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Abstract: Discovering the implicit pattern and using it as heuristic information to guide the
policy search is one of the core factors to speed up the procedure of robot motor skill acquisition.
This paper proposes a compound heuristic information guided reinforcement learning algorithm
PI2-CMA-KCCA for policy improvement. Its structure and workflow are similar to a double
closed-loop control system. The outer loop realized by Kernel Canonical Correlation Analysis (KCCA)
infers the implicit nonlinear heuristic information between the joints of the robot. In addition, the
inner loop operated by Covariance Matrix Adaptation (CMA) discovers the hidden linear correlations
between the basis functions within the joint of the robot. These patterns which are good for learning
the new task can automatically determine the mean and variance of the exploring perturbation for
Path Integral Policy Improvement (PI2). Compared with classical PI2, PI2-CMA, and PI2-KCCA,
PI2-CMA-KCCA can not only endow the robot with the ability to realize transfer learning of trajectory
planning from the demonstration to the new task, but also complete it more efficiently. The classical
via-point experiments based on SCARA and Swayer robots have validated that the proposed method
has fast learning convergence and can find a solution for the new task.

Keywords: robot learning; reinforcement learning; heuristic information; KCCA; PI2-CMA

1. Introduction

Imitation learning (IL) and reinforcement learning (RL) [1] have always been a hot topic in the field
of robot skill acquisition. Imitation learning can be divided into two categories: behavioral cloning (BC)
and inverse reinforcement learning (IRL). BC is the method of learning expected policy directly from
expert teaching information, while IRL learns policy indirectly using reward function. Hidden Markov
Model (HMM) [2], Dynamic Movement Primitives (DMPs), Probabilistic Movement Primitives
(ProMPs) [3], Dynamic Systems (DS) [4], and Cross Entropy Regression (CER) are popular Behavior
Cloning methods. The most frequently used methods of IRL are Maximum Margin Planning (MMP) [5]
and Markov Process (MP).

Imitation learning is limited because it requires the robot to learn only from demonstrated
trajectories. When the reproduction environment is different from the demonstration environment or
there is a big deviation, such as placing an obstacle on the path of the robot, the imitation learning
method may fail. Instead, RL allows the robot to find a new control policy by exploring the state-action
space freely. The combination of IL and RL aims to use the advantages of two methods to overcome
their respective shortcomings, so that the robot can adapt to the deviation from the demonstration
behavior, so as to improve the performance of the robot.
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The classical RL methods include SARSA [6], Natural Actor-Critic (NAC) [7], Policy Learning by
Weighting Exploration with the Returns (PoWER) [8], Relative Entropy Policy Search (REPS) [9], and
Path Integral Policy Improvement (PI2). We believe that PI2 [10] is one of the most effective, numerically
robust, and easy reinforcement algorithms. However, classical PI2 searches the whole parameter space,
so it is less efficient to complete the task. Kernel Canonical Correlation Analysis (KCCA) can infer
the implicit nonlinear heuristic information between the joints of the robot when facing the new task,
leading PI2 to find a solution. Based on the works of Covariance Matrix Adaptation (CMA) [11]
together with our previous research on KCCA [12], we propose a new algorithm PI2-CMA-KCCA in
this paper, where KCCA and CMA are integrated as compound heuristic information to speed up the
learning procedure from the demonstration to a new task.

This paper is structured into several major sections: Section 2 investigates the DMP used in the
imitation learning phase. In this paper, we use Dynamic Movement Primitives as the underlying policy
representation. Section 3 briefly introduces the algorithm PI2-CMA which aims at discovering the
hidden relationship between the components of the weight. In Section 4, we introduce the algorithm
KCCA, and finally derive the algorithm PI2-CMA-KCCA. In Section 5, based on SCARA and Swayer
robots, we validate our algorithm through the classical via-point task and analyze the experimental
results. Finally, the conclusions are given in Section 6.

2. Dynamic Movement Primitives

Dynamic Movement Primitives (DMPs) have been used in many disciplines to model complex
behaviors. In this paper, we use DMPs as the underlying policy representation. A joint of the robot can
be regarded as a DMP. The DMP [13] consists of a damped spring system and a learnable nonlinear
forcing term, by which the desired behavior of the joint can be obtained. Its expression is given by:

ζ2ÿt = αy(βy(g− yt)− ζ ẏt)︸ ︷︷ ︸
αz

+ h(xt)xt(g− y0)︸ ︷︷ ︸
α f

ζ ẋt = −αxxt

h(xt) =
∑M

i=1 Ψi(x)ωi

∑M
i=1 Ψi(x)

=
M
∑

i=1
Ψiωi = Ψω,

(1)

where, if the forced term α f = 0, αz represents a globally stable second-order damped spring system.
ζ is a time constant and represents the proportional coefficient of the duration of the motion. g is the
target position. y0 is the initial position, and variable yt would be interpreted as the desired position of
the joint. h(xt) is a fitting function, and xt can be conceived of as a phase variable. Ψi(x) represents
the ith basis function Ψi(x) = exp(−(xt − ci)

2/2σ2
i ), where ci and σi are constants that determine the

width and center of the basis function respectively. wi is the weight corresponding to the ith basis
function. M is the number of exponential basis functions. ω ∈ RM×1 is the weight vector. αy, βy can
be obtained by adjusting the damped spring system to the second-order critical damping system.

The parameter ωi of DMP is learned by Locally Weighted Regression algorithm (LWR).
The algorithm will find the corresponding ωi for each basis function Ψi by minimizing the cost
function S. The function is defined by:

S(ω) =
N

∑
j=1

(
M

∑
i=1

Ψi

(
xj
)

ωi − h
(

xj
))2

, (2)

where (xj, h
(

xj)) is the jth sample. Obviously, ωi cooperates with each other in linear combination
patterns because of the introduction of basis functions. Thus, we can optimize them by means of linear
correlation techniques. A summary of the notation frequently used in this article is given by Table 1.
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Table 1. Summary of the notation frequently used in the article.

Symbol Definition

ÿt, ẏt, yt The desired acceleration, velocity, position of the joint

h(xt) Fitting function. xt is a phase variable

P.,k,i The probability-weighted value of the kth trajectory of the dth DOF at time i

δωd,i The dth joint’s correction weight vector at time i

δωd Average value of δωd,i over time

ωd The dth joint’s weight vector

ω̌d The dth joint’s weight vector with perturbation

ω̃ [ω̌T
1 , ω̌T

2 , · · · , ω̌T
D]

T

φ(·) Mapping function. Mapping a variable to V-dimensional space

ω̌s
d The weight perturbation sample of the dth joint, i.e., ω̌s

d = {ω̌d,1, ω̌d,2, · · · , ω̌d,N}

Jd The dth joint’s cost for given task

Jp The total cost of D joints at the pth iteration

K(·) Kernel matrix

Tr Decline rate of cost between Jp−1 and Jp

{Jd, δωd,i}K Jd and δωd,i which are calculated from K roll-outs

{Jd, δωd,i}Ke
Jd and δωd,i which are calculated from Ke elite roll-outs,
and Ke elite roll-outs are obtained by sorting K roll-outs according to the cost

3. Path Integral Policy Improvement with Covariance Matrix Adaption

PI2 is derived from the first principles of stochastic optimal control. What sets PI2 apart from
other direct policy improvement algorithms is its use of probability-weighted averaging to perform a
parameter update, rather than using an estimate of the gradient. In Section 2, we obtain the weight
vector ω by parameterizing the demonstration trajectory. The idea of PI2 is to add stochastic exploration
noise εd (εd∼N (0, σ2)) to ωd and generate K roll-outs with different costs by executing parameterized
policy. As for a robot with D DOF, the cost function of the kth roll-out at time i is

J(τ·,i,k)=
D

∑
d=1

[
ϕd,N,k+

N−1

∑
j=i

qd,j,k +
1
2

N−1

∑
j=i

(ωd + Md,j,kεd,j,k)
TR(ωd+Md,j,kεd,j,k)

]
, (3)

where τ·,i,kτ is a sample path (or trajectory piece). · indicates all DOF. ϕd,N,k represents the terminal
reward of the kth trajectory of the dth DOF. qd,j,k is the immediate reward of the kth trajectory of the
dth DOF at time j. Specifically, it is expressed as ÿt (i.e., the square of joint’s acceleration). Md,j,k is the
mapping matrix of the kth trajectory of the dth DOF at time j. R is the positive semi-definite weight
matrix of the quadratic control cost. N is the maximum value of the time index.

Next, the exploration is evaluated. First, the cost of obtained trajectories is sorted, then Ke elite
samples are selected, and finally perform probability-weighted averaging to obtain δωd,i with th DOF
at time i:

δωd,i =
Ke

∑
k=1

[P(τ.,i,k)Md,i,kεd,i,k] , (4)

where P(τ.,i,k) is the probability-weighted value of the kth trajectory of the dth DOF at time i. It is
obtained by softmax transformation of the cost function:
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P.,k,i = P (τ.,i,k) =
e−

1
λ (J(τ.,i,k))

∑Ke
k=1 e−

1
λ (J(τ.,i,k))

, (5)

where λ is an appropriate constant.
Later, δωd,i is averaged over time to get δωd further to obtain the new weight

(i.e., ωnew
d = ωold

d + δωd). By searching the parameter space iteratively, PI2 will eventually find a
solution for the new task. Classical PI2 only updates the mean ω, and the covariance σ2 is a constant
(σ2 = λinitIM). M is the number of base functions. λinit determines the magnitude of initial exploration
noise. PI2-CMA aims to determine the magnitude of the exploration noise automatically and to infer
the implicit linear correlation between the basis functions within the joint of the robot. In other words,
covariance matrix adaption is expressed as:

Σnew
d,i =

Ke

∑
k=1

P.,k,i(δωd,i)(δωd,i)
T. (6)

In addition, the covariance update equation is

Σnew
d =

∑N
i=1(N − i)Σnew

d,i

∑N
i=l(N − l)

. (7)

As we can see that the vanilla PI2-CMA only infers linear correlation of weight within a
DMP independently.

4. PI2-CMA with Kernel Canonical Correlation Analysis

In Equation (3), it can be seen that the perturbation ε of PI2 is generated with equal probability for
each joint’s weight vector ωd. The PI2-CMA takes into account the implicit linear correlations between
the basis functions of the joint and automatically updates the covariance. However, when a task is
assigned to a multi-joint robot , there exists an unknown hidden task-oriented pattern between weight
vector with perturbation ω̌di

and ω̌dj
(ω̌dk

= ωdk
+ δωdk

, k ∈ {i, j}). The pattern can be inferred from
experience and expressed as a nonlinear correlation. Specifically, we can apply Kernel Canonical
Correlation Analysis (KCCA) to infer the implicit nonlinear heuristic information between the joints of
the robot to guide PI2 to a search policy for the new task of trajectory planning. In the paper, we not
only consider the linear correlations between the perturbation vector’s components within a DMP but
also take nonlinear correlations of the perturbation vector between DMPs into account to expedite the
learning procedure of the robot.

4.1. Nonlinear Correlation Heuristic Information

According to Equations (3) and (4), perturbation is generated with equal probability for
each joint’s weight vector. In other words, there is no correlation between the joints. Therefore,
[ω̌T

1 , ω̌T
2 , · · · , ω̌T

D]
T ∈ RDM×1 is denoted as ω̃, and covariance matrix of ω̃ is given by:

Σω̃ = diag[σ2
1 , σ2

2 , · · · , σ2
D] ∈ RDM×DM, (8)

where diag[·] represents diagonal matrix and σ2
1 = · · · = σ2

D = σ2.
When the multi-joint robot completes the task, we believe that there are some hidden patterns

between the joints. The implicit patterns between the perturbation vectors of the multi-joint robot are
expressed as nonlinear correlations. With the help of the kernel method, the dth joint’s perturbation
vector ω̌d ∈ RM×1 is mapped to high-dimensional feature space φ(ω̌d) ∈ RV×1. ω̃ is also mapped to
high-dimensional feature space φ(ω̃) ∈ RDV×1, and then covariance matrix of ω̃ can be described as:
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Σφ(ω̃)=


Γ(ω̌1, ω̌1) Γ(ω̌1, ω̌2) · · · Γ(ω̌1, ω̌D)

Γ(ω̌2, ω̌1) Γ(ω̌2, ω̌2) · · · Γ(ω̌2, ω̌D)
...

...
. . .

...
Γ(ω̌D, ω̌1) Γ(ω̌D, ω̌2) · · · Γ(ω̌D, ω̌D)

 , (9)

where Γ(ω̌di
, ω̌dj

) = cov(φ(ω̌di
), φ(ω̌dj

)) is the covariance of ω̌di
and ω̌dj

projected on
high-dimensional space, expressing the implicit nonlinear pattern between the perturbation vectors of
the dith joint and the djth joint . The intuitive policy is to obtain Σφ(ω̃) based on empirical samples,
and then use Γ(ω̌di

, ω̌dj
) as the heuristic information. That is, given the perturbation vector ω̌di

,
the exploration of ω̌dj

is guided by the covariance Γ(ω̌di
, ω̌dj

).
Note that Γ(ω̌di

, ω̌dj
) is in the unified space coordinate system (i.e., φ(ω̌)), but analyzing the

correlation between the perturbation vector ω̌di
of the dith joint and the perturbation vector ω̌dj

of the
djth joint in a uniform coordinate system is not the best choice. Because after the perturbation vectors
of different joints are mapped to a high-dimensional space, the correlation coefficients between the
joints can be maximized only after a proper projection transformation, and such projection matrices are
usually not necessarily identical. Here, the generalized Rayleigh Entropy is used to find the maximum
correlation coefficient of φ(ω̌di

) and φ(ω̌dj
), and Maximum Likelihood Estimation is used to infer the

nonlinear correlation between ω̌di
and ω̌dj

. If di 6= dj, Θ(ω̌di
, ω̌dj

) = cov(Pr{Φ(ω̌di
)}, Pr{Φ(ω̌dj

)})
can be the heuristic information, and Pr is the projection operator. That is, given the perturbation
vector ω̌di

, ω̌dj
can be obtained from the covariance Θ(ω̌di

, ω̌dj
). Equation (9) can now be expressed

as follows:

Σ+
φ(ω̃)

=


Γ(ω̌1, ω̌1) Θ(ω̌1, ω̌2) · · · Θ(ω̌1, ω̌D)

Θ(ω̌2, ω̌1) Γ(ω̌2, ω̌2) · · · Θ(ω̌2, ω̌D)
...

...
. . .

...
Θ(ω̌D, ω̌1) Θ(ω̌D, ω̌2) · · · Γ(ω̌D, ω̌D)

 . (10)

4.2. Robot Intelligent Trajectory Inference with KCCA

KCCA [14] is a nonlinear correlation analysis method. In this paper, we employ KCCA on the
elite samples from the robot’s first joint to other joints, and make heuristic inference. After the pth
iteration of PI2-CMA, the program records the total reward Jp(τ) (one episodic samples), based on
the current ω̌

p
1,··· ,D (perturbation vectors of D joints). Then, Jp(τ) is compared with the total reward

Jp−1(τ) based on ω̌
p−1
1,··· ,D at the (p-1)th iteration to obtain a decline rate Tr.

If Tr is greater than its upper threshold Tmax, Tr is updated to Tmax, and the program executes
KCCA learning. At this time, the weight perturbation sample ω̌s

1 = {ω̌1,1, ω̌1,2, · · · , ω̌1,N} on the first
joint and the weight perturbation sample ω̌s

2 = {ω̌2,1, ω̌2,2, · · · , ω̌2,N} on the second joint in the pth
iteration are respectively mapped in high dimensions to obtain [φ(ω̌d,1) φ(ω̌d,2) · · · φ(ω̌d,N)],
denoted as Φ(ω̌s

d) ∈ RV×N(d ∈ [1, 2]). Next, find two sets of vectors w1, w2 ∈ RV×1, so that the
correlation coefficient between the data u and v after the projection of φ(ω̌1) and φ(ω̌2) is maximized.
We will have:

u = wT
1 φ(ω̌1),

v = wT
2 φ(ω̌2).

(11)

The covariance of u and v is given by:

var(u, v) =
1

N − 1
wT

1 Φ(ω̌s
1)Φ(ω̌s

2)
Tw2. (12)
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Obviously, the vectors w1 and w2 are located in the space spanned by data Φ(ω̌s
1) and Φ(ω̌s

2):

w1 = Φ(ω̌s
1)α1,

w2 = Φ(ω̌s
2)α2,

(13)

where α1, α2 ∈ RN×1. From Equations (12) and (13), correlation coefficient ρ can be obtained:

ρ =
αT

1 ΦT(ω̌s
1)Φ(ω̌s

1)Φ
T(ω̌s

2)Φ(ω̌s
2)α2√

αT
1 (Φ

T(ω̌s
1)Φ(ω̌s

1))
2α

1

√
αT

2 (Φ
T(ω̌s

2)Φ(ω̌s
2))

2α2

=
αT

1 Kω1 Kω2 α2√
αT

1 Kω1 Kω1 α1

√
αT

2 Kω2 Kω2 α2

.

(14)

Kernel method is introduced in Equation (14), where K(·) is a kernel matrix. Without loss of
generality, we fixed the denominator αT

1 Kω1 Kω1 α1 = 1, αT
2 Kω2 Kω2 α2 = 1 of Equation (14) to find a

suitable α1 and α2 to maximize αT
1 Kω1 Kω2 α2. Construct the Lagrange function:

L =αT
1 Kω1 Kω2 α2 −

λ1

2
(αT

1 Kω1 Kω1 α1 − 1)

− λ2

2
(αT

2 Kω2 Kω2 α2 − 1).
(15)

We take partial derivatives of α1 and α2 in Equation (15), and obtain:{
Kω2 α2 = λKω1 α1

λ = 2λ1 = 2λ2 = αT
1 Kω1 Kω2 α2.

(16)

According to Equation (16), the implicit correlation Pca(Θ(ω̌1, ω̌2)) between the first joint and the
second joint perturbation vector of the robot is obtained. When the current Tr is greater than the upper
threshold Tmax, α1, α2 are recorded. Furthermore, Equation (15) can be repeatedly executed to obtain
the implicit correlation between the first joint and the dth (d ∈ [2, · · · , D]) joint. In this way, we get the
implicit patterns {(α1, α2), · · · , (α1, αD)} between the joints.

If Tr is less than the lower threshold Tmin, the independent explorations of the whole joint are
abandoned, and the KCCA prediction is turned on. That is, the first joint explores randomly to obtain a
perturbation sample ω̌s

1 and Kω1 in the pth iteration, then (α1, α2) is used to calculate Kω2 of the second
joint. Obviously, ω̌2 can be computed from Kω2 , and that will guide the exploration of the second joint.
Repeat the same steps for the subsequent joints until the Dth joint.

4.3. The Combination of KCCA and CMA

We draw the schematic of the PI2-CMA-KCCA’s control flow as Figure 1, which works like
a double closed-loop control system. Without loss of generality, there are D joints, and each joint
corresponds to M basis functions, then D×M parameters need to be adjusted.

The outer loop aims at discovering the hidden patterns between the joints which are helpful to
fulfill the new task. Specifically, we use the KCCA to infer the nonlinear correlations between the first
joint and other joints for good declining rate, recorded as {(α1, α2), · · · , (α1, αD)}. After that, we can
compute ω̌d from Kωd based on perturbation sample ω̌s

1 and Kω1 , and it will guide the perturbation of
the dth joint as a means of exploring noise.

The inner loop extracts heuristic information from a corresponding single joint to guide the search.
Specifically, in the previous iteration, it evaluates the cost Jd of K roll-outs (sorting and probability
average), then selects the first Ke elites of the perturbation sample to obtain the covariance Σωd by the
CMA algorithm. Furthermore, in current iteration , ωd ∼ N

(
ω̌d, Σωd

)
is used to explore the policy

parameter ωd. In other words, it applies compound heuristic information which integrates the inferred
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hidden nonlinear patterns between the joints and the linear patterns within the joint to automatically
determine the exploring proportion for each component of ωd.

Figure 1. A typical system’s architecture for PI2-CMA-KCCA.

In short, the outer loop discovers and predicts the exploring mean of ωd for the dth (d 6= 1) DOF,
the inner loop discloses and infers the exploring variance of ωd for the dth (d 6= 1) DOF. As for 1st
DOF, a vanilla PI2 is employed.

5. Evaluations

The cost function in our experiments is given by:

J =0.5×
D

∑
d=1

N−1

∑
i=1

[107(ÿ(d)(i))2 + (a(d)f (i))2]

+
D

∑
d=1

1011(y(d)(m)− y(d)v )2

+
D

∑
d=1

103[(ẏ(d))2 + (y(d)(N)− y(d)g )2].

(17)
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In Equation (17), D is the number of joints of SCARA and Swayer. y(d)(i), ẏ(d)(i), ÿ(d)(i) denote
the position, velocity, and acceleration of the dth joint of the robot at the time i. y(d)v is the present point
(i.e., via-point) to be passed through by the dth joint at time i. y(d)g is the trajectory’s end point of the d

joint. yd(m) is the point passed through by the dth joint at time m. a(d)f (i) is the acceleration of forcing
term of the dth joint at time i. Equation (17) is a typical quadratic expression of total reward in the
finite stage of reinforcement learning.

5.1. Passing through One Via-Point with SCARA

SCARA has three revolute joints q1, q2, q3 and one prismatic joint q4. In this experiment,
the orientation of the end-effector of the robot arm is ignored, thus the SCARA robot arm can be
regarded as a planar two-link mechanism.

The experiment is divided into the following four steps: (1) Set the Cartesian coordinate of the
starting position of the end-effector to (20, 0, 0)Tcm, and the corresponding joint angle is (0, 0, 0)Trad.
Set the endpoint (4.5, 16, 0)Tcm, and the corresponding joint angle is (0.7068, 1.1796, 0)Trad.
(2) Drive the manipulator based on the principle of minimum jitter to obtain the demonstration.
(3) Given a new task, use PI2, PI2-CMA, PI2-KCCA, and PI2-CMA-KCCA, respectively, to make the
movement pass through a via-point at m = 1.8 s. (4) The four algorithms are iterated for 80 times
respectively to gain new motor skills.

In this experiment, each of the four different algorithms is repeated 20 times. The best experimental
results of PI2, PI2-CMA, PI2-KCCA, and the five experimental results of PI2-CMA-KCCA are selected
for comparison. The optimization effect of PI2-CMA-KCCA is analyzed by comparing the final cost of
the system and the trajectories of joint space. It can be clearly seen from Figure 2 that PI2-CMA-KCCA
converges faster, and its final cost is the lowest (as shown in Table 2).

Table 2. The final cost of one via-point task with SCARA.

Algorithm Final Cost

PI2 2.2341× 108

PI2-CMA 1.7569× 108

PI2-KCCA 1.4089× 108

PI2-CMA-KCCA(test1) 1.0249× 108

PI2-CMA-KCCA(test2) 1.1095× 108

PI2-CMA-KCCA(test3) 1.0677× 108

PI2-CMA-KCCA(test4) 1.2106× 108

PI2-CMA-KCCA(test5) 1.0155× 108

0 10 20 30 40 50 60 70 80

Number of Iteration

0

1

2

3

4

5

6

7

C
o
s
ts

×10
9

PI2

PI2-CMA

PI2-KCCA

PI2-CMA-KCCA(test1)

PI2-CMA-KCCA(test2)

PI2-CMA-KCCA(test3)

PI2-CMA-KCCA(test4)

PI2-CMA-KCCA(test5)

Figure 2. Cost of one via-point task.
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Figure 3 shows the movement trajectories of the three joints of the SCARA in the joint space when
the number of iterations is 35. Because the joint q3 has no effect on the position of the end-effector,
the value of q3 in the joint space remains constant.

The blue line in Figure 3 is the trajectory of each joint of the robot arm under the PI2-CMA-KCCA.
Figure 3 demonstrates that only the blue lines pass through an intermediate via-point.

0 2 4 6 8 10 12

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
J
o

in
t 

p
o

s
 (

ra
d

)

PI2

PI2-CMA

PI2-KCCA

PI2-CMA-KCCA

via-point
1.8s

q1

q2

q3

Figure 3. One via-point task when the number of iterations is 30.

5.2. Passing through Two Via-Point with SCARA

This experimental procedure is similar to Section 5.1, requiring the end-effector to pass the
point (18.2, 8.1, 0)T cm at m = 1.8 s and the point (12.0, 13.5, 0)T cm at m = 3.6 s. Four different
algorithms are also respectively repeated 20 times, and the best experimental results of PI2, PI2-CMA,
PI2-KCCA, and the five experimental results of PI2-CMA-KCCA are selected for comparison. Figure 4
demonstrates that the PI2-CMA-KCCA has better learning performance than the other algorithms.
After 80 iterations, the final cost of the four algorithms is given in Table 3.

Figure 5 shows the trajectories of the three joints of the SCARA in the joint space when the
number of iterations is 50, where the blue lines represent the joints’ trajectories of the robot arm in joint
space under the PI2-CMA-KCCA. It demonstrates that, when the number of iterations is 50, the blue
trajectories pass through two intermediate via-point at t = 1.8 s and t = 3.6 s accurately.

Table 3. The final cost of two via-point task with SCARA.

Algorithm Final Cost

PI2 7.1203× 109

PI2-CMA 5.5471× 109

PI2-KCCA 4.4999× 109

PI2-CMA-KCCA(test1) 2.7410× 109

PI2-CMA-KCCA(test2) 3.3489× 109

PI2-CMA-KCCA(test3) 3.4429× 109

PI2-CMA-KCCA(test4) 3.1620× 109

PI2-CMA-KCCA(test5) 3.0731× 109
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Figure 4. Cost of two via-point task.
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Figure 5. Two via-point task when the number of iterations is 50.

5.3. Passing Through One Via-Point with Swayer

Swayer is a lightweight collaborative robot created by Rethink Robotics. It has seven joints. In this
subsection, qi is used to represent the ith joint of Swayer. Because the q7 has no effect on Cartesian
position of the end-effector, only six joints are considered. This experiment uses the ROS platform to
control the movement trajectory of the Swayer manipulator in the Ubuntu16 system, and validates the
effectiveness of the PI2-CMA-KCCA.

First, we set an arbitrary starting point (697, 159, 514)T mm in the workspace of Swayer and
an arbitrary endpoint (300,−569,−65)T mm, then drag Swayer to record a demonstration from the
starting point to the endpoint, then choose any reachable point (840,−248, 595)T mm far away from
the demonstration as a new task at m = 1.2 s. Finally, PI2, PI2-CMA, PI2-KCCA, and PI2-CMA-KCCA
are repeated 20 times on Swayer. The five experimental results of the PI2-CMA-KCCA and the best
experimental results of the PI2, PI2-CMA and PI2-KCCA are selected for analysis. Figure 6 shows the
downward trend of the cost of the four algorithms, and the final cost of the four algorithms after 80
iterations is given in Table 4.
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Table 4. The final cost of one via-point task with Swayer.

Algorithm Final Cost

PI2 7.1889× 1010

PI2-CMA 5.0168× 1010

PI2-KCCA 4.5494× 1010

PI2-CMA-KCCA(test1) 2.2861× 1010

PI2-CMA-KCCA(test2) 2.2581× 1010

PI2-CMA-KCCA(test3) 2.2641× 1010

PI2-CMA-KCCA(test4) 2.2554× 1010

PI2-CMA-KCCA(test5) 2.2513× 1010
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Figure 6. Cost of one via-point task.

Figure 6 illustrates that, during the reinforcement learning, learning efficiency of PI2-CMA-KCCA
is higher under the same number of iterations. At the same time, Figure 7 shows that the Swayer
passes through an intermediate via-point accurately at m = 1.2 s when the number of iterations is 60.
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Figure 7. One via-point task when the number of iterations is 60.
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Figure 7 shows the trajectories of joint space in Swayer. The blue lines represent the joints’
trajectories after PI2-CMA-KCCA learning. The result shows that only the blue lines can pass through
the via-point accurately after about 60 iterations.

5.4. Performance Comparison of Four Algorithms

In Table 5, the cost decline rate of PI2-CMA-KCCA is always higher than that of PI2, PI2-CMA,
and PI2-KCCA. When the experimental objects are the same, the new task is more complicated,
and the learning performance of PI2-CMA-KCCA is better than that of the other three algorithms.
In addition, especially when the tasks are the same, the greater the number of degrees of freedom of the
experimental objects, the better the optimization effect of PI2-CMA-KCCA than the other algorithms
because PI2-CMA-KCCA not only adjusts the magnitude of exploration noise automatically but also
considers the nonlinear heuristic information between the joints.

Table 5. Average decline rate of four algorithms.

Task PI2 PI2-CMA PI2-KCCA PI2-CMA-KCCA

One Via-Point Task with SCARA 96.5% 97.2% 97.8% 98.5%

Two Via-Point Task with SCARA 84.0% 87.4% 89.7% 92.8%

One Via-Point Task with Swayer 73.0% 81.3% 83.0% 91.5%

6. Conclusions

Compound heuristic information is applied in the paper to guide PI2’s variational exploration
and expedite the procedure of reinforcement learning. This information is derived by KCCA and CMA
together. KCCA infers the nonlinear heuristic information between the joints of robot, and CMA infers
the linear heuristic information within single DOF. This information may cause the cost function to drop
rapidly with the MLE on the roll-out data. In addition, the proposed algorithm PI2-CMA-KCCA works
like a double closed-loop control system, in which the outer loop discovers and predicts the means of
exploring vectors for each DOF and the inner loop discloses and infers the variance of exploring vector
for each DOF. In this way, the new algorithm can quickly search the optimal parameters of new tasks.
The experimental results on SCARA and Swayer also demonstrate that the algorithm can speed up the
process of updating parameters while maintaining the accuracy of completing new tasks, which is
suitable for multi-degree-of-freedom objects and more complex tasks.
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