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Abstract: Trie is one of the most common data structures for string storage and retrieval. As a fast
and efficient implementation of trie, double array (DA) can effectively compress strings to reduce
storage spaces. However, this method suffers from the problem of low index construction efficiency.
To address this problem, we design a two-level partition (TLP) framework in this paper. We first
divide the dataset is into smaller lower-level partitions, and then we merge these partitions into bigger
upper-level partitions using a min-heap based greedy merging algorithm (MH-GMerge). TLP has
an excellent characteristic of load balancing and can be easily parallelized. We implemented two
efficient parallel partitioned DAs based on TLP. Extensive experiments were carried out, and the
results showed that the proposed methods can significantly improve the construction efficiency of DA
and can achieve a better trade-off between construction and retrieval performance than the existing
state-of-the-art methods.
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1. Introduction

String storage and retrieval are fundamental operations in many fields, such as in search engine,
natural language processing, and artificial intelligence applications. It is of great significance to improve
the efficiency of these operations. Just as B+-Tree is the representative of database index for integer [1],
trie is one of the most common structures for string storage and retrieval and is extensively used in
artificial intelligence [2,3], natural language processing [4], data mining [5], IP address searching [6,7],
string similarity joining [8,9], and many other fields. For a detailed description of trie and its applications,
we refer the reader to [10,11] for more details. The storage and retrieval efficiency can be naturally
improved by compressing common prefixes of strings into common paths.

The traditional trie can either be a matrix form or a linked form [12]. The matrix form is efficient
in retrieval speed but with a higher space overhead. Meanwhile, the linked form is efficient in
space overheads, but its retrieval efficiency is relatively slow. Both of them are difficult to balance
between retrieval performance and storage overheads. Many efforts have been devoted to address this
problem, and various tries and corresponding optimizations have been proposed [13–17]. Among them,
Level-Ordered Unary Degree Sequence (LOUDS) [18,19] and double array (DA) [20] are the two most
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eminent representatives. LOUDS is the most succinct trie to our best knowledge. It used bit strings
to compress trie, which was extremely space-saving. However, retrieving in LOUDS was relatively
time-consuming, because it requires expensive SELECT and RANK operations on generated bit strings.
To improve the retrieval efficiency, the recent work, Zhang et al. [21], proposed Fast Succinct Trie (FST),
which is a combination of LOUDS-SPARSE and LOUDS-DENSE. A fast bitmap-based LOUDS-DENSE
is deployed in the upper-levels of a trie to enable fast and frequent access, and a space-efficient
LOUDS-SPARSE is deployed in the lower-levels to decrease the space storage. Furthermore, FST
introduces some other optimizations, e.g., lookup table and sampling, to speed up the SELECT and
RANK operations, which makes FST both effective and succinct. Although FST has made a good
trade-off between retrieval performance and storage overheads, its retrieval speed is still not fast
because it still needs the SELECT and RANK operations to retrieve a child node of a specific node,
which makes it not suit for frequently retrieval scenarios.

DA [18] proposed by Aoe, provides another way of making a good balance between retrieval
performance and storage overheads. It compresses stored strings into two one-dimensional
integer-arrays named BASE and CHECK. Retrieving a specific child node of a node is extremely fast,
because only simple addition operations are needed.

Considering the high retrieval efficiency of DA, many research efforts are devoted to further
optimize this structure. Yata et al. proposed a compact double array (CDA) [22], a statically constructed
compressed double array. Unlike DA, CDA stores a character instead of an integer in CHECK to reduce
the space overhead under the premise that each value in BASE is unique. Fuketa et al. [12] presented
a single array with multiple code (SAMC) which sets BASE[s] to s at first and then determines the
content of CHECK in a depth manner. As BASE[s] equals s, so BASE can be safely removed and
thus storage spaces can be reduced. In double-array using linear functions (DALF) [23] proposed by
Kanda et al., BASE is segmented and a linear function is designed for each segment to reduce the space
overheads. Kanda et al. [24] introduced rearrangement methods to improve space efficiency as well as
update time.

Most of the aforementioned methods are devoted to reducing space overheads. However, the index
construction efficiency has not been well studied. Improving construction efficiency can increase the
manageability of indexes, which is important for large datasets and for certain string join operations, because
index construction time is always counted in total elapsed time for these operations. Morita et al. [25]
presented a skip method and a link method by exploiting the empty elements in DA. Niu et al. [26]
further represented the continuous available nodes using a bidirectional link. These studies obtained some
improvements to a certain extent. Jia et al. [27] found that collision is the main reason for the low efficiency
of DA construction. Based on this finding, a first-character-based partition framework was proposed and
many multiple small DAs instead of a single DA were constructed. In this way, collisions were restricted
within partitions and thus collisions and collision handling costs could be reduced.

In addition, most DA-based algorithms are serial algorithms and are not suitable or not efficient in
parallel environments. Although the partitioned DA [27] can be used for parallelization, its efficiency
is still limited because its partitions are not well balanced. With the popularity of multi-core processors,
it is important to use parallelization to improve the construction and retrieval efficiency of DA.

To this end, after carefully analyzing the construction process of DA, this paper designs a two-level
partitioning framework (TLP), which can achieve a better load balancing while keeping strings with the
same prefixes in the same partition. Based on TLP, two parallel partitioned DAs are designed, which
can effectively improve the construction and retrieval efficiency without causing too much storage
overhead. One excellent characteristic of TLP is that it can be integrated with any other DAs and for
further improving the construction efficiency. Extensive experiments show that our proposed indexes
can significantly improve construction efficiency of DA and outperform some other state-of-the-art
competitors in many aspects.
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2. Preliminaries

Before we go on, we first give the nomenclature used in this paper, as shown in Table 1.

Table 1. Nomenclature.

Symbol Description

D A dataset
s A string
c A character

x, y A node in trie or a position in DA
UPi The i-th upper-level partition

L A collection of lower-level partitions
U A collection of upper-level partitions
m The number of lower-level partitions
n The number of upper-level partitions

Ru The partition range of U
Ht The heap top

UPN UP partition No
PQT Partition query table

2.1. Double Array

For a string s in a dataset D, the character c is called a separated character if c is a sufficient
character to distinguish s from all other strings in D. The substring from the beginning of s to its separate
character c is called the reduced substring of s. Consequently, a trie built on reduced substrings of
strings in D is a reduced trie.

DA uses two one-dimensional arrays called BASE and CHECK to store the reduced trie for a
dataset D. For a node x, which is also a position x in the two arrays, BASE[x] stores the base value used
for all children of x, whereas CHECK[x] stores the parent node index of x. An additional array, TAIL, is
used to store the remaining suffixes.

The heart of DA lies in the following two important formulas:

BASE[x] + CODE[c] = y (1)

CHECK[y] = x (2)

From the above Formulas, child node y of node x can be easily obtained by executing BASE[x] + CODE[c],
and parent node x of node y can be found in CHECK[y]. Thus, accessing parent and child node is extremely
fast by simple, add operations. CODE[c] is the numerical code of a character c. The codes corresponding to
characters “#”, “a”, “b”, “c” . . . “z” are 1, 2, 3, . . . , 27, respectively.

Figure 1 shows the reduced trie and DA created on a dataset D = {“abcd#”, “abdf#”, “abae#”}.
To distinguish strings like “ab” and “abc”, a special character “#” is added to the end of each string.

2.2. Collision Analysis

The construction efficiency of DA drops significantly with the increase of the number of strings
for two characters may contend for a single position in DA, leading to position competition collisions.
Two possible collisions are shown below.

BASE[x] + CODE[c] = BASE[x′] + CODE[c] f or x , x′ (3)

BASE[x] + CODE[c] = BASE[x′] + CODE[c′] f or x , x′ ˆc , c′ (4)

A collision may occur when a character is inserted into two positions with the same base values,
or when two different characters are inserted into two positions with different base values. When a
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collision occurs, a function named X_CHECK used in [28] is executed to find a new base value for one
of the old base values. X_CHECK increases the old base value incrementally to make sure it will not
cause collisions anymore. Here we call the increased number the probe length. After that, the old base
and check values are migrated to the new positions. The probe and migration costs will inevitably
deteriorate the efficiency. For the complete construction process of DA, we refer reader to paper [28]
for more details.Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 16 
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2.3. Partitioning Method

Partitioning is an effective way to reduce collisions and collision handling costs, and thus it
improves construction and retrieval speed. There are two common partitioning strategies available
for parallel string processing: Balanced Partition (BP) and Balanced Partition with Partition Line
Adjustment (BP_PLA).

2.3.1. BP

BP is the most intuitive partitioning method. It uses n-1 partition lines to evenly divide a data set
into n partitions (We assume that the datasets are already sorted.). The first string in each partition
can be viewed as a partition line (or a split string). A simple diagram of BP is shown in Figure 2.
BP has the best load balancing. However, it does not guarantee that prefix integrity for strings with
common prefixes are divided into the same partitions. Thus, expensive string comparisons are needed
to determine the partition for a string, resulting in a decrease in retrieval efficiency.Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 16 
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2.3.2. BP_PLA

BP_PLA (In the original paper, it was simply called partition double array (PDA), but here it is
referred to as BP_PLA to better distinguish it from BP.) [27] is a combination of BP and partition line
adjustment (PLA), which uses BP to partition a dataset first; then, PLA is carried out to adjust each
partition line to its nearest first-character border, as Figure 3 shows. In this way, strings with common
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prefixes will be kept in a partition, thus prefix integrity can be guaranteed. The first character of the
first string (instead of the string itself) in each partition can be chosen as a partition line, which makes
partition detection very fast.
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3. TLP-Based Partitioned DAs

3.1. TLP

Two strings may lead to collisions when they are inserted into a DA, so it is not practical inserting
them into a DA simultaneously. To construct DA in parallel, we need to divide a dataset into partitions
and build multiple independent small DAs in parallel. As mentioned above, BP and BP_PLA are not
suitable or less efficient in parallel environments due to the difficulties in keeping prefix integrity and
load balancing together. To this end, this paper proposes a bottom-up two-level partitioning (TLP)
framework to achieve a better balance between these two characteristics.

TLP firstly divides a dataset D into m discrete lower-level partitions (LP) (L = {LP1, LP2, . . . , LPm})
based on the first character of strings in D. Each LP is a first-character partition (all strings with the
same first character in D constitute a first-character partition).
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Merging m LPs into n UPs is non-trivial. Intuitively, there are nm different merging strategies.
Different merging strategies lead to different load balancing performances. Thus, choosing the best
merging strategy to obtain the best load balancing is a key to TLP. For easy explanation, we give the
definition of Partition Range (PR) as follows:

Definition 1. Given U = {UP1, UP2, . . . , UPn}, the PR of U is defined as Ru = max(U) −min(U), where
max(U) and min(U) represent the maximum and minimum number of strings of each UP in U, respectively.
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PR can be used to measure load balancing of a partition strategy. To obtain the optimal load
balancing performance, the optimal LP merging is defined as follows:

Definition 2. Optimal LP Merging (OLM): Given L = {LP1, LP2, . . . , LPm}, each LP in L is uniquely assigned
to an UP, thus merging UP into n disjoint Ups U = {UP1, UP2, . . . , UPn} while keeping Ru to be minimum.

OLM is essentially a multi-way number partitioning problem [29,30], which is proved to be an
NPC problem, solving it in limited time is key to TLP. Based on the analysis above, this paper proposes
a Min-Heap based Greedy Merging algorithm (MH_GMerge) to quickly find an approximate optimal
merging strategy. The basic idea of MH_GMerge is as follows:

(1) sort m LPS to be merged in descending order of the number of strings;
(2) given the partition parameter n, build a min-heap for the first n LPS in L, and set the corresponding

UP partition No. (UPN) of the n LPs to 1, 2, 3, . . . , n, accordingly;
(3) process the subsequent m-n LPs in order until all LPs have been processed. For LP j, assign its

UPN to UPN of the heap top Ht and execute
∣∣∣Ht|=|Ht|+|LP j

∣∣∣, where |Ht| means the number of
strings in all LPs related to Ht. At last, we readjust the heap to min-heap.

The number of elements in the created min-heap is always n and there is no need to actually
load the subsequent m-n LPs into the heap, which makes MH_GMerge very fast. The completed
MH-GMerge algorithm is shown in Algorithm 1.

Algorithm 1. Min-Heap based Greedy Merging (MH-GMerge) algorithm.

Algorithm 1 MHG-Merge

//Input: L, a set of m LPs
n, number of partitions

//Output: PQT, partition query table
1. L← sort L by number of strings in descending order
2. PQT← empty map from LP to UP
3. for j from 1 to n
4. PQT[j]← j
5. H←minimum heap constructed according to the first n elements of L.
6. Ht ← top element of H
7. for j from n + 1 to m
8. |Ht|← |Ht| + |LPj|

9. PQT[j]← Ht.upNo
10. adjust Heap to minimum

Complexity Analysis: The time complexity of sorting m LPs is O(mlogm), the time complexity of
constructing and adjusting heap is O(m logn). As n < m, so the overall time complexity of MH-GMerge
algorithm is O(mlogm). The major space overheads of MH-GMerge are the overheads of partition
query table (PQT) and th3e heap, which are m ∗ sizeo f (integer) and n ∗ sizeo f (integer) respectively,
where sizeo f (integer) represents the overhead of an integer. As a result, the total space overheads of
MH-GMerge is (m + n) ∗ sizeo f (integer).

After MH-GMerge finished, we can obtain a UPN for each LP, which means a mapping between
LP and UP is established. This mapping is expressed as a partition query table (PQT) in this paper. As
all strings in a LP have the same first character c, we can use an array to implement PQT and store UPN
of each UP directly into PQT[c]. In the subsequent index construction and string retrieval processes, the
UPN can be retrieved directly by the first character of a string, thus avoiding the expensive overheads
of string comparison.

Example 1: Given L = {LP1, LP2, . . . , LPm}, m = 7 and n = 3, the number of strings corresponding
to each LP is 100, 80, 65, 60, 55, 20, and 10, respectively. The initial min-heap constructed on the first
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3 LPs is shown in Figure 5, the number on the left part of a heap node is the UP partition number,
and the right is the total number of strings in the UP. For LP4, we set its UPN to 3 the UPN of the
heap top, 3, then we execute

∣∣∣Ht|=|Ht|+|LP j
∣∣∣ = 65 + 60 = 125. At last, we adjust the heap to min-heap.

Following this way, after all LPs have been processed, we can obtain the final result status as Figure 6
shows. The final PR of this example is 10.
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It is worth noting that TLP is independent of any specific DA and can be seamlessly integrated
with other DAs and further improves the construction efficiency.

From the analysis above, it is easy to see that TLP combined with MH-GMerge has a better load
balancing performance while keeping prefix integrity. The final TLP algorithm is shown in Algorithm 2.

Algorithm 2. TLP algorithm.

Algorithm 2 TLP

//Input: D, a string dataset
n, number of partitions

//Output: PQT, partition query table
1. L← devide D into partitions by initial characters
2. PQT←MHG-Merge(L, n)

3.2. TLP-Based Partitioned DA

Based on TLP, we can easily implement TLP-based partitioned DA (TPDA) both in serial and in
parallel. For ease of description, we only discuss constructing TPDA in parallel. To do so, this paper
employs a popular parallel library, OpenMP, to construct the final TPDA in parallel. Using OpenMP,
n threads are started, each thread is responsible for the DAs corresponding to a UP. Based on the levels
the DAs created on, two kinds of TPDAs are designed as Figure 7 shows.
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(1) DAs are created on UP(UP-DA), one DA for each UP, n DAs in total;
(2) DAs are created on LP(LP-DA), one DA for each LP, m DAs in total. A UP corresponds to multiple

independent DAs.
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Both UP-DA and LP-DA consist of PQT and DA. PQT is responsible for determining the UPN for
a string, while DA is for indexing and retrieving strings. Despite the different number of DAs created
for the two structures, for each thread, the loads are still relatively balanced because threads are UP
oriented. Generally speaking, LP-DA is expected to have a much better performance for it creates
multiple smaller DAs, thus reducing the collisions and the collision-handling costs.

Taking UP-DA as an example, the algorithm for constructing UP-DA is shown in Algorithm 3.
Algorithm 3. Constructing algorithm for UP-DA.

Algorithm 3 CreateUPDA

//Input: D, a string dataset
n, number of partitions

//Output: PQT, partition query table
1. L← devide D into partitions by initial characters
2. PQT←MHG-Merge(L, n)

3.3. TPDA-Based Parallel String Retrieving

Implementing parallel string retrieving on UP-DA and LP-DA is rather straightforward. For a
string s currently read by a thread, we first obtain the corresponding partition p according to the
first character of s. (For UP-DA, the corresponding UPN can be obtained by PQT, for LP-DA,
the corresponding DA can be obtained directly by the first character). Then, s is searched on the DA
corresponding to p. For UP-DA, the parallel string retrieving algorithm is shown in Algorithm 4.

Algorithm 4. Retrieving algorithm for UP-DA.
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Algorithm 4 QueryUPDA

//Input: Q, a set of query strings
//Output: F, a flag array to indicate whether the corresponding string of s is in UP-DA
1. #pragma omp parallel for
2. for the i-th string s in Q
3. c← the first character of
4. upNo← PQT[c]
5. query s directly in DA corresponding to upNo, if s in DA, set F[i] to true, false otherwise

4. Experiments

4.1. Datasets for the Experiments

All experiments were carried out on an Intel i7-7700 CPU @ 3.60GHz (four cores and eight hyper
threads) with 16 GB memory running Ubuntu 11. CodeBlocks is used as the programming platform.
Gcc-4.2 and OpenMp-3.1 are used as the default compiler and parallel library, respectively.

We use the following three datasets in our experiments and some statistical information is shown
in Table 2:

- DBLP [31]: DBLP is a library in computer science. We extracted all the independent words in title
field of DBLP. After the duplicated strings were removed, there were 211,517 independent strings
in total.

- EN-WIKI [32]: We extracted title field of Wikipedia and got 347,961 independent words after the
duplicated strings were removed.

- SynthDS: To verify the effects of our proposed structures and algorithms on large dataset, we also
randomly generated 2 million unique strings with lengths varied from 3 to 20 as a synthetic dataset.

Table 2. Statistical information of the three datasets.

Dataset EN_WIKI DBLP SynthDS

Size (MB) 3.25 2.13 26
String number 347,961 211,517 2,000,000

Minimum length 1 1 3
Maximum length 62 46 20
Average length 8 8 11

4.2. Serial Algorithms

4.2.1. Construction Performances

Effects of Different Number of Partitions

In order to evaluate the construction efficiency of different partitioning algorithms under different
number of partitions, construction algorithms of BP_PLA-based DA (BP_PLA-DA) (We do not compare
BP here, for it has a much lower retrieval performance.), UP-DA and LP-DA are compared under
different number of partitions. The results of DBLP and EN-WIKI are shown in Figure 8a–c (We
assume the datasets are already sorted, because the sorting times are the same for all these algorithms.).
It can be seen from the figures that the curves of both BP_PLA-DA and UP-DA decrease sharply
with the increase of the number of partitions at first, and then tend to be flat. This is due to the fact
that as the number of partitions increases, more small DAs are created, which reduces collisions and
the collision-handling costs (e.g., the total probe lengths of BASE for the three datasets are shown in
Figure 9a–c). LP-DA has the highest performance in the three methods, especially when partition
number is small. For example, when partition number is 4, the construction times of LP-DA for the
three datasets are 2.58 s, 4.21 s, and 108.43 s, respectively, 4x faster than BP_PLA-DA. The curve
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of LP-DA is almost flat because it always creates the same number of DAs under different number
of partitions.
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Comparisons with the Other Algorithms

To investigate the efficiency of different algorithms under different number of strings, the above
three partitioned methods and the other two non-partitioned methods (DA and FST) are compared.
For partitioned methods, we hereafter fix the number of partitions to 8 unless otherwise stated.
The experimental results of the three datasets are shown in Figure 10a–c, respectively. It can be seen
from the figures that FST has a higher construction efficient than DA-based algorithms because there
are no collisions introduced in FST. Compared to DA, LP-DA is 7x-15x faster which shows that our
partition can effectively boost the construction speed of DA.
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4.2.2. Retrieval Performances

To evaluate retrieval performance of different algorithms, EN_WIKI and DBLP were used as
query sets interchangeably (indexes created on one dataset we use partial of another dataset as a query



Appl. Sci. 2020, 10, 5266 11 of 14

set). The results under different numbers of strings are shown in Figure 11a–c, respectively. DA-based
algorithms have almost the same retrieval time and is nearly 8–14x faster than FST-based algorithms.
The reason for this is because DA only needs simple addition operations to find a child node, while
FST still needs costly SELECT and RANK operations. Furthermore, note that all DA-based algorithms
execute the same addition operations, so their retrieval times are almost the same. As retrieval efficiency
is emphasized in general cases, we prefer LP-DA to FST.
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4.2.3. Comparisons of Storage Spaces

For the above indexes, the storage spaces are calculated as shown in Tables 3–5.

Table 3. DBLP storage spaces (MB).

String Numbers 50 k 100 k 150 k 200 k

DA 0.82 1.60 2.36 3.16
BP_PLA-DA 0.82 1.60 2.36 3.16

UP-DA 0.82 1.60 2.36 3.16
LP-DA 0.83 1.62 2.37 3.17

FST 0.53 1.10 1.64 2.14

Table 4. EN-WIKI storage spaces (MB).

String Numbers 150 k 200 k 250 k 300 k

DA 2.34 3.11 3.89 4.69
BP_PLA-DA 2.34 3.11 3.89 4.69

UP-DA 2.34 3.11 3.89 4.69
LP-DA 2.35 3.12 3.90 4.70

FST 1.61 2.12 2.63 3.19

Table 5. SynthDS storage spaces (MB).

String Numbers 500 k 1000 k 1500 k 2000 k

DA 8.6 16.8 25.7 33.8
BP_PLA-DA 8.6 16.9 25.7 33.8

UP-DA 8.6 16.8 25.7 33.8
LP-DA 8.7 17 25.8 34

FST 5.32 10.68 16.34 21.78

Compared with DA-based structures, FST has a higher compression rate than its DA counterparts
as the underlying of FST is LOUDS based. It is also important to note that although LP-DA and UP-DA
contain multiple DAs, they do not bring too much storage overheads compared with DA, because they
do not generate many more empty elements than DA.
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4.3. Parallel Algorithms

4.3.1. Parallel Construction

To evaluate the parallel construction efficiency of different partition methods, the three partition-
based methods are compared under different partition numbers. The results in Figure 12a–c show
that both UP_DA and LP-DA outperform BP_PLA-DA, as TLP has a much smaller PR than BP-PLA,
as shown in Figure 13a–c.
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4.3.2. Parallel Retrieval

Similar to its serial counterparts, DA-based parallel retrieval algorithms are much faster than
FST-based parallel retrieval algorithms, as shown in Figure 14a–c. Compared with serial algorithms,
parallel LP-DA-based algorithms have a speed up about 3x over serial LP-DA-based algorithms.
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5. Conclusions

To improve the construction efficiency of DA, this study developed an efficient two-level
partitioning framework TLP, which merges smaller lower-level partitions to obtain much more
balanced upper-level partitions. TLP had a good characteristic of load balancing while keeping prefix
integrity. Based on TLP, two efficient indexes, LP-DA and UP-DA, were designed. LP-DA is 7–15x
higher in construction efficiency than DA and is 8–14x higher in retrieval performance than FST, thus
having a good overall performance. LP-DA has a much smaller PR than BP-PLA, thus having a much
better load balancing and parallel construction and retrieval efficiency.

As this paper aims to exploit the efficient partitioning framework, we use original DA as a
black box in this manuscript. However, we believe integrating some optimized DA, e.g., SAMC [12]
into TLP, can further improve the construction efficiency or decrease storage overheads. Besides,
developing more application fields for this structure, e.g., spatial queries [33], will also be an interesting
research branch.
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