
applied
sciences

Article

Error Detection for Arabic Text Using Neural
Sequence Labeling

Nora Madi * and Hend Al-Khalifa

Information Technology Department, College of Computer and Information Sciences,
King Saud University, Riyadh 12371, Saudi Arabia; hendk@ksu.edu.sa
* Correspondence: nmadi@ksu.edu.sa

Received: 24 June 2020; Accepted: 27 July 2020; Published: 30 July 2020
����������
�������

Abstract: The English language has, thus far, received the most attention in research concerning
automatic grammar error correction and detection. However, these tasks have been less investigated
for other languages. In this paper, we present the first experiments using neural network models for
the task of error detection for Modern Standard Arabic (MSA) text. We investigate several neural
network architectures and report the evaluation results acquired by applying cross-validation on the
data. All experiments involve a corpus we created and augmented. The corpus has 494 sentences
and 620 sentences after augmentation. Our models achieved a maximum precision of 78.09%, recall
of 83.95%, and F0.5 score of 79.62% in the error detection task using SimpleRNN. Using an LSTM,
we achieved a maximum precision of 79.21%, recall of 93.8%, and F0.5 score of 79.16%. Finally, the best
results were achieved using a BiLSTM with a maximum precision of 80.74%, recall of 85.73%, and F0.5

score of 81.55%. We compared the results of the three models to a baseline, which is a commercially
available Arabic grammar checker (Microsoft Word 2007). LSTM, BiLSTM, and SimpleRNN all
outperformed the baseline in precision and F0.5. Our work shows preliminary results, demonstrating
that neural network architectures for error detection through sequence labeling can successfully be
applied to Arabic text.

Keywords: Arabic natural language processing; deep learning; error detection; neural sequence
labeling; recurrent neural networks

1. Introduction

Error detection may help both natives and non-natives in producing correctly written text.
Moreover, error detection has a wide range of applications, such as automatic essay scoring [1], style and
grammar suggestion [2,3], and language learning systems [4]. Additionally, specific types of errors in a
text may reflect the writer’s age, proficiency, dialect, and native language. Therefore, the output of
error detection models could be used for creating a profile of a certain writer [5]. Such profiles can be
used for author identification, native language identification, or even the level of education.

Using neural network models has shown significant results for different Natural Language
Processing (NLP) tasks [6]. There exist a variety of neural network architectures, ranging from
Recurrent Neural Networks (RNNs) [7] to more advanced Long–Short-Term Memory Networks
(LSTMs) [8] and other varieties, such as bidirectional LSTMs (BiLSTMs) [9]. RNN and its variations are
very appealing for NLP as they are specialized in learning sequential data including text. Hence, they are
commonly used for the sequence classification task and have also recently found success at automating
grammatical error detection [1] and correction [10] through language modeling [11] and machine
translation [12].

Although such approaches have been used to detect errors in English text, error detection
based on neural networks has not yet been explored for Arabic. Essentially, earlier state-of-the-art

Appl. Sci. 2020, 10, 5279; doi:10.3390/app10155279 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-2027-3474
https://orcid.org/0000-0002-7328-4935
http://dx.doi.org/10.3390/app10155279
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/15/5279?type=check_update&version=2

Appl. Sci. 2020, 10, 5279 2 of 14

systems for Arabic depend on employing combinations of rule and statistical-based approaches [3].
However, taking into account the number and complexity of Arabic grammar rules, there is a need for
more advanced approaches that can cope with these challenges.

In this paper, we treat error detection as an independent task and present the first experiments
using neural network models for the task of error detection in Arabic text. We mainly investigate and
report the results of comparing three neural networks architectures: SimpleRNN, LSTM, and BiLSTM.
We also explore the effects of training datasets with different sizes on the overall performance by
providing additional training data to each one of the models. The details will be presented for the
dataset, which we created and later augmented especially for the task of error detection for Arabic.
The types of errors included in the dataset are syntax errors, morphological errors, semantic errors,
linguistic errors, stylistic errors, spelling errors, and the use of informal as well as borrowed words.
Erroneous words that appeared within some sentences in the corpus are presented in Table 1, showing
a sample for each type of error and the reason it is considered an error.

Table 1. Arabic Error Examples.

Error Translation Type of Error Reason of Error
	

àðQº
	
®K
 B

ú

	
¯ øñ�

ZA
�
®

�
�Ë@

They only think
of misery Syntax Error

Using the preposition ú

	
¯ after the exceptive

particle øñ� is incorrect because øñ� must be
followed by a noun or pronoun

Q
	
¯A

	
¢

�
� Unite Morphological Error

The correct word is Q
	
¯A

	
�

�
� (it is a common

mistake to use 	
 in place of 	

�and vice versa,
due to their similar pronunciation)

�
é

	
¯Y� Coincidence Semantic Error

The correct Arabic word to denote coincidence
is �

é
	
¯XA�Ó, not �

é
	
¯Y�

�
é�

�
k Share Linguistic Error

The first letter h, written as �
h using Fatha

diacritic, should be written and pronounced
with the Kasra diacritic �

é�k�

Ñ
	
«QK. Despite Stylistic Error

The word Ñ
	
«P should not be preceded with the

preposition H.

�
I¢

	
k Plan Spelling Error Using the regular �

H instead of Ta-Marbuta �
è

ø

PA�Ó Money Use of Informal Word
Using the informal word ø

PA�Ó instead of the

formal words ÈAÓ or Xñ
�
®

	
K

AÓ 	QK
PA¿ Charisma Use of Borrowed Word
Using the borrowed word AÓ 	QK
PA¿ instead of the

Arabic words �
é

JJ
ë or ÈñJ.

�
¯

The rest of the paper is organized as follows: in Section 2, we give a background and overview of
the related work; the details of our corpus are presented in Section 3; implementation and experiments
are described in Section 4; results from our experimentation are illustrated in Section 5; Section 6
provides discussion and analysis of the results is presented; Section 7 concludes the paper along with
limitations and future work.

2. Background and Related Work

In this section, an explanation of the Arabic language and its grammar is provided. Then, related
works in text correction approaches for a number of languages are discussed. Lastly, previous work
focusing on error correction for Arabic is presented.

Appl. Sci. 2020, 10, 5279 3 of 14

2.1. Arabic Language and Grammar

Arabic is a Semitic language that is rich in its morphology (internal word structure) and syntax
(arrangement of words to make sentences and phrases). Although it has many variations (dialects)
around the Arab World, Modern Standard Arabic (MSA) is the official language. MSA is a simple form
of Classical Arabic (CA), the language of the Qur’an (Islam’s Holy Book). However, MSA has much
more modern vocabulary [13]. It is the main language used in media and education. Additionally, MSA
is primarily written, not spoken [13].

Arabic words are generally classified into nouns, verbs, and particles [3]:

1. Noun: A noun in Arabic is a name of a person, thing, or idea. It is divided into derivatives and
primitives. These could be further classified by number, gender, definition, and case.

2. Verb: The verb is any word that conveys an action. It is divided according to tense, structure,
mood, and voice. These could be further classified by number, person and gender.

3. Particle: The particle is a word that can precede a noun, a verb, or both. Particles include
prepositions, conjunctions, interrogative particles, exceptions, and interjections.

Moreover, an Arabic sentence can be one of two forms [3]:

1. Nominal: A nominal sentence contains two structures: inchoative (

@Y

�
JJ.Ó) and enunciative (Q�.

	
g).

Enunciative can be verbal/nominal sentence. Additionally, a nominal sentence can start with
Inna/Kan and its sisters, which change its case ending.

2. Verbal: A verbal sentence contains two structures: verb and subject. A transitive verb needs to
have one or more object. In its passive voice it includes a verb and a proagent (É«A

	
¯ I.

KA

	
K).

Arabic grammar rules are very complex and might even be confusing to Arabic natives.
The difficulty is due to several reasons—for example: (1) the sentence length and complex grammar;
(2) the relatively free word order in Arabic [3]. Therefore, automatically checking Arabic grammar for
errors could help improve the quality of written Arabic text.

2.2. Grammar Detection and Correction Approaches

Grammar error detection and correction has been done for various languages [14], including
Chinese [15], Greek [16], and Swedish [17]. Different approaches have been exploited for automatically
detecting and correcting text. These include rule-based, syntax-based, and statistical-based classification
and neural networks approaches. The rule-based technique has been applied to languages such as
Amharic [18] and Latvian [19]. Additionally, a syntax-based technique has been used for Danish [20]
and a statistical-based technique has been used for Amharic [18], as well as Filipino [2].

Moreover, classification and Neural Networks have been employed for automatically detecting
and correcting grammatical errors. The most common classifiers used in previous work include
maximum entropy models, naive Bayes and support vector machines (SVM) such as in [10,21] for
English. On the other hand, neural networks have been used in [12,22] by applying Recurrent Neural
Networks (RNNs) on various English corpora to perform Neural Machine Translation (NMT) for
error correction.

Other works, such as in [1,23–25], focused solely on identifying grammar errors in English without
correcting them by employing sequence labeling to generate the probability of each word in the
sentence being correct or not.

2.3. Grammar Detection and Correction in Arabic

In the context of Arabic, there have not been any efforts we know of which concentrate exclusively
on grammar error detection. However, previous work has been done targeting error correction.
One of the earliest works was Arabic GramCheck by Shaalan [3], a syntax-based grammar checker for
identifying Arabic grammatical errors while providing feedback. The grammar checker included two

Appl. Sci. 2020, 10, 5279 4 of 14

parts: an Arabic morphological analyzer and a syntactic parser. A total of 100 Arabic sentences were
used to evaluate the system in comparison to a commercial system. The results showed that Arabic
GramCheck outperformed the commercial Arabic grammar checker. However, Arabic GramCheck
was evaluated on a small number of manually generated Arabic sentences.

In [26], Tomeh et al. presented a pipeline approach which included error detection. They approached
the error detection task as a sequence-labeling problem by training an SVM classifier using
morphological and lexical features including Part-of-Speech tags. For their experiments, they used
QALB corpus [27]. The precision of the error detection model was very low (0.345), which leaves much
room for improvement.

In terms of the use of neural networks, we are aware of only three attempts that have employed
neural models for end-to-end grammar error correction. The first was by Ahmadi et al. [28] who
treated error correction as monolingual NMT using sequence-to-sequence and attention-based models.
Using QALB, the results showed that their models could be effectively applied to the task of error
correction for the Arabic language. However, their work was outperformed by the work of Watson et
al. [29]. They investigated both character embeddings and pre-trained word embeddings, employing a
number of embedding models. They achieved state-of-the-art results in the QALB corpus. On the
other hand, Solyman et al. [30] utilized Convolutional Neural Networks with an attention mechanism
using QALB. However, the results were preliminary, and the proposed model was not fully applied.

This paper is a continuation of the work in [31] as an effort to produce a model to be used within a
tool for Arabic grammar error detection.

3. Corpus and Annotation

In this section, we present the corpora used for training and testing, the process of preparing them,
and their statistics. We first extracted sentences from the “Linguistic Error Detector-Saudi Press as a
Sample” book [32] to produce a parallel corpus as described in [33]. It is a monolingual parallel corpus
of Arabic text, called A7’ta. It has 470 incorrect sentences and their 470 correctly written counterparts.
This parallel corpus was used to create a token-level labeled corpus suitable for the task of error
detection. Then, we augmented this corpus as an attempt to increase the number of sentences and see
how this would affect the models’ performances. All text in the corpora is not diacritized. All datasets
have been made public [33] and can be found at https://github.com/iwan-rg/.

3.1. Token-Level Labeled Corpus

Most of the work that focuses on grammatical error detection using Neural Networks treat this
task as a sequence labeling problem where the model receives a sentence and takes context into
consideration to produce the probability of each word in the sentence being correct or incorrect [1].
This kind of task requires training on a token-level labeled corpus such that every word in a sentence is
labeled as correct or incorrect. However, to the best of our knowledge, there is no such corpus that has
been created for Arabic sentences.

Therefore, for the purpose of this work, we manually transformed the parallel corpus in [33]
to accommodate a token-level error detection task similar to the work in [1]. We did not consider
punctuation marks or punctuation errors in the experiments presented here. We extracted all the
incorrect sentences and labeled each word as being correct (c) or incorrect (i). We used the corrected
versions of the sentences and compared them to their erroneous counterparts to indicate which word(s)
are those that should be labeled as incorrect.

In case there was an extra word in the incorrect sentence, it was labeled as “i”. Furthermore, in case
there was a missing word, the word after the incorrect gap was labeled as “i”. Table 2 shows statistics
related to the original corpus.

https://github.com/iwan-rg/

Appl. Sci. 2020, 10, 5279 5 of 14

Table 2. Corpus Statistics.

Feature Original Corpus Augmented Corpus

Number of Sentences 494 620
Number of Words 1216 1380
Number of Tokens 2027 2705

Number of Correct Words 1438 2122
Number of Incorrect Words 576 592

3.2. Augmented Token-Level Labeled Corpus

In order to increase the size of the corpus, we manually augmented it by adding more sentences.
We applied four types of augmentation, as explained in Table 3. In the table, “Type” is the name of the
type of augmentation inspired by the “Case”, “Case” is the situation where this type of augmentation
was applied, and “Explanation” is a description of how the augmentation was done. The book used to
extract the corpus sentences included explanations of linguistic rules. These explanations included
example sentences, which we collected for augmenting the corpus. We called this type of augmentation
“From Rules”. These sentences occupied 57.14% of the total augmented sentences. Table 2 shows
statistics related to the augmented corpus. Augmentation has caused the number of sentences to
increase by 25.5% in comparison to the original corpus, which had 494 sentences.

Table 3. Types of Augmentation.

Type Case Explanation

Deletion Incorrect sentence has a missing word Augment by duplicating the sentence and adding the
missing word

Syntax Words in the incorrect sentence are
incorrectly ordered

Augment by duplicating the sentence and reordering
the words correctly

From Rules There were some example sentences
in “The Rules” of the book Extracting sentences from rules

Multi-error Incorrect sentence has multiple errors Augment by duplicating the sentence as many times
as there are errors, fix only one error per sentence

4. Implementation and Experiments

In this section, we present the details of our implementation and experiments. First, we present
the toolkit we used as well as the corpus preparation process. Then, we describe the neural network
architectures, which we used for the experiments. Next, we describe which hyperparameters we tuned,
and then the measure we used for evaluation—lastly, we present our baseline.

4.1. Toolkit and Corpus Preparation

Keras with a TensorFlow backend is used for all the experiments. Particularly, Keras version 2.2.4
and Tensorflow version 1.12.0 are used. For the use of neural networks in Keras, input sequences
need to be equally long for modeling. Therefore, we pad our sentences to a uniform maximum length,
which is set to 17, since this is the length of the longest sentence in the corpus. Additionally, label
sequences were padded with zeros to the maximum length. The model learns that padding values
carry no information.

4.2. Neural Network Architectures

Neural networks have been used for various sequence-labeling NLP tasks, such as Part of Speech
(POS) tagging and Named-Entity Recognition (NER). Similarly, we investigated treating error detection
for Arabic text as a sequence-labeling task by utilizing token-level labeled Arabic sentences. For the
sequence-labeling model, we built a neural network, which takes a sequence of tokens (words) as

Appl. Sci. 2020, 10, 5279 6 of 14

input, and outputs the probability of each word in the sentence. We explored a few types of neural
networks, including a SimpleRNN, LSTM, and BiLSTMs.

We used a similar sequence of layers for every experiment while varying the hyperparameters
and RNN types (i.e., SimpleRNN, LSTM, or BiLSTM) for comparison. A SimpleRNN layer is just plain
vanilla RNN in Keras where the output is to be fed back to input.

Models are basically composed of an input layer, a single embedding layer, a dropout layer,
a SimpleRNN layer (or 1–2 LSTM layers or 1–2 BiLSTM layers) with recurrent unit dropout,
and TimeDistributed wrapped Dense output layer with sigmoid activation. The sigmoid function
outputs a probability for each class as a value between 0 and 1.

For our task, we trained word embeddings using the Embedding layer in Keras [34].
The Embedding layer receives the input sequence and encodes it into a sequence of vectors, thereby
learning an embedding for all the words in the training dataset. The advantage of this approach in
comparison to using pre-trained embeddings is that learned vectors are targeted to the specific corpus
as well as the error detection task.

4.3. Hyperparameters

Empirical parameters are used as candidate values for the model. A manual random search
method is used to find the best hyperparameter combinations, taking into consideration the small
corpus size and potential overfitting. We observed the effects of altering these values over the
performance in order to develop the best possible model given the available corpus size. For example,
parameters such as embedding size, batch size, and number of units are varied. Moreover, we explored
multi-layer variants of each of the neural network models investigated. Table 4 provides a summary of
the used hyperparameters and associating values.

Table 4. Hyperparameter Summary.

Hyperparameter Values

Loss Weighted binary cross entropy
Number of Layers 1 and 2
Hidden Layer Size 25, 50, 75, 100, and 125

Embedding Size 32, 50, 75, and 100
Batch Size 1, 8, 16, 32, and 64

Learning Algorithm Nadam with default values
Early Stopping monitor = ‘val_loss’, patience = 2

Dropout None, 0.1, 0.2, and 0.3

The models are optimized using Nadam, which is an Adam optimizer [35] variant with Nesterov
momentum [36]. We left the parameters of this optimizer at their default values as recommended
by Keras documentation [37]. Training is stopped when the validation loss stops decreasing over
two epochs.

Moreover, we optimized the model by minimizing cross-entropy between the predicted label
distributions and the annotated labels. However, our dataset is imbalanced because there are far more
correct words than incorrect words. Therefore, we defined and used a weighted binary cross entropy
function [38]. This function allowed trading off between recall and precision by adjusting the weight
of positive errors in comparison to negative errors.

4.4. Evaluation

To train a model, data could be split into training and testing sets. However, doing so on small
datasets would cause testing scores to vary depending on which data parts were used for training and
which were used for testing. Therefore, using this approach on small data in particular would not
provide reliable results [39].

Appl. Sci. 2020, 10, 5279 7 of 14

So, to make better use of our corpus, we used 10-fold cross validation and the averages of precision,
and the recall for all iterations of a single model were calculated and collected for analysis. Various
research papers apply k-fold cross validation when dealing with smaller datasets [40–46].

Additionally, we calculated and observed F0.5 because, for the task of error detection, feedback
accuracy (i.e., precision) has a higher priority than coverage (i.e., recall). Other evaluation measures
used in the literature, such as the M2-scorer, were not directly valid for error detection because they
require that a system suggests a correction.

Additional code was written to be able to evaluate precision, recall, and F0.5 by comparing
true labels to predicted labels and computing true negatives, true positives, false negatives,
and false positives.

4.5. Baseline

For our baseline, we tested the corpus sentences using a commercially available rule-based Arabic
grammar checker (Microsoft Word 2007). We compared the errors detected by the grammar checker
with the golden labels of the corpus to obtain the results. Consequently, precision for the baseline was
75.6%, while recall was 91.96% and F0.5 was equal to 78.39%.

5. Results

In this section, we present our experimental results using the corpora we created. The first part
describes the results received from training and testing the models using 494 sentences. The second
part shows the results when using the best performing model configurations to train and test the
augmented corpus of 620 sentences. Lastly, the third part reports model performances when tested on
50 sentences from QALB.

5.1. Results of the Models

Table 5 presents the best results from each type of neural network we investigated using our
un-augmented corpus and compares them with other works. The BiLSTM model performed the best
of all systems that we developed in terms of precision and F0.5. However, SimpleRNN performed
better than LSTM in terms of precision and F0.5. LSTM outperformed the other models in terms of
recall. Unlike LSTM, SimpleRNN is not suitable for processing long sequences, such as text [39].
Therefore, we expected that LSTM would perform better in our experiments. However, one reason
that SimpleRNN actually performed better than LSTM might be because most of the sentences in the
training set are short, where the longest was only 17 words long. Additionally, because the task was
considered simple (i.e., sequence labeling) and the training set was small, a simpler network was more
suitable. LSTM could most probably perform better on more complex tasks and datasets [39].

Table 5. Evaluation Results.

Feature Precision Recall F0.5

Baseline 75.6 91.96 78.39
SimpleRNN 78.09 83.95 79.62

LSTM 76.21 93.80 79.16
BiLSTM 80.74 85.73 81.55

[26] 34.5 80.0 -
[1] 46.1 28.5 41.1
[47] 79.10 21.19 51.14
[48] 54.41 91.79 -
[49] 89.71 62.48 82.52
[50] 66.47 54.11 63.57

Appl. Sci. 2020, 10, 5279 8 of 14

Additionally, the fact that LSTM outperformed the others in recall is because LSTM was better
than other models with regard to not considering correct words as mistakes. So, it was better at
recognizing that correct words were in fact correct.

LSTM, BiLSTM, and SimpleRNN all outperformed the baseline in precision and F0.5. However,
the baseline had higher recall than SimpleRNN and BiLSTM.

Table 6 shows the hyperparameter settings for each of the models in Table 5. We noticed that
BiLSTM only needed one layer of size 25, the smallest sized model of the three, to perform the best.
Implying that BiLSTM was more powerful in being able to select the most important structure in the
input data to model while being small in size.

Table 6. Best Models’ Hyperparameters.

Hyperparameter/Model SimpleRNN LSTM BiLSTM

Layers 2 2 1
Layer Size 50 125 25

Embedding Size 50 32 100
Batches 1 1 32
Dropout 0.2 0.1 none

Optimizer Nadam Nadam Nadam

5.2. Increasing Corpus Size

Since we were dealing with quite a small training corpus, it seemed that the size of the corpus
would be a limiting factor. Therefore, we decided to manually augment our corpus (explained in
Section 3.2) and use that to see the effects of increasing data. For training, we used the best configuration
of each model (as in Table 6) in order to see the impact on performance when more data are used.

Table 7 presents the results of this experiment. In comparison to Table 5, all three models actually
performed significantly better when trained on more data, even though the augmented corpus was
only 25.5% larger than the original. Additionally, with more data, LSTM outperformed SimpleRNN
over all measures. This indicates that LSTM would handle larger data better. While BiLSTM achieved
better recall when trained on the augmented corpus, it had the least recall in comparison to the other
two, meaning it had given more false negatives. Moreover, the three neural networks outperformed
the baseline in recall and F0.5.

Table 7. Results of Best Configuration When Trained on Augmented Dataset.

Figure 0. Precision Recall F0.5

Baseline 75.6 91.96 78.39
SimpleRNN 81.22 91.75 83.09

LSTM 81.42 94.57 83.71
BiLSTM 81.68 91.54 83.45

5.3. Testing on QALB

In order to further validate our model, we used a portion of the Qatar Arabic Language Bank
(QALB) corpus [51] for testing. We did not initially use it to train our models mainly because the type
of annotation in QALB was targeted at error correction, which was not suitable for our task (error
detection). Additionally, we wanted to support efforts produced by language experts, add to the
existing number of Arabic corpora, and investigate sequence labeling for detecting errors in Arabic on
a smaller scale and simpler model.

QALB is, to the best of our knowledge, the only corpus for Arabic grammar checking. We took
50 MSA sentences from testing data of QALB 2014, and only used the first 10–17 words from each
sentence to mimic the lengths of sentences in the training corpus and to speed up the annotation
process. This resulted in having 516 words and 781 tokens for the QALB test corpus. Punctuation

Appl. Sci. 2020, 10, 5279 9 of 14

marks were eliminated, and punctuation edits were not taken into consideration. Furthermore, labeling
was manually done, similar to our training corpus. In order to label this corpus, we depended on the
original annotation in QALB to lead the labeling process. For example, an edited word in the QALB
sentence was labeled as “i” in the token-level labeled test corpus.

We ran QALB using the best configuration of each model (as in Table 6) in order to predict the
labels of the words in our QALB test set. Table 8 shows the results of this experiment. While LSTM had
the lowest performance in terms of precision and F0.5 on our training set, it performed the best when
tested on QALB. On the contrary, BiLSTM had the lowest performance on QALB over all measures.
This might be a sign that BiLSTM was lacking regularization or further tuning.

Table 8. QALB Test Results.

Feature Precision Recall F0.5

Baseline 75.6 91.96 78.39
SimpleRNN 84.25 67.72 80.33

LSTM 84.81 68.04 80.83
BiLSTM 82.97 41.61 69.21

6. Discussion and Analysis

For error detection in Arabic, Tomeh et al. [26] approached the task as a sequence labeling problem
by training an SVM classifier using morphological and lexical features, such as lemmas and POS tags.
The model labels the incorrect words in the text with a tag before passing them on for correction. Recall
of the error detection model was 80%, whereas precision was 34.5%. Both scores are considered low in
comparison to the results of the neural network models in Table 5.

On the other hand, the first notable application of neural sequence labeling to the task of error
detection was done by Rei and Yannakoudakis [1]. They performed neural sequence labeling on
English corpora and reported the results using precision, recall, and F0.5. They achieved the best
result on BiLSTM with F0.5 = 41.1%, which was improved to F0.5 = 41.88% when integrating the
character-level component in [24]. Similarly, Yannakoudakis et al. [47] treated error finding as a neural
sequence labeling task with the character-level component, while using a small set of features that
were easily computed and needed no linguistic input. Their detection model achieved an F0.5 score of
51.14%. On the other hand, Liu et al. [48] utilized Conditional Random Field for sequence labeling to
automate Chinese grammar error detection without the use of any external features. Yuan et al. [49],
however, did incorporate some external features to their sequence labeling model for English language
error detection and achieved 82.52% in F0.5. Additionally, Bell et al. [50] used BiLSTM sequence labeling
for detecting errors but the model used a forward Language Model to predict the following token and
a backward Language Model to predict the preceding token achieving F0.5 = 63.57%.

All of these works utilized multiple large corpora and more complex models for training and
testing. However, we believe that this is the first application of neural sequence labeling on Arabic
text. Considering the small size of training corpus, we had expected that precision would be easier to
achieve than recall. On the contrary, the results revealed a noticeable trend throughout all experiments:
recall was mostly easier to achieve than precision. This is most probably due to the shortness of the
sentences in the training set.

In addition, we found that smaller batches performed better than larger batches on our small
dataset, which agrees with the work in [52]. Additionally, configurations using smaller batches
were able to generalize better on new data than larger batches. This was apparent in our results for
SimpleRNN and LSTM.

Table 9 presents four examples and their labels in five cases: gold standard and the baseline
commercial Arabic grammar checker, as well as the testing results of SimpleRNN, LSTM, and BiLSTM
models. Additionally, the specific type of error for each example is shown, as was mentioned in [32].

Appl. Sci. 2020, 10, 5279 10 of 14

Table 9. Sentence Examples and Labels.

Sentence Translation Gold
Label Type of Error Baseline SimpleRNN LSTM BiLSTM

ð And c c c c c
�

�@
	
YÓ taste of c c c c c

�
H@QºË@ leeks c c i i c

AJ. K
Q
�
¯ is close i Accusative

predicate c i i c

	áÓ to c c c c c
�

�@
	
YÓ taste of c c c i c

É�J. Ë @ onions c c i i c

@Q�

�

�Ó pointing c c c c c
úÍ@

 out c c c i c
	
à

@ that c c c c c

½Ë
	
X that is c c c c c

Q�

	

g a good c c i c c
	

�
¯ñÓ attitude c c i i c

ø
	
Y

�
Jm�'

 to be looked c c c c c
éK. up to c c c c c

BA
�
JÓ and honest i Accusative word

related to the
predicate of inna

“ 	
à@

” through

conjunction

c c c c

A
�
¯XA� example i c i c c

PA
�

�

@ Pointed c c c c c

úÍ@
 out c c c c c

	
à@

 that i
Using “ 	

à@

”

instead of “ 	
à

@”

i c i i

�
é

�
�Pð the c c c i c

ÉÒªË@ workshop c c c c c
�
éêk. ñÓ is directed c c c i c

Aë
	

Y
	
m�

�
' @ taken by c c c c c

�
é«AJ. Ë @ vendors c c c c c

	á�
Ê

KAm.

Ì'@ in streets i
Accusative

adjective of a
nominative

c i c i

Overall, when observing the predictions on test sets, BiLSTM had the best performance; it was
better at learning sentence structure in general since LSTMs are capable of handling long-term
dependencies by applying a linear update to the internal cell representation, unlike SimpleRNN.
More importantly, it is because BiLSTMs are able to incorporate context on both sides of every token.

While SimpleRNN and LSTM also performed well, they were able to correctly learn and identify
that correct words were correct. This is due to the fact that there were far more correct words
in the training corpus than incorrect words. This might be an indication that a more balanced
corpus would have enabled models to learn both correct and incorrect words equally. For the same
reason, BiLSTM predicted most words as correct as can be seen in the first two examples in Table 9.
However, the difference here is that BiLSTMs learn the sentences forward as well as backwards,
which enabled the model to learn more correct word usage. At the same time, it was more accurate

Appl. Sci. 2020, 10, 5279 11 of 14

than SimpleRNN and LSTM when predicting that incorrect words were incorrect, as can be seen in the
third example in Table 9. Although the examples in the table show similar results in the baseline and
BiLSTM, the commercial checker had actually missed many erroneous words considering them as
correct as shown in the fourth example. This indicates that a rule-based checker may not be sufficient
enough in detecting particular mistakes. This is because it is difficult to conduct fully exhaustive rules,
especially when writing mistakes in a language are not constant.

7. Conclusions, Limitations and Future Work

In this paper we focused on the detection of errors in MSA text using neural sequence labeling.
We presented a background and related work on Arabic language and approaches to Automated
Grammatical Error Detection and Correction for Arabic and other languages. We also described the
corpora we created for this task and presented our experimental setting. Finally, we showed our results
and discussed them.

One of the main limitations of this project was the lack of data, which in turn called for using
cross-validation. Although we were satisfied with the results, models were simplified in order to be
able to accommodate the small dataset. However, we believe that larger data and larger networks
would be able to generalize more when presented with new data. Additionally, our corpora sentences
were short (maximum 17 words); however, we believe that the model would have benefited from
longer sentences in order to learn from longer sequences of words.

Furthermore, the fact that neural networks are stochastic required the presentation of fixed seeds
into random number generators. It has been shown that results may change when different seed
numbers are used. Therefore, every set of hyperparameter configurations needs to be evaluated a
number of times for every seed number, such that results are averaged and compared. A number
of 5 up to 30 seeds could be used randomly. This process would enable drawing conclusions and
making fair comparisons between different models [52]. In our case, we fixed a single seed value
for all experiments (to 42), because, for the lack of resources, we could not run every configuration
multiple times for different seeds. Nevertheless, this does not hinder the fact that our experiments
are reproducible.

The results shown in this paper can be extended and improved in a number of ways. We suggest
using a larger training set with longer sentences, conducting more experimentation with more
hyperparameters, using deeper networks with larger embedding size, and running configurations
multiple times using a variety of seed values and reporting the averaged results. Additionally, evaluating
the performance of the different proposed neural network architectures per error type could be useful
and may facilitate a vehicle for comparing systems. Moreover, incorporating the POS tags in the neural
network could further improve the error detection.

As far as we know, we are presenting the first results of applying neural sequence labeling
on Arabic text. Additionally, these are the first results of using the A7′ta corpus [33] in an
experiment. We believe that the configurations we reported would show good performance on any other
comparable Arabic corpus. The code for the experiments is available at https://gist.github.com/iwan-rg/

4e7f522a53e664607c2a3e664f4c076a.

Author Contributions: Conceptualization, N.M. and H.A.-K.; methodology, N.M. and H.A.-K.; software, N.M.;
validation, N.M.; formal analysis, N.M. and H.A.-K.; investigation, N.M.; resources, N.M.; data curation, N.M.;
writing—original draft preparation, N.M.; writing—review and editing, H.A.-K.; visualization, N.M. and H.A.-K.;
supervision, H.A.-K.; project administration, H.A.-K. All authors have read and agreed to the published version of
the manuscript.

Funding: Research was funded by the “Research Center of the Female Scientific and Medical Colleges”, Deanship
of Scientific Research, King Saud University.

Conflicts of Interest: The authors declare no conflict of interest.

https://gist.github.com/iwan-rg/4e7f522a53e664607c2a3e664f4c076a
https://gist.github.com/iwan-rg/4e7f522a53e664607c2a3e664f4c076a

Appl. Sci. 2020, 10, 5279 12 of 14

References

1. Rei, M.; Yannakoudakis, H.; Erk, K.; Smith, N.A. Compositional sequence labeling models for error detection
in learner writing. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics, Berlin, Germany, 7–12 August 2016; pp. 1181–1191.

2. Go, M.P.; Nocon, N.; Borra, A. Gramatika: A grammar checker for the low-resourced Filipino language.
In Proceedings of the TENCON 2017–2017 IEEE Region 10 Conference, Institute of Electrical and Electronics
Engineers (IEEE), Penang, Malaysia, 5–8 November 2017; pp. 471–475.

3. Shaalan, K. Arabic GramCheck: A grammar checker for Arabic. Software: Pr. Exp. 2005, 35, 643–665.
[CrossRef]

4. Chodorow, M.; Gamon, M.; Tetreault, J.R. The utility of article and preposition error correction systems for
English language learners: Feedback and assessment. Lang. Test. 2010, 27, 419–436. [CrossRef]

5. Modaresi, P.; Liebeck, M.; Conrad, S. Exploring the effects of cross-genre machine learning for author profiling
in PAN 2016. In Notebook for PAN at CLEF 2016; CLEF: Évora, Portugal, 2016; pp. 970–977.

6. Goldberg, Y. Neural network methods for natural language processing. Synth. Lect. Hum. Lang. Technol.
2017, 10, 1–309. [CrossRef]

7. Elman, J.L. Finding structure in time. Cogn. Sci. 1990, 14, 179–211. [CrossRef]
8. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
9. Schuster, M.; Paliwal, K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997,

45, 2673–2681. [CrossRef]
10. Rozovskaya, A.; Chang, K.-W.; Sammons, M.; Roth, D.; Habash, N. The illinois-columbia system in the

CoNLL-2014 shared task. In Proceedings of the 18th Conference on Computational Natural Language
Learning: Shared Task, Baltimore, Maryland, 26–27 July 2014; pp. 34–42.

11. Hdez, S.D.; Calvo, H. CoNLL 2014 Shared Task: Grammatical error correction with a syntactic N-gram
language model from a big corpora. In Proceedings of the 18th Conference on Computational Natural
Language Learning: Shared Task, Baltimore, Maryland, 26–27 July 2014; pp. 53–59.

12. Yuan, Z.; Briscoe, T.; Knight, K.; Nenkova, A.; Rambow, O. Grammatical error correction using neural
machine translation. In Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, San Diego, CA, USA, 12–17 June 2016;
pp. 380–386.

13. Habash, N.Y. Introduction to arabic natural language processing. Synth. Lect. Hum. Lang. Technol. 2010,
3, 1–187. [CrossRef]

14. Madi, N.; Al-Khalifa, H.S. Grammatical error checking systems: A review of approaches and emerging
directions. In Proceedings of the 2018 13th International Conference on Digital Information Management
(ICDIM), Berlin, Germany, 24–26 September 2018; pp. 142–147.

15. Fu, K.; Huang, J.; Duan, Y. Youdao’s winning solution to the NLPCC-2018 task 2 challenge: A neural machine
translation approach to Chinese grammatical error correction. In Proceedings of the CCF International
Conference on Natural Language Processing and Chinese Computing, Hohhot, China, 26–30 August 2018;
pp. 341–350.

16. Gakis, P.; Panagiotakopoulos, C.; Sgarbas, K.; Tsalidis, C.; Verykios, V. Design and construction of the Greek
grammar checker. Digit. Sch. Humanit. 2016, 32, 554–576. [CrossRef]

17. Gudmundsson, J.; Menkes, F.; Hagelbäck, J. Swedish Natural Language Processing with Long Short-Term
Memory Neural Networks-A Machine Learning-Powered Grammar and Spell-Checker for the Swedish
Language. Bachelor’s Thesis, Linnaeus University, Småland, Sweden, 2018.

18. Gebru, A.T. Design and Development of Amharic Grammar Checker. Master’s Thesis, ADDIS ABABA
University, Addis Ababa, Ethiopia, 2013.

19. Deksne, D. A new phase in the development of a grammar checker for Latvian. In Proceedings of the 7th
International Conference Baltik HLT 2016, Riga, Latvia, 6–7 October 2016; Volume 289, pp. 147–152.

20. Bick, E. DanProof: Pedagogical spell and grammar checking for Danish. In Proceedings of the Recent
Advances in Natural Language Processing, Hissar, Bulgaria, 7–9 September 2015; pp. 55–62.

21. Wang, P.; Jia, Z.; Zhao, H. Grammatical error detection and correction using a single maximum entropy
model. In Proceedings of the 18th Conference on Computational Natural Language Learning: Shared Task,
Baltimore, Maryland, 26–27 June 2014; pp. 74–82.

http://dx.doi.org/10.1002/spe.653
http://dx.doi.org/10.1177/0265532210364391
http://dx.doi.org/10.2200/S00762ED1V01Y201703HLT037
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.2200/S00277ED1V01Y201008HLT010
http://dx.doi.org/10.1093/llc/fqw025

Appl. Sci. 2020, 10, 5279 13 of 14

22. Xie, Z.; Avati, A.; Arivazhagan, N.; Jurafsky, D.; Ng, A.Y. Neural language correction with character-based
attention. arXiv 2016, arXiv:1603.09727.

23. Liu, Z.-R.; Liu, Y. Exploiting unlabeled data for neural grammatical error detection. J. Comput. Sci. Technol.
2017, 32, 758–767. [CrossRef]

24. Rei, M.; Crichton, G.K.O.; Pyysalo, S. Attending to characters in neural sequence labeling models.
In Proceedings of the COLING 2016, the 26th International Conference on Computational Linguistics:
Technical Papers, Osaka, Japan, 11–16 December 2016; pp. 309–318.

25. Kaneko, M.; Sakaizawa, Y.; Komachi, M. Grammatical error detection using error- and grammaticality-specific
word embeddings. J. Nat. Lang. Process. 2018, 25, 421–439. [CrossRef]

26. Tomeh, N.; Habash, N.; Eskander, R.; Le Roux, J. A pipeline approach to supervised error correction for
the QALB-2014 shared task. In Proceedings of the EMNLP 2014 Workshop on Arabic Natural Language
Processing (ANLP), Doha, Qatar, 25 October 2014; pp. 114–120.

27. Zaghouani, W.; Mohit, B.; Habash, N.; Obeid, O.; Tomeh, N.; Rozovskaya, A.; Farra, N.; Alkuhlani, S.;
Oflazer, K. Large scale arabic error annotation: Guidelines and framework. In Proceedings of the 9th
International Conference on Language Resources and Evaluation (LREC’14), Reykjavik, Iceland, 26–31 May
2014; pp. 2362–2369.

28. Ahmadi, S.; Le Roux, J.; Tomeh, N. Attention-Based Encoder-Decoder Networks for Spelling and Grammatical
Error Correction. Master’s Thesis, Paris Descartes University, Paris, France, 2017.

29. Watson, D.; Zalmout, N.; Habash, N. Utilizing character and word embeddings for text normalization with
sequence-to-sequence models. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, 31 October–4 November 2018; pp. 837–843.

30. Solyman, A.; Wang, Z.; Tao, Q. Proposed model for arabic grammar error correction based on convolutional
neural network. In Proceedings of the 2019 International Conference on Computer, Control, Electrical,
and Electronics Engineering (ICCCEEE), Khartoum, Sudan, 21–23 September 2019; pp. 1–6.

31. Madi, N.; Al-Khalifa, H. A Proposed arabic grammatical error detection tool based on deep learning.
Procedia Comput. Sci. 2018, 142, 352–355. [CrossRef]

32. Aljindi, A.; Sakhawy, D.; AlSaleh, N.; AlAndas, F.; AlRuhaily, A.; AlSaraa, H.; AlHarbi, N. Linguistic Error
Detector-Saudi Press as a Sample; Princess Noura Bint Abdul Rahman University, Al-Jazirah Publishing:
Riyadh, Saudi Arabia, 2015.

33. Madi, N.; Al-Khalifa, H. A7’ta: Data on a monolingual Arabic parallel corpus for grammar checking.
Data Brief 2019, 22, 237–240. [CrossRef] [PubMed]

34. Keras. Embedding Layers–Keras Documentation. Available online: https://keras.io/layers/embeddings/
(accessed on 6 December 2018).

35. Kingma, D.P.; Lei Ba, J. ADAM: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
36. Nesterov, Y.E. A method for solving the convex programming problem with convergence rate O(1/kˆ2).

Dokl. Akad. Nauk SSSR 1983, 269, 543–547.
37. Keras. Optimizers–Keras Documentation. Available online: https://keras.io/optimizers/ (accessed on

8 December 2018).
38. tf.nn.weighted_cross_entropy_with_logits|TensorFlow. Available online: https://www.tensorflow.org/api_

docs/python/tf/nn/weighted_cross_entropy_with_logits (accessed on 6 December 2018).
39. Chollet, F. Deep Learning with Python; Manning Publications Co.: Shelter Island, NY, USA, 2018.
40. Azmi, A.M.; Almutery, M.N.; Aboalsamh, H.A. Real-word errors in arabic texts: A better algorithm for

detection and correction. IEEE/ACM Trans. Audio Speech Lang. Process. 2019, 27, 1308–1320. [CrossRef]
41. Yang, X.; Huang, K.; Zhang, R.; Goulermas, J.Y.; Hussain, A. A new two-layer mixture of factor analyzers with

joint factor loading model for the classification of small dataset problems. Neurocomputing 2018, 312, 352–363.
[CrossRef]

42. Behroozi-Khazaei, N.; Nasirahmadi, A. A neural network based model to analyze rice parboiling process
with small dataset. J. Food Sci. Technol. 2017, 54, 2562–2569. [CrossRef]

43. Bertolaccini, L.; Solli, P.; Pardolesi, A.; Pasini, A. An overview of the use of artificial neural networks in lung
cancer research. J. Thorac. Dis. 2017, 9, 924–931. [CrossRef]

44. Jiang, P.; Chen, J. Displacement prediction of landslide based on generalized regression neural networks
with K-fold cross-validation. Neurocomputing 2016, 198, 40–47. [CrossRef]

http://dx.doi.org/10.1007/s11390-017-1757-4
http://dx.doi.org/10.5715/jnlp.25.421
http://dx.doi.org/10.1016/j.procs.2018.10.482
http://dx.doi.org/10.1016/j.dib.2018.11.146
http://www.ncbi.nlm.nih.gov/pubmed/30591941
https://keras.io/layers/embeddings/
https://keras.io/optimizers/
https://www.tensorflow.org/api_docs/python/tf/nn/weighted_cross_entropy_with_logits
https://www.tensorflow.org/api_docs/python/tf/nn/weighted_cross_entropy_with_logits
http://dx.doi.org/10.1109/TASLP.2019.2918404
http://dx.doi.org/10.1016/j.neucom.2018.05.085
http://dx.doi.org/10.1007/s13197-017-2701-x
http://dx.doi.org/10.21037/jtd.2017.03.157
http://dx.doi.org/10.1016/j.neucom.2015.08.118

Appl. Sci. 2020, 10, 5279 14 of 14

45. Gambäck, B.; Sikdar, U.K.; Waseem, Z.; Chung, W.H.K.; Hovy, D.; Tetreault, J. Using convolutional neural
networks to classify hate-speech. In Proceedings of the 1st Workshop on Abusive Language Online,
Vancouver, BC, Canada, 4 August 2017; pp. 85–90. [CrossRef]

46. Ren, X.; Zhang, L.; Wei, D.; Shen, D.; Wang, Q. Brain MR image segmentation in small dataset with adversarial
defense and task reorganization. Intel. Tutoring Syst. 2019, 1–8. [CrossRef]

47. Yannakoudakis, H.; Rei, M.; Andersen, Ø.E.; Yuan, Z. Neural sequence-labelling models for grammatical error
correction. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
Copenhagen, Denmark, 7–11 September 2017; pp. 2795–2806.

48. Liu, Y.; Zan, H.; Zhong, M.; Ma, H. Detecting simultaneously Chinese grammar errors based on a
BiLSTM-CRF model. In Proceedings of the 5th Workshop on Natural Language Processing Techniques
for Educational Applications, Association for Computational Linguistics (ACL), Melbourne, Australia,
19 July 2018; pp. 188–193.

49. Yuan, Z.; Stahlberg, F.; Rei, M.; Byrne, B.; Yannakoudakis, H. Neural and FST-based approaches to grammatical
error correction. In Proceedings of the 14th Workshop on Innovative Use of NLP for Building Educational
Applications, Florence, Italy, 2 August 2019; pp. 228–239.

50. Bell, S.; Yannakoudakis, H.; Rei, M. Context is key: Grammatical error detection with contextual word
representations. In Proceedings of the 14th Workshop on Innovative Use of NLP for Building Educational
Applications, Florence, Italy, 2 August 2019; pp. 103–115.

51. Mohit, B. QALB: Qatar Arabic language bank. Qatar Found. Annu. Res. Forum Proc. 2013. [CrossRef]
52. Reimers, N.; Gurevych, I. Optimal hyperparameters for deep LSTM-networks for sequence labeling tasks.

arXiv 2017, arXiv:1707.06799.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.18653/v1/w17-3013
http://dx.doi.org/10.1007/978-3-030-32692-0_1
http://dx.doi.org/10.5339/qfarf.2013.ICTP-032
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	Arabic Language and Grammar
	Grammar Detection and Correction Approaches
	Grammar Detection and Correction in Arabic

	Corpus and Annotation
	Token-Level Labeled Corpus
	Augmented Token-Level Labeled Corpus

	Implementation and Experiments
	Toolkit and Corpus Preparation
	Neural Network Architectures
	Hyperparameters
	Evaluation
	Baseline

	Results
	Results of the Models
	Increasing Corpus Size
	Testing on QALB

	Discussion and Analysis
	Conclusions, Limitations and Future Work
	References

