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Abstract: Parking block regions host dangerous behaviors that can be detected from a surveillance
camera perspective. However, these regions are often occluded, subject to ground bumpiness or
steep slopes, and thus they are hard to segment. Firstly, the paper proposes a pyramidal solution
that takes advantage of satellite views of the same scene, based on a deep Convolutional Neural
Network (CNN). Training a CNN from the surveillance camera perspective is rather impossible due
to the combinatory explosion generated by multiple point-of-views. However, CNNs showed great
promise on previous works over satellite images. Secondly, even though there are many datasets
for occupancy detection in parking lots, none of them were designed to tackle the parking block
segmentation problem directly. Given the lack of a suitable dataset, we also propose APKLOT,
a dataset of roughly 7000 polygons for segmenting parking blocks from the satellite perspective and
from the camera perspective. Moreover, our method achieves more than 50% intersection over union
(IoU) in all the testing sets, that is, at both the satellite view and the camera view.

Keywords: deep learning; parking lot dataset; parking block segmentation; satellite dataset

1. Introduction

Parking lots are dynamic environments that brew mishaps of many sorts. A crime investigation
report of the Bureau of Justice Statistics of the United States in parking garage facilities states that 9%
of crimes in 2010 occurred in parking places [1]. Algorithms for simulating and controlling parking lot
behavior, for example, vacant space detection, rely heavily on having parking spot and parking block
areas previously marked by a human [2].

In this work, we propose to segment parking blocks in a surveillance camera image.
The previously mentioned insecurity problem can then be ameliorated by a second generative
algorithm (out of the scope of this work) that take benefit from the priors our proposal produces. This
approach was first used for traffic scene analysis in Reference [3], by using dynamic belief (Bayesian)
networks. In the same vein, Reference [4] proposes to use prior probabilities of parking block areas of
these spaces to guide robot navigation.

Seo [4] also provides a definition for parking blocks in terms of parking spots. We extended this
definition to include also partially occluded parking spots and of arbitrary shapes onto splines and
containing parking spots of different sizes or neighborhood arrangements.

In brief, segmenting parking blocks means to be able to identify areas in the ground plane
that belong to a series of parking blocks, automatically and with high resiliency over the particular
surveillance camera view conditions. There are some challenges derived by the problem formulation
by itself.
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Firstly, an obvious challenge is the different angles and zooms a camera could have.
The combinations of the three components of the projection angle and any reasonable zoom level
set by the surveillance operator generates an exponentially growing set of possible projection planes.
Even though we can still apply an affine transformation to normalize into a simpler domain [5], each
pose yields a slightly different set of unrelated features. Considering these changes in the point of
view, the most common features can become more or less visible.

Secondly, in the worst case scenario, each scene is particularly packed with a series of occlusions
and shadows depending on the particular camera position. This phenomenon introduces a Bayesian
noise that is impossible to overcome without lots of data samples.

Third, we also have a broader range of noise sources from the camera perspective in detecting
parking spots. [6] categorize them into 3 main sources:

1. Typical Attributes. Similar painted lines, other vehicles, kerbstones, non-plain floor, etc.
2. Road Conditions. Partially damaged parking lines, paving, etc.
3. Surrounding Conditions. Weather, illumination, light source angle, etc.

We can add to this list the presence of occlusions caused by temporal entities like vehicles and
pedestrians. Also (but rarer), is the usage of cameras with different settings like color resolution, in the
same parking lot.

For these three aforementioned reasons, solving our problem by a mere (self-)supervised algorithm
would require an exponential number of samples, and thus is virtually impossible.

In the past 25 years, approaches to solving this problem obviated the use of satellite perspective
images available for the same surveillance camera scene. With the advent of modern public Geographic
Information Systems (GIS) repositories, high resolution satellite perspective images of outdoor city
components became ubiquitous. These satellite perspective images frequently include parking lots,
and in some cases, they are even segmented by community members. The satellite perspective allows
the following advantages:

• Parking lots are viewed from the space.
• Texture appearance prevails over other features.
• The view is orthogonal.
• Instances can be rotated and form a manifold with the sole condition they do not overlap.
• Variable angle of parking spots relative to the road, no more than 180 degrees.
• Satellite images rarely have shadows and we could remove them by using histogram

normalization.

Furthermore, Reference [4] demonstrated that canonical parking spots are easier to detect in those
images. Also, Reference [7] provides a good summary of features in the satellite realm.

To take advantage of these previous findings, we propose to segment the parking blocks of the
surveillance camera image by:

1. Segment the parking blocks on the satellite image.
2. Calculate an homography between the two perspectives.
3. Translate the results of the satellite image into the surveillance camera image.

The beauty of this approach is that it helps us overcome the two main challenges previously
mentioned—(1) temporal and static frontal occlusions [8] (It is worth noting that overhead occlusions
can be an emerging problem but they are compensated by a clearer shot of the overall parking block
structure as we will see later) and (2) variations of the point of view [9] that thwarts a supervised
training approach. See Figure 1 for an illustration of our proposal.
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Figure 1. Segmented parking blocks despite several frequent vehicle occlusions from a surveillance
camera perspective.

Nowadays available datasets are not enough for training a neural network, further on we explain
why is this so in the datasets section. Nonetheless, we saw this challenge as a great opportunity to make
a contribution to the computer vision field for identifying human made structures from the sky. For the
previously mentioned reason—and in particular—to be able to train our image segmentation model in
the satellite perspective, we introduce APKLOT, a dataset for direct parking block segmentation from a
satellite perspective. More details about APKLOT (APKLOT dataset files are available on the author’s
Github account (https://github.com/langheran/APKLOT, Current version: 21 July 2020) dataset will
be given in Section 3.

Our image segmentation model was inspired by the publicly available convolutional neural
network for image segmentation implementation in dlib [10] with custom parameters. For the
homography calculation step we used a custom python tool that helped us mark the correspondence
points, even though this wouldn’t be necessary if we had had the physical setup camera projection
parameters. These steps will be explained in further detail in the following sections.

Finally, we also propose an evaluation protocol based on the work in Reference [8]. Companion
code for all the aforementioned tasks is also provided in the github repository.

The paper is organized as follows. Section “Related Works” explains why this problem is
important in the context of the current available related work and the specific way in which we
will measure success. Section 2 describes an overview of the method, emphasizing the implemented
convolutional neural network and the related works from which our intuition stems. Section 3 presents
the dataset we used to train our unique approach to parking block segmentation. Section 4 proposes a
set of experiments to evaluate the dataset in the face of the most influential hyperparameters proposed
in the literature. It also places each result along the method steps, thus providing a clearer perspective
of their contribution. Section 5 remarks on the paper’s most valuable contributions and detours into
further developments that can be supported by our work.

https://github.com/langheran/APKLOT
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Related Works

Most prior work focuses on detecting a global parking lot structure. Of the most prominent
examples Huang et al. stands out with a series of works [11,12] that calculate global parameters such
as angle to the traffic lane and distance between each parking spot per parking lot.

References [12,13], and more recently Reference [14], all use a two tier combination of vehicle
detection with a free (vacant) parking spot detection combination to determine structure global
parameter in the parking blocks.

Free parking spot detection and segmentation usually uses human-painted parking lot
demarcations. These are ground appearance features that mostly lie on the same plane and are
more visible from a high resolution satellite view [15]. They have been exploited extensively in the
literature [16]; Mexas and Marengoni [13], for example, using the Hough transform. Other features
can be extracted from movement in video [2] and from the spatial distribution of known entities like
other cars [17].

Our work addresses the more general problem of extracting the parking lot structure from a
single satellite image without making any global shape assumptions. In this way, we are able to detect
parking blocks of arbitrary shapes.

Also, most of the prior work focuses on first detecting parking spots and then assembling those
instances into a set characterized by a single partition function, that is, a parking block, for example,
in References [4,11] they use this approach. With these settings, a considerable chunk of the global
information encoded in the image is then dismissed. This information is crucial for detecting partially
occluded parking spots.

In contrast, our work does not waste any global information because it takes the pyramidal
approach and starts by detecting parking blocks. In this work we do not attempt to detect individual
parking spots. However, given the Occam’s razor principle and Joshua Tenenbaum’s size principle
(also known as the Occam’s razor principle inspired by the English monk and philosopher William
of Occam.) [18] a smaller hypothesis localized only on a single parking block would make global
assumptions more consistent with the data.

2. Methodology

Recall that our objective is to segment parking blocks on the surveillance camera perspective.
We previously mentioned how satellite views simplify the task of recognizing parking spots. These
approaches have been neatly fitted into a two-category taxonomy by Huang [12]—car-driven and
space-driven. However, in this work we took a joint approach that detects parking blocks from the
camera perspective.

Convolutional neural networks (CNNs) were successfully used to detect parking lot patches from
aerial imagery in Reference [19] with a best test classification accuracy of 94.3%. Authors in [20] use a
CNN based on AlexNet for occupancy detection over PKLot and their own dataset CNRPark, achieving
roughly a 3% overall accuracy improvement compared with previous methods based on two textural
descriptors, namely Local Binary Patterns and Local Phase Quantization presented in Reference [9].
The Cityscapes challenge [21] provides segmented parking areas (not necessarily parking blocks).
However, Cityscapes does not provide accuracy values for evaluating this class performance and
whenever a car or other object is in front, the resulting class is this other object and not the parking area.

One domain from a satellite perspective that is remarkably similar to parking block segmentation
is building block segmentation [22–24]. In fact, the front page image of Reference [22] shows parking
block areas segmented by mistake. This is a clear hint that their method would also perform well on
parking blocks, given that our method could be considered a more general case. The best results in
both cases were obtained by fully convolutional networks (FCNs) with 88.5% overall accuracy and
0.69 intersection over union (IoU) (XD_XD algorithm on las Vegas) respectively.

Fully convolutional networks are a generalization over CNNs and were introduced by Reference [25].
Given that they don’t have fully connected layers they can manage different input sizes and are
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faster. U-Net [26] is an improved version of the original FCN that has in the upsampling part a large
number of feature channels to better propagate context information to higher resolution layers. In this
work we used a modification of U-Net that was implemented by Juha Reunanen and Davis King in
Reference [10].

In brief, we use a CNN to segment the parking blocks from an satellite view. Even though it is
quite simple, this approach has never been taken in previous works at the time of writing, maybe due
to the lack of a dataset that could serve for training.

Recall that our solution proposal consists of using the segmentation of a public satellite image and
combine it with the surveillance camera view to generate an extremely accurate segmentation of the
surveillance camera, regardless of any temporal or obstacles interfering with camera’s view. An outline
of the developed method is given in Algorithm 1. Also, a graphical overview of the proposed method
is provided in Figure 2.

Algorithm 1 Parking Block Segmentation from a Surveillance Camera Perspective

Input: NET—Pre-Trained CNN

SAT—Satellite image

PMS—Camera extrinsic parameters
Output: SEG—Segmented camera-view parking lot

1: procedure SEGMENTCAMERA(NET, PMS)
2: IMG ← ExtractCameraFrame() . Read image from camera
3: SAT ← CropScale(SAT) . Crop and scale the satellite image
4: if PMS ≡ ∅ then
5: PMS← GetExtrinsicParams() . Get camera parameters
6: end if
7: HOM← GetHomography(SAT,IMG,PMS) . Get homography from correspondence points
8: SSAT ← SegmentSatellite(NET, SAT) . Use ANN to segment satellite image
9: SEG ← Apply(HOM,SSAT) . Apply hom. to segmented satellite image

10: return SEG
11: end procedure

Parking Spot

Not parking spot

(a) (b)
(c)

(d)

(f)

(e)Camera extrinsic
parameters

Camera
frame feed

Cropped satellite view
from the same parking lot

Segmented satellite view

Segmented camera view

Figure 2. Our Proposal. First, a satellite photo perspective of the same parking area (a) is cropped
and scaled (b). The image is then segmented by a pre-trained Convolutional Neural Network (CNN)
residual network (c). In parallel, a new frame is taken by the surveillance camera (d). With the help
of correspondence or coordinate points previously calculated, the homography between the new
surveillance camera image and the satellite perspective (e) is calculated. The homography is then
applied to extrapolate the satellite CNN segmentation to the surveillance camera image (f). Red overlay
stands for false negatives, blue for false positives and green for true positives.
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The first two steps, that is, Figure 2a,b of our proposal in Figure 2 are explained further in
Section 3.1. Also the procedure for Figure 2d, in which we collected the surveillance camera images,
is included there.

For Figure 2c, the fully convolutional CNN architecture was inspired by the U-Net architecture [26]
and implemented by Juha Reunanen and Davis King in Reference [10]. Firstly, we randomly
cropped 227 × 227 chips, emulating the same methodology of AlexNet in the ImageNet ILSVRC-2012
challenge [27]. The chips were also randomly horizontally flipped. Then, the input layer was submitted
to 220 layers. We also used skip connections in each block as suggested by Reference [28].

3. Dataset

Another contribution of this work is a dataset designed to overcome the limitations of previous
datasets like those in References [9,21], mentioned in the Introduction (variations of the point of
view and no parking blocks, respectively). In contrast, our method uses the training set of this
dataset to adjust the parameters of the CNN from the satellite perspective. Our dataset has roughly
7000 polygons in 500 labeled images. Normally a classical CNN would require much more samples
to train, for example AlexNet was trained using 1.2 million training images from ImageNet. By
using the fully convolutional architecture implemented by King [10] (based on Ronneberger [26])
we are able to circumvent this requirement and train with only 4034 parking block polygons, that is,
300 images. Ronneberger explains the importance of data augmentation for learning shapes with elastic
deformations in their architecture. Taking into consideration Ronneberger’s comments, we augmented
30,000 images from those 300 for a total of 30,300 for the CNN’s training. Our data augmentation
consisted in:

• Randomly crop by a value between 0 and 50 pixels
• Horizontally flip 50% of the images
• Vertically flip 50% of the images
• Rotate images by a value between −45 and 45 degrees

Those images are not included in the APKLOT dataset, but we included the data augmentation
python code (jittering hereafter) in our repository.

3.1. Image Collection Procedure

APKLOT consists of a total of 500 24-bit RGB images, in both PNG and high-resolution JPG
at 96 dpi, with more than 7000 annotated polygons in total. The images were collected first by
downloading the coordinates from Open Street Maps. Then, we downloaded the patches containing
individual parking lots from google maps using a single zoom level. The parking lots were filtered
according to the following conditions:

• They show outdoor parking lots.
• At clear orthogonal daylight, i.e., photos taken in the day, regardless of brightness levels.
• Demarcated using international standards or the ones corresponding to that country for public

parking lots.
• Meant to harbor vehicles no larger than full-sized cars (no more than 5350 mm of length).
• Full parking lot view if possible.
• At least a block of 3 parking spots must be visible.

Figure 3 depicts a few instances of parking lots that were analyzed for inclusion in our dataset.
Figure 3a,b were both excluded from our dataset given the poor demarcation in the former and poor
lighting conditions in the latter. In contrast, Figure 3c was included in our dataset given its high quality
in terms of the aforementioned conditions.

http://overpass-turbo.eu/s/tQu
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(a) (b) (c)

Figure 3. Parking lot examples from satellite perspective: (a,b) were both excluded from our dataset
given the poor demarcation in the former and poor lighting conditions in the latter. In contrast, (c) is a
great example that was included in our dataset.

Then, on Google Maps, the proper zoom can be calibrated to a specific meters per pixel ratio.
In our case we set the zoom level to 20 for 0.1407 m/pixel (roughly 14 cm per pixel) (Please refer to the
APKLOT dataset github site in case you would like to use the scripts there to download the google
maps images with a different zoom level.)

Cropping was initially made by calculating the bounding box with respect to Google map’s north
(without rotation). In some rare cases the image was cropped manually where the resulting image
of the initial cropping was too big to fit in the GPU memory, see Section 3.1. Also, the following
considerations were applied:

• The resulting image must have the same zoom as the images in the training set, regardless of its
width and height.

• The parking space preferably must be on the center of the image.
• Edge structures that do not correspond to parking spots and traffic lanes can be safely excluded.

3.2. Annotated Attributes

The images were annotated by marking the parking block polygons using the labelme tool.
Complete parking blocks were annotated i.e., we are not considering the following:

• Parking spots outside the parking lot.
• Badly parked vehicles, including those parked on the traffic lane and non-parking spot (benches,

gardens, etc.)
• Debris or machinery in the parking spot when it is used as manner of storage facility.
• Trees in the way of the parking spot.

These annotations where then transformed into the Pascal VOC format (available in its repository).
We are also providing the original labelme format.

3.3. Dataset Statistics

Table 1 shows the control figures for each of the produced image sets.

https://github.com/langheran/APKLOT/blob/master/1. Satellite/Scripts/0. download/download_parkings.py
https://pypi.org/project/labelme/
http://host.robots.ox.ac.uk/pascal/VOC/
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Table 1. Image sets in APKLOT.

Year Statistics Notes

2018 Only 1 class discriminating between parking spot and other
spaces.
Train:

300 images
4034 labelme polygons

Validation:
100 images
1513 labelme polygons

Test:
101 images
1459 labelme polygons

Images were taken from
Google Maps API at zoom
level 20.

Figure 4 shows the general statistics of the input and mask coverage ratio. We can see the
annotated class is clearly unbalanced, with only 24.5% corresponding to parking blocks. To overcome
this challenge we must select a metric that compensates this phenomenon. In the next section we will
see how the IoU metric has been used efficiently in the past for similar cases.
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Figure 4. Size and sparsity statistics of the input images. (a) depicts width and height distribution of
the parking lot satellite images; (b) contrasts total area of the images (left) vs. parking block polygons
area (right).

It is also worth mentioning that the parking lot instances have a mean of 15.7 polygons,
a maximum of 332 and a minimum of 0. The standard deviation on the number of polygons per
parking lot is 26.31.

3.4. Evaluation Protocol

This section describes an evaluation protocol proposed on the basis of the APKLOT dataset.
This protocol is the applied further on in the experiments section.

The overall accuracy metric considers the model’s capability of not including some areas in the
predicted class, that is, the negative cell on the contingency table. Conversely, recall, precision and
the F-Measure are considered to be biased in this sense. In order to avoid this bias, the authors of
PKLot [9] and DLib [10] opted to use only overall accuracy. Overall accuracy is given by Equation (1),
where Tp are the true positives, Tn are the true negatives, Fp are false positives, Fn are false negatives, P
is the sum between true and false positives and N is the sum between true and false negatives. Finally,
Right = Tp + Tn and Wrong = Tp + Tn.
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Acc =
Tp + Tn

P + N
=

Tp + Tn

Tp + Tn + Fp + Fn
=

Right
Right + Wrong

. (1)

This metric is usual in cases where we would like to classify individual instances without
considering their spatial locality. Yet, the case of pixel segmentation deserves a special consideration.
Each pixel is an instance we want to classify. However, most of the features come from the neighboring
features. A foreground detected near the ground truth has presumably more informational value than
a background detected near the ground truth to such a point that the distinction between foreground
and background becomes relevant.

One of the Pascal VOC [8] challenges consists of detecting many classes and marking them by
using bounding boxes. Then, the background coincidences play no important role in how to position
and scale the bounding boxes over detections. However, the overlapping between the true box and
the predicted box is a good indicator of how well the prediction is performing. This overlapping is
reflected in Equation (2), that is, the IoU formula proposed by Reference [8].

IoU =
Tp

Tp + Fp + Fn
=

⋂
area⋃
area

. (2)

Equation (2) measures the overlapping pixels between the ground truth polygon and the
prediction polygon, regardless of the similarity between the areas outside of the polygons. That
is, the true negatives are not taken into account. The idea is to reward overlapping foregrounds,
instead of backgrounds. An IoU score greater than 0.5 is normally considered a “good” prediction for
example, 10 different IoU thresholds are considered from 0.5 to 0.95 in the COCO challenge [29].

4. Experiments and Results

Having reviewed the structure of APKLOT, let us see how it is used in the steps required by the
methodology.

It is important to mention that, to our knowledge, no other works on the state-of-the-art deal
with the problem of segmenting parking blocks from the camera perspective. The distinction between
parking blocks and parking spots is an important one because the former ranges in a variety of
non-uniform shapes absent in the latter. Cityscapes [21] includes a label for segmenting parking spots
from the camera perspective, but this label is not included in any evaluation and is treated as void.
However, if a future work would like to compare their results with ours, they could use pixel-level
intersection over union (also used in Cityscapes but for other labels).

In consideration of this void in the domain of parking blocks, we decided to compare the training
of the CNN with the original APKLOT dataset to training with an augmented version of the same
dataset, that is, the 300 satellite images of the original training set were used to train one set of
experiments. In parallel, 100 samples for each of those images were generated to accrue a total of
30,300 sample images for a second set of experiments. In particular the data augmentation that was
done consisted in the following actions:

• Randomly crop by a value between 0 and 50 pixels
• Horizontally flip 50% of the images
• Vertically flip 50% of the images
• Rotate images by a value between −45 and 45 degrees

Secondly, testing of the CNN was done with 100 independent satellite view images (hereby
__World_). In parallel, 14 independent satellite view images of the Tecnologico de Monterrey (ITESM)
were also segmented. These images are the ones we will use to test the algorithm performance once
we have translated the results into the 62 surveillance camera images inside ITESM.

Finally, the homographies for each of the 62 surveillance camera perspective images were
calculated from the correspondence points and applied to the previous 14 images’ segmentation



Appl. Sci. 2020, 10, 5364 10 of 18

results. To find the best four points for the homography, we used algebraic error, the default for the
OpenCV findHomography method. See Figure 5 for a visual guide to these steps.

Figure 5 shows a tree structure to help us visualize the data flow and metrics used. The yellow
diamonds correspond to the main metrics for measuring the contribution of this work. We already
explained both overall accuracy and IoU in Section 3.4. Multiclass logistic regression (i.e., negative
log-likelihood loss, NLL or categorical cross entropy) is used in tandem with a softmax layer (one-hot)
and estimates the maximum a posteriori class label given the parameters learned by the CNN. Each
of the dataset icons is captioned with the number of annotated instances contributed. The numbers
on the top of each dataset icon represent the number of instances before augmentation and single
polygon extraction. 300 parking lots and their polygons to train the CNN, 100 for testing, 14 parking
lots inside the university, 62 ground camera view image that correspond to those 14 and a set of more
than 4 correspondence points for each of those 62 images.

Negative Log Likelihood Loss

CNN Training

Time

IoU 

CNN Testing

Overall Accuracy

IoU 

Surveillance 
Camera
Testing

Overall Accuracy

World 
satellite 
training
images

World 
satellite 
testing 
images

ITESM 
satellite 
testing 
images

ITESM 
camera 

homography 
points

300 100 14

ITESM 
camera 
testing 
images

62 62

Figure 5. APKLOT dataflow between training, testing and translating the results to the surveillance
camera image. The proposed metrics for measuring success are shown below each step. These metrics
are discussed under the Evaluation Protocol section (Section 3.4).

4.1. Convolutional Neural Networks Setup and Training

In this section we describe the experimental setup, mainly for training the satellite segmentation
CNN. Table 2 shows the hyperparameter values and significance for generating the experiments.
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Table 2. Hyperparameter experimental setup.

Hyperparam. Value Ab. Explanation

sample size 300 initial instances and 30,300 instances by augmentation j More data is always the best way of reducing the variance without increasing
the bias.

batch size {16,30,32} b Using the full instance always gives better accuracy than using a randomly
partitioned batch size. However, the model evaluates the full gradient on
each epoch and it making it too expensive to train. Using mini batches can
ameliorate this problem, although the exact size cannot be taken for granted
to be the largest because we are dealing with an stochastic way of partitioning
the data. We tuned up this parameter empirically.

initial learning rate 0.1–0.01 l This value was set taking into account the recommendation of Reference [30];
Smith [31]

minimum learning rate 0.00001–0.000001 r A smaller learning rate produces more stable hops in the gradient on the
seek of optimal weight parameters. Too small learning rate bogs down the
convergence speed, though.
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Ancillary techniques were used, such as momentum with weight decay and batch normalization .
The values for momentum were set according to [32] (0.9 momentum and 10−4 weight decay). Batch
normalization window was set large enough to preserve a maximum convolutional layer of 512.

Finally, the experiments were named using the following naming convention:

<jittering was used>j-<batch size>b-<initial learning rate>l-<minimum learning rate>r

In total, we performed 15 experiments. Twelve of these used the external data augmentation
already described in the previous section besides the one that does dlib by default (random cropping
and horizontal flipping). The other experiments only used the dlib default data augmentation. In the
data augmentation experiments, the initial learning rate was set fixed to 0.1 in contrast to the cases not
using data augmentation that also used 0.01. However, batch sizes were cycled equally between the
three values 16, 30 and 32.

At the first experiments we found that minimum learning rate was unimportant so the
experiments corresponding to a batch size of 32 use only 10−5 in contrast to the 16 and 30 cases
that use also a 10−6 minimum learning rate.

During training, we found that models using data augmentation produced a higher negative
log likelihood with a p value of 0.6% (Mann-Whitney-U). Also we found that models with a batch
size less than 16 had a shorter duration with a p value of 0.4%. The faster model was using rotation
jittering, 16 batch size, 0.01 initial learning rate and minimum learning rate of 0.000001. See Figure 6
for a graphic of these results, Figure 6a shows the negative log likelihood and Figure 6b shows the
overall durations.
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(b) durations

Figure 6. Average loss and duration are the main features we used for measuring progress and are
show here. From (a) we can see that the possibility of reaching the 5000 steps without progress limit
inasmuch as average loss increases. From the overall durations in (b) we appreciate that the maximum
duration is only about 19 and a half hours. The experiments were named according to the following
naming convention: <jittering was used>j-<batch size>b-<initial learning rate>l-<minimum learning rate>r.

Each of these experiments was tested using a I7 Intel Core with 32 GB of RAM and 11 GB GPU,
namely using a NVIDIA GeForce GTX 1080 Ti. Images more than 4,000,000 squared pixels were too
big for the GPU and triggered a CUDAMalloc (memory allocation) error.
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4.2. Expected Results

Each of the perspectives we used was subject to error sources that could damage our results.
On the satellite segmentation step we can have occlusion, objects with very similar texture to parking
blocks and no visible parking lines at all. See Figure 7 for a visual reference of these errors.

(a) (b) (c)

Figure 7. Parking lot examples from the satellite perspective in which our method is prone to fail:
(a) transparent roof, (b) grid like roof, (c) no visible demarcation lines. Red overlay stands for false
negatives, blue for false positives and green for true positives.

Cases of Figure 7a,b, that is, when a transparent roof is occluding the parking block and when a
grid like roof is near the parking lot, could be solved using a Bayesian approach (like the one used by
Huang and Wang [12]) to learn the overall structure of the parking lot and discarding the areas that
deviate too much from the learned parameters. Cases when there is no demarcation in the parking lot
Figure 7c are a little bit trickier. To solve such a case we would need to change our selection criteria in
the dataset and include more images of unmarked but identifiable parking lots without relying on the
ground appearance, e.g., by using the parking spatial arrangement.

On the camera perspective we can have resolution mismatch and multilevel parking lots.
Figure 8a,b show these errors respectively.

(a) (b)

Figure 8. Parking lot examples from a camera perspective in which our method is prone to fail:
(a) resolution mismatch, (b) multilevel parking lot. Red overlay stands for false negatives, blue for false
positives and green for true positives. A red outline is shown around the aforementioned problems.

Case Figure 8a could be solved by trivially calculating a linear interpolation of a convex polygon
shape. Case Figure 8b could be solved by integrating height data [33] to separate planes in the
homography calculation.
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4.3. Image Segmentation Results

In this section we present the results from testing both segmentation on the satellite 100
independent images and on the surveillance camera images located at the ITESM. We are presenting
both results to allow improvements along the pipeline.

Firstly, in the satellite image segmentation, we achieved more than 50% IoU in all models, shown
in Figure 9. Figure 9a shows the results using overall accuracy. This metric achieved a notably higher
score than the IoU shown in Figure 9b. Recall that in IoU we are not considering true negatives, just
true positives, that is, the non segmented areas in the ground truth have no effect on improving the
metric artificially.
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Figure 9. Segmentation satellite results on the World dataset (100 images): (a) is by using dlib’s
measure—overall accuracy, (b) shows intersection over union (IoU). The bests model considering
the medians (the mean is vulnerable to outliers) are for (a) 1j-30b-0.1l-0.000001r and for (b)
0j-16b-0.1l-0.00001r. The experiments were named according to the following naming convention:
<jittering was used>j-<batch size>b-<initial learning rate>l-<minimum learning rate>r.

The variance of the models can be seen from the standard deviation. The most stable model (less
standard deviation) was 0j-16b-0.01l-0.000001r which achieved a median of 88.93 overall accuracy.
The model scored second if we order them by the worse segmented example, so this model can be
considered the best among those we trained.

Satellite segmentation results on the ITESM images (see Figure 10) had greater variance.
Nonetheless, the median remained inside two orders of magnitude of the previous results. The
Wilcoxon signed rank test showed that we can reject the null hypothesis that the two medians are the
same. There is a significant improvement in the ITESM images using IoU. This could be explained
by the absence of roof-like structures in ITESM that can produce a greater number of false positives.
Also, parking lots are very well maintained and painted inside the institution in contrast with the
World dataset. Counterintuitively, the results are inverted when using overall accuracy and there is
a significant difference. We surmise that there are many more true negative areas, meaning empty
spaces on the images of the World dataset. Also, given the ITESM location on a top-hill, there is also a
lot of variability in the slopes that increase the false positive rate.

Segmentation of the satellite images performed quite well, both at time and accuracy. However,
when introducing a homography transformation, the median results dropped, shown in Figure 11.
Considering this fact, we can safely conclude that any improvement in the homography calculation
will greatly improve the overall result.

All supervised segmentation done in APKLOT follows a clear rule—mark the area wherever is
visible. However, one of the known issues of evaluating a supervised segmentation task is that the



Appl. Sci. 2020, 10, 5364 15 of 18

ground truth data is vulnerable to the subjective criteria of each person [34]. Furthermore, pixel-by pixel
segmentation have many challenges like—partial occlusions, tool limitations, resolution mismatches
and alike. Considering these natural limitations, perfect accuracy would only be achievable in case
the two shapes, that is, the predicted and the ground truth shapes, were identical. To overcome this
challenge, we have included the first boxplot of Figure 11 as a baseline. This boxplot shows the results of
the satellite ground truth images with the applied homography. Finally, all the boxplots were produced
using the real ground truth segmented by a human in the camera perspective. A three-number
summary (first and third quartile omitted due to lack of space) of the distribution is given in Table 3.
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Figure 10. Segmentation satellite results on the ITESM dataset (14 images): (a) is by using dlib’s
measure–overall accuracy, (b) shows IoU. The bests model considering the medians (the mean is
vulnerable to outliers) are for (a) 1j-30b-0.1l-0.000001r and for (b) 0j-16b-0.1l-0.00001r. The experiments
were named according to the following naming convention: <jittering was used>j-<batch size>b-<initial
learning rate>l-<minimum learning rate>r.
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Figure 11. Segmentation camera results on the ITESM dataset (14 + 62 images): (a) is by using dlib’s
measure—overall accuracy, (b) shows IoU. The bests model considering the medians (the mean is
vulnerable to outliers) are for (a) 0j-30b-0.1l-0.000001r and for (b) 0j-16b-0.01l-0.000001r. Satellite ground
truth homography transformation to the camera perspective is provided for reference. The experiments
were named according to the following naming convention: <jittering was used>j-<batch size>b-<initial
learning rate>l-<minimum learning rate>r.
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Table 3. Segmentation camera results on the ITESM dataset (14 + 62 images).

Parameters Overall Accuracy IoU

Mean Std Min 50% Max Mean Std Min 50% Max

0j-16b-0.01l-0.000001r 84.5 8.2 49.5 86.5 96.8 57.7 20.1 0.0 62.1 95.2
0j-16b-0.01l-0.00001r 84.9 8.5 50.1 87.5 95.0 57.6 20.4 4.2 60.1 92.7
0j-16b-0.1l-0.000001r 85.7 7.8 50.8 87.3 96.4 59.5 20.0 2.4 62.1 94.7
0j-16b-0.1l-0.00001r 84.7 8.9 50.4 87.2 97.3 57.7 20.3 3.3 59.0 96.0
0j-30b-0.01l-0.000001r 85.0 8.2 50.6 87.0 98.1 58.3 20.5 0.8 59.7 97.0
0j-30b-0.01l-0.00001r 84.5 7.8 53.6 86.3 96.4 57.7 19.7 0.0 60.3 94.6
0j-30b-0.1l-0.000001r 85.2 8.4 50.2 87.6 97.5 58.9 20.3 2.4 59.8 96.2
0j-30b-0.1l-0.00001r 85.1 8.3 49.4 87.3 96.8 58.9 19.6 1.5 60.2 95.1
0j-32b-0.01l-0.00001r 84.5 8.0 52.7 87.0 95.3 57.5 19.8 0.0 60.1 91.7
0j-32b-0.1l-0.00001r 85.2 8.0 50.9 87.3 96.5 59.3 19.9 1.6 61.4 94.8
1j-16b-0.1l-0.000001r 82.7 10.5 45.8 86.5 94.9 53.9 21.3 8.6 59.2 90.5
1j-16b-0.1l-0.00001r 84.0 8.2 59.7 86.6 94.6 56.0 21.1 11.1 58.5 91.7
1j-30b-0.1l-0.000001r 83.6 8.9 51.7 86.3 96.1 56.0 21.1 3.3 59.3 90.2
1j-30b-0.1l-0.00001r 83.8 8.4 54.4 86.4 95.8 56.8 19.0 9.6 59.1 92.3
1j-32b-0.1l-0.00001r 83.8 9.2 51.4 86.7 95.2 56.3 21.1 3.2 60.3 93.0

ground-truth
with-homography 88.2 8.8 58.4 91.3 96.7 66.5 20.3 9.2 72.2 92.2

Figure 11 shows that the results are pretty low compared with the satellite image segmentation
alone. Still, the mean and median IoU remains above 50% so we can consider the results good
enough and confirm our hypothesis. Thus, in most cases the error was magnified. Assuming that
the homography was perfect and all the points lie on the same projective plane, calculating the
homography from the ground truth picture should produce a near perfect score, except for those cases
occluded by roof-like structures and resolution mismatch. However, we see from Table 3 that this is
clearly not the case, given that the median dropped from 91.3% to 87.6% of the best median for overall
accuracy and even a more dramatic drop of 72.2% to 62.1% in the case of IoU.

5. Conclusions and Recommendations

The main focus of this paper was solving the parking block segmentation on a surveillance camera
perspective problem by taking advantage of the satellite view of the same scene. The goal of this
research was two-fold—firstly, to segment parking blocks on aerial images. Given the non-existence of
a proper dataset to accomplish this specific task, we proposed APKLOT, a collection of 7000 parking
block polygons that proved to be enough to achieve 50% IoU world wide; secondly, to translate these
results to a surveillance camera perspective and measure the ensuing degradation. By testing on
several CNNs we provide the groundwork to support the relationship between each hyperparameter,
learning rate and duration. We demonstrated that using a simple architecture like the U-Net with
skip connections is sufficient to segment simple shapes like the ones composing parking blocks, even
though many are heavily occluded.

For future work we recommend learning the homography automatically without relying on
explicitly providing the camera projection parameters or the correspondence points. Then, our
approach could be applied to any outdoor parking lot without human intervention. For the case of
automating the correspondence points extraction, they can be learned using a metric learning approach
as proposed in Reference [35].
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