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Abstract: Intensive agriculture has led to the increasing application of pesticides, such as malathion,
thus generating large volumes of untreated cropland wastewater (CropWW). In this work, a hybrid
system constructed wetlands (CW) coupled in continuous with an optimized UV/H2O2 pretreatment
was evaluated for the efficient removal of malathion contained in CropWW. In the first stage, 90 min
UV irradiation time (UV IR) and 65 mM hydrogen peroxide (H2O2) were identified as optimal
operation parameters through a central composite design. The second stage consisted of CW planted
with Phragmites australis collected from the agricultural discharge area and operated as a piston flow
reactor. Furthermore, CW hydraulic residence times (HRT) of 1, 2 and 3 days, including hydraulic
coupling, were evaluated. The removal efficiencies obtained in the first stage (UV/H2O2) were
94 ± 2.5% of malathion and 45 ± 2.5% of total organic carbon (TOC). In stage two (CW) 65 ± 9.6%
TOC removal was achieved during the first 17 days, from which around 24% was associated to the
biosorption of malathion byproducts. Subsequently, and until the operation ends, CW removed
about 80% of TOC for 2 and 3 days HRT, with no significant differences (p > 0.2), which is higher
than those reported in several studies involving only advanced oxidation processes (AOP) with UV
IR times above 240 min and even for systems using catalysts. The results obtained indicate that
the system UV/H2O2-CW is a technically suitable option for the treatment of CropWW with a high
content of malathion mainly found in developing countries. Moreover, the hybrid system proposed
also represent significant reduction in the size of the treatment plant.
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1. Introduction

Extensive agricultural production implies continuous use of agrochemicals to guarantee pest
control and maximize crop yields. Since the 1970s, pesticides have been detected in environmental
matrices such as soil, water and in organisms at practically all levels of the food chain due to
their bioaccumulative and biomagnifiable characteristics. Even more relevant are their carcinogenic,
mutagenic and teratogenic effects [1,2]. Pesticides are classified based on their chemical structure and
functional groups as carbamates, organochlorines, organophosphates, pyrethroids and bipyridyls.
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Currently, organophosphate pesticides are the most widely used insecticides in tropical regions,
representing health risks since their mechanism of action inhibits the cholinesterase enzyme [3].

Around seventy percent of the extracted water volume is used for agriculture, hence this economic
activity is considered the largest water consumer. In developing countries this volume reaches up to
95%, because irrigation practices do not allow optimal water use [4]. Consequently, a considerable
volume of cropland wastewater (CropWW) is generated, which is characterized by low biodegradability
and a high concentration of nutrients [5,6]. The CropWW is transported through the infrastructure of
agricultural drains to surface water bodies, sometimes ending in the aquifer that supplies water for
the population. In both cases, the composition and volume of CropWW discharged generates diffuse
discharges difficult to control which causes pollution problems, eutrophication and health risks.

Cereals are one of the primary sources of food around the world. In 2018/19 agricultural cycle,
their production amounted to 2653 million tons with an estimated increase of 2.3% for the following
cycle [7]. In tropical regions, maize requires between 500 and 800 mm of water layer per cycle [8].
During the cultivation stage, malathion is intensively applied for insect control which is subsequently
released into the environment through agricultural drains. Despite its half-life of less than one week,
this pesticide has been quantified in agricultural drains and in the vicinity of water bodies and river
mouths of neighboring water bodies in concentrations ranging from 0.005 to 3.3 µg/L [9,10].

Chemical formula of malathion is C10H19O6PS2, and it presents chronic and environmental toxicity
characteristics; its LC50 for rats by inhalation is 43.8 mg/m3/4 h (PubChem, 2019) [3]. This pesticide
class is not as persistent as organochlorines, but its degradation byproducts, such as malaoxon, have a
higher bioactivity and toxicity [11,12].

Moreover, CropWWs have a high load of nitrogen and phosphorus from fertilizers, thus causing
eutrophication problems in agricultural basins [13]. Therefore, implementation of effective and feasible
CropWW treatment is crucial to mitigate water bodies’ pollution.

Ref. [14] reported removal efficiencies of chlorpyrifos, lambda-cyhalothrin and diazinon of 73.3%,
68.9%, 49.1% and 84%, respectively, as chemical oxygen demand (COD) through a photocatalytic
process of wastewater from an agrochemical and pesticides company. The authors reported 120 min as
optimal irradiation time, and H2O2 and TiO2 concentrations of 1.5 g/L and 2 g/L, respectively.

Ref. [15] measured atrazine degradation (compound with toxicity and application volume similar
to malathion) by a UV/ H2O2 system, reaching a complete removal after 30 min of irradiation with
20 mg/L H2O2. However, the concentration of non-biodegradable byproducts increased over time.

Ref. [16] tested organophosphate pesticide removal by different advanced oxidation processes
(AOP), such as UV/H2O2, photo-Fenton and ozonation, using concentrations up to 12 and 11 mg/L of
malathion and parathion. All treatments tested removed around 100% of both pesticides at 90 min
of operation. However, AOP needed high irradiation times (120–300 min) to achieve mineralization,
resulting in high operating costs and reagent usage.

On the other hand, constructed wetlands (CWs) are known for their efficiency and versatility
in wastewater treatment by the interaction of physical, chemical and biological processes, such as
oxidation, reduction, precipitation, sedimentation and adsorption [17]. Recently, these biological
treatments have been used for industrial effluents, mine and agricultural drainages as well as the
removal of other persistent organic pollutants [18]. Likewise, natural wetlands around cropland
drainages have demonstrated to perform a feasible treatment [19].

Because CropWW is characterized by its low biodegradability, conventional CWs are technically
limited. Nonetheless, this technology has evolved for treating emerging contaminants by using
emerging vegetation and/or local bacterial communities improving their efficiency as bioaugmented
CWs [20]. However, this type of CW has not been scaled up mainly because they need high HTR,
which implies large land areas.

The technologies available for the treatment of wastewater containing pesticides, for instance AOP
and biological systems, offer advantages and some degree of efficiency. Hence, the proper coupling of
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both technologies would suggest an increase in the removal efficiency and the possible reduction of
toxic byproduct formation, as well as reduced area requirements for CWs.

Ref. [6] studied the coupling of CW to photo-Fenton, ferrioxalate and photo-Fenton/TiO2 for
the removal of clopyralid contained in synthetic wastewater. Total organic carbon (TOC) removal
reached 93, 92 and 87% respectively, almost twice as high as the treatment before the coupling with the
biological process. Similarly, [21] coupled a photocatalytic system TiO2-visible light with CW to treat
decabromodiphenyl ether. Removal achieved in the combined system (93.6 ± 2.2%) was significantly
higher than in the photocatalytic system alone (56.3 ± 2.8%).

The aforementioned, suggest the technical feasibility of treating CropWW using AOP coupled
to CWs, since biological systems are characterized by operational robustness to low pH values
and byproducts likely to be present in the effluent of AOP. In this context, it is possible to achieve
high removal rates, or even mineralization, of organic matter producing an effluent with acceptable
characteristics for reuse in the same agricultural areas.

In this study the main objective was to assess technical feasibility of a UV/H2O2-CW coupled
system to treat CropWW with high malathion and nutrient loads, which is discharged into agricultural
drainages in tropical regions [13]. Before coupling, the AOP was optimized to achieve the highest
removal rates as well as a lower energy consumption.

2. Materials and Methods

The hybrid treatment system set up consisted of an UV/H2O2 process coupled to CW. The H2O2

dose and irradiation time were optimized for the AOP. The coupled system was operated in continuous
flow, thus the AOP’s effluent was the influent of the CW. Figure 1 shows the general diagram
of the coupled treatment system, Sections 2.1–2.3 give further details of each process including
hydraulic coupling.
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Figure 1. Hybrid system general diagram during experimental setup and operation. Q = volumetric
flow and HRT = hydraulic residence time.

The influent of hybrid system was synthetic water with the following composition: 41.8 mg/L
malathion (commercial malathion), equivalent to 22 mg/L of TOC [16], 2.12 mg/L total phosphorus (TP)
(added as KH2PO4) and 0.17 mg/L of total nitrogen (TN) (added as KNO3). The concentrations used
were established according to the the maximum effluent concentrations found in crop areas where
malathion and fertilizers are widely used [22].
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2.1. Pretreatment UV/H2O2 Optimization

The AOP UV/ H2O2 pretreatment was carried out in a stainless-steel recirculation chamber with a
diameter of 7 cm and 30 cm length. A 10 W UV mercury lamp at 254 nm coated with optical grade
quartz, was installed inside the chamber (Figure 2). Into the UV chamber, H2O2 (30% w/w, industrial
grade) was dosed using a peristaltic pump, Kaomer 5V. In order to optimize the system, 10, 30, 60, 90,
120 and 150 min of UV irradiation and H2O2 dosages of 49, 65 and 82 mM were evaluated, considering
previous studies on recalcitrant compounds removal by AOPs, in which the kinetics of hydroxyl
radicals (•OH) generation were studied [16,23]. The relationship between irradiation time and H2O2

dose was analyzed through the Response Surface methodology with a central composite design using
malathion and TOC concentrations as a response variable and desirability function using all quadratic
effects interactions.
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2.2. Design and Operation of CW

The biological treatment was performed at laboratory scale in subsurface horizontal flow
constructed wetlands (SSHFCW). Bioreactors were constructed of acrylic with 0.55 m length, 0.20 m
width and 0.35 m total height (Figure 3), with a length-to-width ratio of 2.7:1, proportion suggested in
several studies to set up piston flow [24].

The support medium consisted of gravel with a particle diameter of 1.0 cm, equal to 43.33%
of porosity [25]. Therefore, the effective volume was 11.37 L. The water inlet was positioned 5 cm
below the top surface layer of the support medium and distilled water was added to maintain the
operating volume to avoid the increase of dissolved organic matter concentration due to water losses
by evapotranspiration.

CWs were planted with Phragmites australis, an adaptable specie to climatic and operational
conditions [26]. Morevover, this is the most common vegetation growing in the vicinity of cropland
drainages. One stem was planted considering the superficial area as per the recommendations by [20]
(see Table 1).

Table 1. Constructed wetland (CW) operational conditions. In vegetation density, 9 stem/m2 is resulted
of planting one stem in the 0.11 m2 of superficial area.

Features Units Bioreactor 1 Bioreactor 2 Bioreactor 3

Cross section area m2 0.07 0.07 0.07
Vegetation density Stem/m2 9 9 9

Hydraulic residence time days 1 2 3
Organic load gCOD/(m2 d) 12.22 6.11 4.07
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Previous to the coupling of the processes, the biological system was adapted in two phases.
The first phase involved hydroponic cultivation of transplanted vegetation from an agricultural
drainage. In the second stage vegetation was planted in CW and fed with municipal wastewater
collected from the primary sedimentation tanks of a local treatment plant. The influent to the CW was
changed to CropWW when the volatile suspended solids concentration was steady [27]. Table 1 shows
the main design and operational parameters of the CW system.

2.3. UV/H2O2-CW System Coupling and Analytical Procedures

The flow rate of pre-treatment UV/H2O2 was 18.47 L/d, considering the optimum irradiation time
and the photo-reactor volume (1.154 L). Afterward, the UV/H2O2 effluent was conducted to a 143 L
homogenization tank, connected to CW (See Figure 1). The effective volume of CW was 11.37 L and
hydraulic residence times (HRT) of 1, 2 and 3 days were evaluated. Hence, the removal was calculated
according to the total UV/H2O2-CW coupled systems. Every system evaluated was integrated with the
same AOP pretreatment, but the CW was operated at different HRT values.

Synthetic CropWW was conducted through the system by a digital filling peristaltic pump CR
BT100FJ with silicone tubing with inner diameter 0.76 mm. The hybrid system was operated for 60
days to achieve stable organic matter removal efficiencies, which must be observed in CW operated
under continuous flow [27,28].

Malathion concentration was measured with an Agilent 7890A gas chromatography equipped
with an HP-5 capillary gas chromatographic column and a Flame Photometric Detector. Nitrogen gas
used as a carrier and operation parameters such as a temperature of 300 ◦C during the chromatographic
cycle, a purge time of 0.75 min and injection volumes of 4 µL were according to [29].
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Total organic carbon (TOC) was quantified according to American Public Health Association [30]
with a LECO CR-412 analyzer TOC-L equipment. The pH and oxidation–reduction potential (ORP) in
the water samples were measured using a multi-parameter tester (Hanna HI9828). These water quality
parameters were monitored during the different stages of the hybrid system.

2.4. Statistical Analysis

The AOP optimization tests were run with five replicates, and the coupled system UV/H2O2-CW
was performed in triplicate. The data obtained from the coupled systems were compared using
repeated measures analysis of variance (ANOVA) followed by a Tukey test (α = 0.05).

Response variables were TOC and malathion concentration. Previously, data were evaluated for
normality and homoscedasticity with the Anderson–Darling test. The entire statistical analysis was
performed using Stat Graphic Centurion XVI.

3. Results and Discussion

3.1. Advanced Oxidation Process UV/H2O2

3.1.1. Malathion and TOC Removal

Figures 4 and 5 show the behavior of malathion and TOC concentration in the AOP. For the three
H2O2 doses, malathion removal reaches its highest level, 95 ± 3.2%, with an asymptotic tendency after
90 min of irradiation. However, TOC removal around 50%–60% at 90 and 120 min of irradiation, with
H2O2 doses of 82 and 65 mM, respectively, were obtained. The tendency of high malathion removal
but low TOC removal (22%–40%) was also observed for the 49 mM H2O2.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 14 
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C0 = initial TOC concentration (In this research = 41.8 mg/L).

The differences between malathion and TOC removal behavior is related to the degradation of
pesticide to less complex organic molecules, in terms of chemical structure, but together contributes
to the same organic carbon concentration [31]. Regarding TOC removal, it is only observed if the
degradation product is CO2, equivalent to mineralization. Results showed that the malathion molecule
was practically not detected (Figure 4) at 90 min for 65 and 82 mM H2O2 doses, but the degradation
byproducts were quantified as 40 ± 3.2% of TOC initial concentration (Figure 5). Organic byproducts
of malathion degradation by AOP are maloxon, malathion dicarboxylate, dimethyl dithiophosphate,
dimethyl thiophosphate and methyl thiophosphate, which are quantified as TOC [32].

The formation of the aforementioned byproducts depends on the hydroxyl radicals (•OH),
which in photolysis are correlated to the initial concentration of the oxidant reagent, in this case
H2O2 [33]. According to the results shown in Figures 4 and 5 the removal tendency for malathion and
TOC is remarkably similar for 65 and 82 mM H2O2 (p = 0.09), particularly, after 90 min of irradiation.
The results for both doses of H2O2 did not show significant differences (p = 0.13).

Results from the lower dose tested of 49 mM H2O2 demonstrated that 100% of malathion removal
can be achieved but it requires 150 min of irradiation (Figure 4). However, this condition exhibited
the highest TOC removal at 120 min (p = 0.009), which is associated to H2O2 depletion, since the
production of •OH is limited when consumed completely.

The UV/ H2O2 system achieves its highest removal efficiency at 130 min of irradiation, suggesting
consumption of most of the reagent; therefore, a longer HRT does not increase its removal rate (Figures 4
and 5).

The optimal H2O2 dose is in a range 65–82 mM. Thus, addition of H2O2 generates •OH that
enhances the efficiency of dissolved organic matter oxidation [34,35]. Nevertheless, increase reagent
amount may affect degradation, since excess peroxide molecules cause competing reactions with
organic matter by •OH, and thus their depletion [36].
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3.1.2. Behavior of Physicochemical Parameters

The pH levels in the system remained in acidic condition, below 2.5 units during the AOP
(Figure 6a). Such conditions enhance organophosphate pesticides degradation through advanced
oxidation processes [37]. The H2O2 oxidation generates •OH, and in turn releases hydronium ions,
responsible for the medium acidification. According to the study results, pH and TOC removal decrease
over time (Figures 4, 5 and 6a).
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Figure 6. Pshysicochemical parameters behavior in UV/H2O2-advanced oxidation process at three
different H2O2 dosage during malathion removal. The values represent the mean values of five
replicates. (a) pH and (b) oxidation–reduction potential.

Figure 6b indicates that oxidative conditions were maintained throughout the treatment. Although
ORP values did not show a clear trend linked to irradiation time, higher ORP values were observed for
the 65 mM of H2O2, which is mainly because H2O2 determines oxidative conditions of the treatment
regardless organic matter degradation and/or oxidation of dissolved solids [38,39]. Indeed, efficiencies
of malathion and TOC removal with 65 mM were higher than with 82 mM H2O2, despite no statistical
difference (p = 0.11). Ref. [40] have evaluated the doses of peroxide in advanced oxidation processes,
finding that when the kinetics of decomposition, manifested as a greater amount of •OH, are greater
than degradation kinetics, there is competition for UV light.

3.1.3. Selection of Pretreatment UV/H2O2 Operation Parameters

Figure 7, based on the results of Section 3.1, shows the interaction effects of irradiation time and
H2O2 dose on the organic matter removal for optimization. In terms of energy and oxidant reagent
consumption, the combination that allows a shorter irradiation time and lower consumption of reagent
without compromising the pretreatment removal efficiency was considered.

Hence, 75 and 120 min of UV irradiation and H2O2 dosage between 49 and 65 mM were the
optimal conditions to achieve satisfactory removal efficiencies for the subsequent treatment stage.
Table 2 describes the more favorable treatment configurations, which were selected to be 90 min with
65 mM, since same removal efficiencies are achieved with higher irradiation time and/or concentration
of H2O2. The second option, 90 min and 57 mM, was excluded because TOC and malathion removal
efficiencies are lower in comparison with the third option (p = 0.008). Furthermore, such efficiencies
are practically equal to the first option, which use shorter irradiation time and reagent volume (Table 2).
The third option was selected over the first one, despite the longer irradiation time, because removal
efficiency was 50% higher for both malathion and TOC. In this regard, the lowest concentrations of
TOC and malathion to be treated in the biological systems were considered in order to reduce the
organic load to the CWs which have better performance at low organic loads [5,39].
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Table 2. Potential combinations of irradiation time and H2O2 dose during the pretreatment operation,
considering both malathion and TOC removal. Note: This table is modified from the result of the
response surface design analysis, where the confidence intervals are bilateral to estimate the effect of
higher and lower levels.

Pretreatment Option Irradiation Time, Min Hydrogen Peroxide, mM TOC Removal, % Malathion Removal, %

1 75 49 30–40 70–80
2 90 57 40–50 70–80
3 90 65 50–60 90–100
4 120 65 50–60 90–100

3.2. UV/H2O2-SSHFCW System

The synthetic CropWW initial concentration (C0), for configurations of the hybrid system,
was 41.8 mg/L of malathion and 22 mg/L of TOC. In this section, the only difference between the three
UV/H2O2-CW systems evaluated was the HRT in the CW, as it was described in Section 2.3. Figure 8
shows the removal rates in the UV/H2O2-CW systems.
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Figure 8. TOC behavior dosage during malathion removal in hybrid UV/H2O2-CW system at three
hydraulic retention times used for the CW stage. The values represent the mean values of three
replicates. Ce = TOC concentration at time t (operation days), C0 = initial TOC concentration (the value
corresponds to the AOP effluent).
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Malathion removal in the hybrid system was 94.7 ± 4, 97.9 ± 2 and 98.3 ± 3% for the wetland HRTs
of 1, 2 and 3 days, respectively. Although higher pesticide removal was observed at longer HRT in CW,
there was not significant difference (p = 1.2), since removal mainly occurred in the AOP pretreatment
which was the same for all three systems. In fact, this pretreatment achieved between 95% and 100% of
malathion removal with the operational parameters selected.

Regarding TOC, the three CW configurations coupled to UV/H2O2 pretreatment achieved 65 ± 8.3%
TOC removal at 17 operation days, which is 15% more than the AOP as the unique treatment. The results
obtained suggest that a portion of malathion by-products, generated during the AOP, were removed in
CW by some mechanism other than biodegradation, since HRT would influence the removal efficiency
in biological systems (time contact microorganisms-contaminant). Some authors have reported that
particles or surfaces of organic–inorganic nature can adsorb organic persistent molecules such as
pesticides, drugs and their cyclic byproducts by Van Der Waals forces and/or physisorption, as occurs
in soils and sediments [42,43]. In CWs, sorption processes can occur in support media, due to occluded
and interstitial porosity. In addition, sorption also occurs on hydroxyalkanoates and hydroxybutyrates,
main compounds of microbial biofilm [44,45] and onto the root exudates of vegetation rhizomes [44,46].

Regarding TOC removal, the performance of the UV/H2O2-CW operated with 1 d HRT was
significantly lower than the other two systems (p = 0.0015), which is mainly because the recommended
HRT for CW range from 1.5 to 4 days.

In fact, in a non-aerated attached-biomass reactor, catabolic processes are not observed before one
day HRT [18,47]. Furthermore, this hybrid system did not show any trend throughout the experiment
(Figure 8), so it is likely that the removal achieved in the CW was due to sorption and biosorption.

The UV/H2O2-CW operated with 2 and 3 d HRT have no significant differences between removals
(p = 0.2). Both systems were stable before 40 days of operation when the maximum variation is
±10%, acceptable for secondary wastewater treatment systems [18]. TOC removal efficiency achieved
in both systems was 80 ± 6.9%, which is higher than the value reported for biological systems
treating pesticides [48] and similar to that reported for AOP operated with high irradiation times of
150–300 min [16–49].

The similar results obtained for systems operated with 2 and 3d HRT during the second stage,
was probably due to the recalcitrant nature of some pesticide byproducts. Therefore, microorganisms
can no longer degrade or mineralize the compounds even after a long time contact, thus TOC
concentration does not decrease with higher HRT. Some studies have suggested the degradation of
malathion to phosphorylated thiol groups before mineralization [11,12], but these compounds are
barely biodegradable due to their bactericidal effect [50].

On the other hand, authors have highlighted that the importance of vegetation in CW resides in
the rhizosphere, especially in rhizospheric bacterial strains [51,52]. The vegetation planted in the CWs
was collected from agricultural drains where organophosphate pesticides and traces of organochlorines
have been reported [22]. This suggests that rhizospheric bacteria could be tolerant to pesticides and
even assimilate them, as it has been demonstrated for in vitro studies [53] and bioreactors [54] that the
adapted bacteria promoted higher removal rates and, therefore, lower HRT requirements. Nonetheless,
this fact requires evaluation in future research.

4. Conclusions

A sequentially coupled UV/H2O2-CW was successfully used for the treatment of synthetic
cropland wastewater containing malathion. Based on the results, the following points are concluded:

• In the first stage, the UV/H2O2 system optimization resulted in the removal of most malathion
content in a shorter time of period than the reported for other AOP, including those using catalysts.
The TOC remaining after this stage was mainly attributed to the formation of byproducts.

• The UV/H2O2-CW system removed an average of 65% TOC during the first 17 operation days
without significant difference (p > 0.05) among the HRTs used in constructed wetlands related to
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biosorption processes. Nevertheless, the system with the lower HRT value did not increase its
efficiency or reach stability over time.

• The UV/H2O2-CW system operated with 2 and 3 d HRT in CW, reached 80 ± 6.9% TOC removal,
which is equivalent to value achieved by novelty prototypes based on the combination of two or
more AOP.

• The overall results demonstrated that CWs planted with native vegetation from cropland and
coupled in continuous flow to UV/H2O2 pretreatment is a technically feasible option to treat
CropWW containing malathion.

• Future research efforts regarding toxicity, degradation pathways and quantification of other
recalcitrant compounds, even at trace levels, are needed to better understand the treatment process.

• Long term evaluation of in situ pilot-scale systems treating real wastewater would be necessary to
evaluate the economic feasibility of the large-scale system. An economic comparison between the
proposed hybrid system and the conventional advanced oxidation will help to confirm if the one
proposed in this research is less costly as is expected.
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