Cryptology and Information Security; 2018; pp. 141–157.

27. Williams, P.; Sion, R. Usable PIR. In Proceedings of the Network and Distributed System Security Symposium,
San Diego, CA, USA, 10–13 February 2008.

28. Mayberry, T.; Blass, E.-O.; Chan, A. Efficient Private File Retrieval by Combining ORAM and PIR; NDSS:
New York, NY, USA, 2014.

29. Goldreich, O.; Ostrovsky, R. Software protection and simulation on oblivious RAMs. J. ACM 1996, 43,
431–473. [CrossRef]

30. Boyle, E.; Gilboa, N.; Ishai, Y. Function Secret Sharing: Improvements and Extensions; CCS: Beijing, China, 2016;
pp. 1292–1303.

31. Gentry, C.; Goldman, K.A.; Halevi, S.; Julta, C.; Raykova, M.; Wichs, D. Optimizing ORAM and Using It
Efficiently for Secure Computation. In Proceedings of the International Symposium on Privacy Enhancing
Technologies Symposium, Bloomington, IN, USA, 10–12 July 2013; pp. 1–18.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/233551.233553
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Emergence of Write-Only ORAM Schemes and Their Efficiencies 
	The Quest for ORAMs with Optimal Complexity Brought by Position Map 
	On Tightness of Asymptotic Efficiency in Random Write-Only ORAM 
	Technical Highlights 
	Construct of the Top Level ORAM 
	Construct of Position Map 


	Preliminaries 
	Write-Only ORAM 
	HiVE 
	The Static Position Map 

	CWORAM 
	Data Structure 
	Initialization 
	ORAM Read 
	ORAM Write 
	MWrite 
	PWrite 

	Security Analysis 
	Encryption Mode 
	Security of CWORAM 


	Evaluation 
	Server Storage 
	Communication Complexity 
	Stash Size 
	PosMap ORAM 
	Main ORAM 


	Conclusions 
	References

