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Abstract: Bearing fault diagnosis at early stage is very significant to ensure seamless operation of
induction motors in industrial environment. The identification and classification of faults helps to
undertook maintenance operation in an efficient manner. This paper presents an ensemble machine
learning-based fault classification scheme for induction motors (IMs) utilizing the motor current signal
that uses the discrete wavelet transform (DWT) for feature extraction. Three wavelets (db4, sym4,
and Haar) are used to decompose the current signal, and several features are extracted from the
decomposed coefficients. In the pre-processing stage, notch filtering is used to remove the line
frequency component to improve classification performance. Finally, the two ensemble machine
learning (ML) classifiers random forest (RF) and extreme gradient boosting (XGBoost) are trained and
tested using the extracted feature set to classify the bearing fault condition. Both classifier models
demonstrate very promising results in terms of accuracy and other accepted performance indicators.
Our proposed method achieves an accuracy slightly greater than 99%, which is better than other
models examined for the same dataset.

Keywords: bearing fault diagnosis; condition monitoring; discrete wavelet transform (DWT); extreme
gradient boosting (XGBoost); induction motors; random forest

1. Introduction

Among rotating machinery, induction motors (IM) are broadly used in manufacturing industries
such as transportation, petrochemicals, and power systems due to low cost, high reliability, robust
design, and higher efficiency under full load. Generally, IMs need to remain operative for a long duration
and commonly under harsh operating environments accompanied with regular wear, which cause
mechanical and electrical stresses. These can lead to unexpected failure in gears and bearings, which are
the significant machine components of IM. Such failures could cause financial losses or human causalities.
Therefore, machine health monitoring and fault analysis become an integral part of the maintenance
system in an industrial environment. A robust condition monitoring system can decrease maintenance
charges, improve productivity, and increase reliability and safety. In recent times, the machine learning
(ML)-based fault analysis approaches are turned out as a powerful and prevalent approaches in the area
of continuous health monitoring of rotating machineries, as they have the ability to extract valuable
information from the considerable amount of historical data [1–3].

Rotor faults, stator faults, rolling element bearing (REB) faults, and other faults commonly occur
in IMs, among them bearing faults are most frequent. Statistics shows that 40% of total breakdown
situation in large size machines occurred due to bearing fault and the number is as high as 90% in case
of small machines [4]. The main elements of a bearing are the inner, and outer ring, rolling element,
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and cage. Faults in bearings may occur during manufacturing or after some period of operation.
If a defect occurs on a contact surface of the bearing elements, an impact is generated when the
bearing hits the defect, which results a strident transient response followed by damped oscillation.
Generally, the periodic transient behavior contains important information regarding bearing health [5].
Therefore, detecting the transient response and accurate analysis of the signal can successfully forecast
bearing faults in the early state. This is crucial for preventing unpredicted downtime of rotating
machines and for confirming safety without affecting the efficiency of the industrial process. Hence,
real-time monitoring and diagnosis approaches for REB have gained considerable attention from
researchers in recent years. Reactive, preventive, and predictive maintenance are the three primary
approaches for fault diagnosis. In reactive maintenance, the fault occurs, and then initiates corrective
measures, which results in failure of the machine, high cost of components, reduced safety, and
unanticipated downtime. The preventive maintenance process aims at a time bound procedure and
designs a corrective action periodically without knowing the real time condition of the REB, which
requires many resources and a lower efficiency. Lastly, predictive maintenance is designed based on
real-time monitoring and performance of necessary actions when the REB shows a certain behavior
that indicates failure or diminished performance [6]. From another point of view, fault diagnosis can
be divided into model-based and knowledge-based methods. The system faults are analyzed by an
equivalent mathematical model of the system; however, this can be complicated by system non-linearity.
On the other hand, knowledge-based methods are developed depending on measurements, experience,
data analysis, and physical assessment of the target structure [7].

Developments in sensors, communication technology, availability of data, and an efficient data
processing algorithm have suggested data- or knowledge-based fault diagnosis condition monitoring
system as a more acceptable choice. The data-driven fault diagnosis system, data acquisition, data
preparation, construction of feature matrix, and fault classification are the four most popular phases.

Condition data for IMs can be collected in different forms as acoustic emission [8], vibration,
temperature readings, current sources, and thermal images, which are extensively investigated for
bearing fault investigation [9]. Recently, vibration signal analysis for fault analysis has gained much
attention for monitoring health of the machine due to the capacity to transfer intrinsic information
of mechanical systems [10,11]. External vibration sensors (e.g., accelerometers) are required to be
mounted around the bearing, which are very costly, and the installation process requires full time access
to the IM. Because of these drawbacks, the bearing based on vibration-signal is not easily accessible in
remote locations or for a less complex system. On the other hand, using current signal for condition
monitoring offers some advantages over the vibration signal as it does not require external sensors for
data collection. Moreover, if there are no frequency inverters or current transformers, the stator current
from a single input source can be measured with the help of current transducers [12]. Hence, due to
the cost-effective and noninvasive nature, motor current signal analysis (MCSA) is considered one
of the most proficient condition monitoring techniques. Also, multiple signature analysis combining
motor current and vibration signal analyses has been performed to ensure higher reliability [13].

From the raw data fault, classification or identification is not possible. With various signal
processing techniques, the sensor data are analyzed by extracting fault information. Some widely used
approaches for signal analysis are time-domain analysis [14], frequency-domain analysis [15], enhanced
frequency analysis [16], and time-frequency analysis techniques [17]. The techniques based on signal
processing do not need any equivalent circuit model, and the performance of the system depends on
the working condition of the machine. Therefore, the computational cost may increase if complexity of
the advanced signal processing tool is increased. The root mean square, short impulse method, and
high-order statistics are some of the frequently used time-domain techniques. In frequency-domain
analysis, Fast Fourier transform (FFT), envelope analysis, and high-order spectral analysis [18] are
generally used. FFT is the most widely used method due to less computational complication in
comparison with the other methods. For any signal with non-stationary nature, which is common,
frequency domain analysis is not widely applicable because it is not able to reveal the intrinsic
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information. Generally, the running machine contains many non-stationary components because of
environmental change and faults from the machine itself. Therefore, it is significant to evaluate the
signals with non-stationary type, with the help of various time-frequency analyses, such as short-time
Fourier transform (STFT), the Wigner-Ville distribution (WVD), and wavelet transform. Application of
this technique revealed both the time and frequency domain information necessary for investigation.

In machine learning-based fault analysis, signal processing is generally used for signal conditioning
and feature extraction and include cyclic spectral analysis [19], statistical analysis, [20] wavelet
analysis [21–23], Hillbert-Hung transform [24], and correlation [25]. Therefore, because of the exclusive
characteristics of wavelet analysis, it is used widely for analyzing non-stationary signals. It is used for
fault diagnosis in gears and bearings [26,27], locating fault and crack size determination in different
structures and components [28,29]. In detection and extraction of features for fault classification, many
researchers reported successful implementation of wavelet transform [30–32]. Various types of faults in
the power system [33] are successfully differentiated from three-phased voltage signal decomposition
up to only 4th level using DWT. Although many variations of wavelet functions exist, it is crucial to
choose a suitable wavelet to find out the best match and extract the most suitable features. After the
initial signals are transformed into a compact relevant representation, they are act as input of a classifier
to train and improve the decision function. Among the various processes of classification, Support
Vector Machine (SVM) and Artificial Neural Network (ANN) are mostly implemented for machine
fault detection and identification [34–37].

Now a days, extreme learning machine (ELM), a neural network having single hidden-layer-feed-
forward has been implemented [38] for fault detection and classification and has a very fast learning
rate and higher accuracy for prediction in comparison with SVM and ANN. Recently, deep learning
(DL) approaches have been considered for fault diagnosis. The DL technique consists of multiple levels
of non-linear operation and can automatically learn up to high-level features to allow decision-making
more intelligently. DL methods, such as the Deep Belief Networks (DBN), Stacked Auto Encoders (SAE),
and Convolutional Neural Network (CNN), have been investigated recently in fault diagnosis [39–42].
Despite attaining an effective solution from ML techniques, these methods often become stacked
in a local minimum, if the configuration parameters are not efficiently considered [43]. In recent
times, researchers have started to apply a modernized approach known as ensemble learning to avoid
the drawbacks of ML approaches such as feature selection, incremental learning, class-imbalance
data, as well as learning concept drift from non-stationary distributions [44]. Ensemble learning is
one example of the ML prototypes where multiple learners need to be trained for solving a single
problem. Moreover, this method provides better generalization to adapt to any unknown case, better
efficiency of avoidance from local minima, and greater search abilities than any ordinary ML approach.
Random forests and extreme gradient boosting (XGBoost) are two well-known ensemble ML methods
proposed by Breiman [45] in 2001 and Dr. Chen Tianqui [46] in 2014, respectively. The XGBoost
algorithm possesses low computational complexity, high accuracy, and fast running speed for any
input data set size due to utilization of the central processing unit (CPU) with multi-threaded parallel
computing. These methods are effectively used in various fields, such as prediction of environmental
condition, detection of medical symptoms, and diagnosis of machine faults [47–49].

In this study, we used three types of discrete wavelet transform (DWT) for signal decomposition.
Later, statistical features were calculated from the high-level approximation coefficients and the
detail coefficients to reduce the feature matrix dimension. After that, to estimate the performances,
two ensemble learning algorithms, RF and XGBoost, were trained to classify. Finally, a comparison is
made with some recent works on motor current signal, where Lessmeier et al. [50] applied particle
swarm optimization based support vector machine (SVM-PSO) and in [51,52], the authors used deep
learning based approaches for IM fault classification.

Therefore, the main contributions of this paper can be listed as follows:

• Evaluate the performances of various wavelets for motor current signal analysis.
• Observe the effect of denoising the current signal on classification accuracy.
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• Evaluate the performance of two ensemble classifiers for bearing fault identification of an IM.

The remainder of this paper is organized as follows. Section 2 provides a description of the
experiment set up and characteristics of the data. Section 3 describes the overall process of the method
utilized in this paper. Section 4 explains the experimental results and performance of the proposed
approach using the evaluation parameters from the dataset, and Section 5 concludes the paper.

2. Experimental Test Rig and Data Description

The data set used in this work for is collected from the bearing datacenter administrated by faculty
of mechanical engineering, Paderborn University, Germany. The overall data were acquired from
32 experimental bearings and were classified into healthy, artificially damaged bearings, and real
damaged bearings with an accelerated lifetime test. The testbed is shown in Figure 1 and consists of a
permanent magnet synchronous motor, operated by a frequency inverter with a switching frequency
of 16 kHz. Along with motor currents and vibration, other supportive measurements named as speed,
torque, temperature, and radial load are also available [50].
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Figure 1. Organization of the test rig.

The test rig was driven under several working conditions to diversify the dataset. The working
conditions are listed in Table 1. The damage size, location, geometry, and occurrence in the test rig
followed the ISO 15243(2010) standard.

Table 1. Operating Conditions.

No.
Rotational Speed Radial Force Load Torque

(S) (F) (M)

[rpm] [N] [Nm]

1 1500 1000 0.7
2 1500 1000 0.1
3 900 1000 0.7
4 1500 400 0.7

In our study, among the 32 bearings, we considered the motor phase currents of two phases
(CS1 and CS2) from 17 bearings which include healthy bearing and those with inner and outer race faults
as mentioned briefly in Table 2. The current signal is recorded with a current transducer (LEM CKSR
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15-NP). For each setting, there are 20 files containing 4 s of data, saved in mat file format. In our analysis,
we considered the current signal of 1 s rather than the whole 4-s duration for both phases. The sampling
frequency was set at 64 kHz; therefore, the initial dataset is a matrix of size 2720 × 64,000.

Table 2. Bearings considered in this work and their condition.

Type of Bearing Bearing Code Damage (Main Mode &
Symptoms) Label

Healthy
Bearing

Data

K001 -

0

K002 -
K003 -
K004 -
K005 -
K006 -

Naturally Damaged
Bearing

Data

Outer Ring

KA04 Fatigue: pitting

1
KA15 Plastic deformity: Indentations
KA16 Fatigue: pitting
KA22 Fatigue: pitting
KA30 Plastic deformity: Indentations

Inner Ring

KI04 Fatigue: pitting

2

KI14 Fatigue: pitting
KI16 Fatigue: pitting
KI17 Fatigue: pitting
KI18 Fatigue: pitting
KI21 Fatigue: pitting

Time domain representation of current signals recorded from three bearings (healthy bearing,
bearing with inner ring fault, and bearing with outer ring) are provided in Figure 2. The time domain
signal depicts very subtle changes among the three signals. The frequency spectrum is presented in
Figure 3, which reveals that each signal contains a 60 Hz component. This is the line/characteristic
frequency. We evaluated the classifier performance with and without this 60 Hz component, which will
be discussed in a later section.
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3. Methodology

The main objective of this work is to explore the appropriateness of ensemble learning to motor
bearing fault analysis using the current signal. To create a relevant feature matrix to train the classifiers,
the raw current signals are passed through a notch filter and decomposed using three wavelets.

The purpose of using three wavelets is to observe which wavelet decomposition provides a
better performance for feature extraction. The feature matrix is constructed by computing 11 features
from the wavelet coefficients. Finally, the classifier model is validated by a cross-validation method.
Several hyperparameters for each classifier are also determined to ensure optimum performance.
A generalized workflow is presented in Figure 4.
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3.1. Bearing Fault Signatures

The rolling element bearing (REB) is an important component in rotating machines and generally
carries heavy loads with expectations to operate at high reliability and efficiency. Usually, the inner
ring and outer ring of the bearing are mounted on a rotating shaft and stationary housing, respectively.
The balls, tapered rollers, cylindrical rollers, and barrel rollers are the rolling elements, enclosed in a
cage with equal spacing. To allow the rolling element to contact the ring at a single point, the radii
are slightly smaller than the track of rotation and help to distribute the load to a very small surface.
General representation of rolling element bearing, and two different types of fault analyzed in this
study are represented in Figure 5.
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Therefore, the cage isolates the rolling elements to avoid bad lubrication surroundings through
the operation. A large variety of REBs exists, including the deep groove ball bearings, and are mostly
used in home appliances, industrial equipment, and automotive applications. Various types of damage
such as pitting, spalling, waviness, and misaligned races generally occur due to abrasive wearing,
improper installation, material fatigue, manufacturing error, and so on.

Generally, each bearing element obtains a representative frequency. When damage occurs on a
bearing element, the interaction of defects produces pulses of very small duration, which result in a
rise in vibration energy at that particular frequency. The damage frequency can be determined with
the help of the geometry of the bearing and element rotational speed from Equations (1)–(4).

Outer race defect : fouter =
Nball

2
× fm ×

(
1−

Dball
Dcage

× cos(β)
)

(1)

Inner race defect : finner =
Nball

2
× fm ×

(
1 +

Dball
Dcage

× cos(β)
)

(2)

Ball defect : fball = fm ×
Dcage

Dball
×

1−
D2

ball

D2
cage
× cos(β)

 (3)

Cage defect : fcage =
1
2
× fm ×

(
1−

Dball
Dcage

× cos(β)
)

(4)

where β, Nball, Dball, Dcage and fm represent the contact angle of the balls, the number of balls or
cylindrical rollers, the diameter of the ball, the cage diameter (also known as the roller or ball pitch
diameter), and the rotational frequency, respectively. The detailed ball bearing geometry was described
in [53].

Characteristic fault frequencies induce the current signals and oscillations because bearing damage
changes the radial motion between the rotor and stator. Therefore, fluctuations of rotating eccentricity
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and load torque also occur as bearing damage produces radial displacement of the rotor relative to
the stator and results in amplitude, phase, and frequency modulation of the motor-current signals.
The bearing fault motor current equation is described in [54] as:

i(t) =
∞∑

k=1

ik· cos(ωck t +ϕ) (5)

where ϕ and ωck represent the phase angle and angular velocity, respectively, and

ωck =
2π fbearing

p

where, fbearing =
∣∣∣ fs ±m fv

∣∣∣ (6)

Here, fbearing, p, and fs denote harmonic frequency of the fault current, the pole pair number of
the corresponding machine, and fundamental frequency, respectively. The fundamental frequency
is referred to as the electrical supply frequency. This is the frequency of three phase power supply
connected to the stator of the induction motor. Hence, m = 1, 2, 3, . . . are the harmonic indexes;
and fv can be finner, inner race frequency, or fouter, outer race damage frequency. However, the noise
frequency and harmonics produced by the bearing fault become very close or tend to overlap each
other, complicating bearing fault detection [55]. In our study, we analyzed three types of bearing
conditions: healthy, inner race fault, and outer race fault.

3.2. Wavelet Transform

Though frequency information in Fourier transform is extracted for a whole duration of the
signal, it is normally determined by calculating the average over the complete length of the signal,
which is a major drawback of Fourier transform [56]. To overcome this problem, many time-frequency
domain approaches have been used, such as Gabor transform, short-time Fourier transform (STFT),
Wigner–Ville transform, and wavelet transform. Among them, wavelet transform is based on Fourier
transform and STFT to allow transformation of the time domain signal into time-frequency domain.
In wavelet transform, small signals are mathematically integrated into one complete signal, and the
small signals are known as wavelets. The wavelet is a short duration oscillation starting and ending at
zero. There are several orthogonal basis functions which are known as the mother wavelets. Number of
other wavelets are created from wavelet by scaling (stretching or shrinking) with the mother wavelet
itself. The shifting of scaled wavelets along the time axis provides information about localization of
different frequency contents of the corresponding signal. There are two variants of wavelets namely
continuous wavelet transform (CWT) and discrete wavelet transform (DWT).

The CWT is defined in [57] as

CWT(a,b)(t) =
1
√

a

+∞∫
−∞

x(t)ψ∗(
t− τ

a
)dt (7)

where a, τ, andψ represent the scale parameters, translation parameter, and mother wavelet, respectively.
ψ* is the complex conjugate of ψ.

The DWT is derived from discretization of CWT (a,b) as

DWT( j,k)(t) =
1
√

2 j

+∞∫
−∞

x(t)ψ∗(
t− 2 jk

2 j )dt where, a = 2 j and τ = 2 jk (8)

Generally, a multiresolution analysis decomposes the signal into a smoother version of the original
signal (approximations) and a set of detailed information at various scales. Here, j and k can be any
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positive integer values such as 1,2, 3, . . . The high frequency and low frequency components are known
as detail coefficients (cD) and approximate coefficients (cA), respectively. This process is performed
using a series of high and low pass filters and can be expressed as

x(t) = A j +
∑
j≤J

D j (9)

where Aj and Dj represent the low frequency bands (approximations) and high frequency bands
(details) of the signal, respectively. At the transient state, the high frequency components will be
evaluated to analyze the signal. In addition, the DWT exposes aspects of data such as discontinuities
of higher derivatives, breakdown point, and self-similarity in a more efficient manner than any other
signal processing technique.

A number of mother wavelets exists for both CWT and DWT all of them are not equally applicable
for any signal. It is the nature of signal (e.g., image, time-series data) and field of application which
influences which wavelet to be used. Researchers need to look for the wavelet function that best
correlates with the function or signal being analyzed to extract the most effective information. As found
in the literature, for time-series signals, Haar, db4, and sym4 wavelets are widely used [23,58], as is
represented in Figure 6. Therefore, we explored the effectiveness of these three wavelets in decomposing
motor current signal-based fault analysis.
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Among them, the Daubechies (db) and Symlets (Sym) show asymmetric basic function, where the
Haar wavelet possesses absolute symmetry in nature.

3.3. Feature Extraction

The dataset at its primary state is quite large, but it is useful in training a classifier model. However,
the dimensionality of the input data should be as small as possible to obtain high classification accuracy
with low computational resources. Often, based on application and amount of available data, feature
extraction can be omitted, and the data are directly used to train the classifier. In the feature extraction
technique, the data dimension is reduced from the initial data by transferring it into a smaller and
more tractable set of data for future processing. In the raw data set, because of the different types of
working conditions and machine inputs, the number of variables becomes very large and will demand
higher computing resources for the next step. The main objective of feature extraction is to convert the
raw data into a smaller subset of significant variables that efficiently represent the target classes. Thus,
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feature extraction is a crucial step for easier calculation and reservation of important information for
ultimate decision making.

Before performing feature extraction from the current signals, the line component of the 60 Hz
component is removed using a notch filter. Then data from 17 bearing conditions are merged. The raw
signal and the filtered signal for three bearing conditions are shown in Figure 7. It is not easy to
differentiate between faulty and healthy condition signals from the non-filtered signals by visual
inspection, but the filtered version is more discernable.
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Figure 7. (a) Raw and (b) filtered signals of three types of bearing states.

The filtered signal is decomposed up to 11 levels with each of the Haar, db4, and sym4 wavelets.
From the 11-level decomposition, we obtained the detailed coefficients from level 1 to 11 (cD1 to cD11)
and one approximation coefficient (cA) for each wavelet. The decomposed signals are presented in
Figures 8–10.

Due to the high dimension of data containing an excessive amount of information, wavelet
decomposition coefficients cannot be directly used as the input of classifiers. To reduce the data
dimension and extract the most important characteristic information, feature extraction methods are
applied to the wavelet coefficients at every decomposition level.

In this study, 11 statistical features are used for feature extraction from 11 approximation coefficients
and the detail coefficient of each wavelet. The initial dataset has 2720 instances containing three
different conditions of bearing (healthy, inner race fault, and outer race fault). Each instances is
essentially a current signal having a duration of 1 s, sampled at 64 KHz. In the feature extraction stage,
each instance is decomposed to 11 levels. Therefore, after decomposition for each instance there are 11
detail and 1 approximation coefficients (total 12 coefficients). Thus, for each coefficient, the features
mentioned in Table 3 are calculated, which is 12 × 11 = 132 features. Finally, after adding the label at
the last column, we have a feature matrix of 2720 × 133.
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Figure 10. Wavelet decomposition of the ‘sym4′ mother wavelet of the inner fault bearing.

Table 3. The formulae used for feature extraction from the current signal (x represents the signal vector).

Techniques for
Extracted Feature Feature Number (k) Equations of Detailed &

Approximation Coefficients

1. Mean k = 1, . . . , 12 µ = 1
N

N∑
i=1

xi (10)

2. Standard deviation k = 13, . . . , 24
σ =

√
N∑

i=1
(xi−µ)

2

N−1
(11)

3. Skewness k = 25, . . . , 36
xskewness =

1
N

N∑
i=1

(xi−µ)
3

σ3

(12)

4. Kurtosis k = 37, . . . , 48
xkurtosis =

1
N

N∑
i=1

(xi−µ)
4

σ4

(13)

5. RMS k = 49, . . . , 60
Xrms =

√
N∑

i=1
xi2

N

(14)

6. Form factor k = 61, . . . , 72 F f =
µ

Xrms
(15)

7. Crest factor k = 73, . . . , 84 C f =
Xmax
Xmin

(16)

8. Energy k = 85, . . . , 96 E =
N∑

i=1
xi

2 (17)

9. Shannon- entropy k = 97, . . . , 108 Hs = −
N∑

i=1
xi

2 log(xi
2) (18)

10. Log-energy entropy k = 109, . . . , 120 He = −
N∑

i=1
log(xi

2) (19)

11. Interquartile range k = 121, . . . , 132 IQR = xi(%75th) − xi(%25th) (20)
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3.4. Ensemble Learning

In recent times, selection of an efficient ML algorithm has become crucial for good performance of
any fault diagnostic model. Ensemble learning algorithms are one of the approaches that provide better
performance than any single prediction algorithm [59]. In ensemble learning, multiple weak learners
work together to produce a better model achieving higher accuracy. Some ensemble learning algorithms
such as XGBoost may achieve higher accuracy than artificial neural networks and degree-day ordinary
least square regression for energy model loss estimation [60]. In our study, two ensemble learning
algorithms known as random forest and XGBoost were investigated for fault classification of IM.

3.4.1. Random Forest

The Random forest (RF) algorithm is a collection of decision tree, where each tree is individually
trained on an arbitrarily selected independent training dataset. Here, the respective input dataset for
each tree is sampled separately, and the distribution rate is the same for all trees. RF not only performs
well in classification and regression, but also shows outstanding performance in variable selection.
The trees are obtained from the combination of datasets with bootstrap subsampling and various
subsets of features for splitting at every node. The nature of each tree is unique and possesses low bias
when mature. Also, low correlation is obtained based on selection of random subsets of features for
the individual trees. Finally, after ensemble of all the trees, the RF results in low bias and low variance
for the model. Bootstrap aggregating from bagging is designed to increase the stability and accuracy
for individual trees in RF [48]. For decision making, the class which receives majority vote from the
trees is selected in classification problem. On the other hand, the average of the predicted values
from all decision trees is considered in regression models. The RF can also overcome the overfitting
problem, which is one of the main concerns in a decision tree algorithm. RF uses a bagging technique,
where each time a random subset of feature is used to train a single decision tree and it aggregates the
result of a number of decision trees to determine the final output. Thus, RF is less prone to overfitting.
In addition, the parameter’s tuning also helps RF to overcome the overfitting problem, which also
applied in this study by using a GridSearch technique. The diversity of the tree in the RF is controlled
by the number of features. A higher number of features ensures the most highly correlated trees
with the cost of high computational power, whereas a lower number of features results in a lack of
correlation. The parameters for implementing the RF are number of trees, number of features in
every split, maximum depth, and number of sample leaf nodes. Generally, a high number of trees is
mandatory for acquiring a steady state solution for both the classification and regression problems.
The RF model consists of a splitting process performed by dividing the single node into two or more
nodes; whereby the majority voting process decides the final output of the model, as is illustrated in
Figure 11a.

3.4.2. Extreme Gradient Boosting (XGBoost)

XGBoost is an effective enactment of a gradient boosting decision tree (GBDT) algorithm. Generally,
XGBoosting applies the first and second derivatives, whereas the GBDT uses only the first derivative.
The process in which the ensemble helps to merge multiple weak learners to build a single strong
learner is known as boosting. In this algorithm, a sequential learning process is on-going, where the
present regression tree is more fitted to the residuals (errors) from that of the previous tree, and the
new generated tree is further adjusted with the model to update the residuals. This is a continuous
learning process, which runs gradually to perform well. Hence, the new regression trees are tending to
a maximum correlated to the negative of the gradient of the loss function, which not only improves
the flexibility of the algorithm, but also converges on the loss function. The gradient boosting can be
expressed as [47]:

ŷi = φ(xi) =
K∑

k=1

tk(xi), tk ∈ T. (21)
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where, ŷi, xi, and K are the predicted response, inputs, and number of functions in the function space T,
respectively. To ascertain the most appropriate functions, tk, the functions are introduced as parameters,
which will fit the data during training and find the corresponding regions automatically. In this
algorithm, the regularization factor Ω(tk) was added to express the complexity of the tree based on
GBDT. Finally, tk is learned by minimizing the following objective function of the training model as:

L(φ) =
∑

i

l(ŷi, yi) +
∑

k

Ω(tk) (22)

where φ and L(φ) are the model parameter and differentiable loss functions, respectively. The loss
function can be either logistic loss or square loss, representing the similarity rate between the training
set and the model. Another inevitable characteristic of XGBoost is the shared-memory multiprocessing
application programming interface known as OpenMP, which helps to efficiently use all CPU cores in
parallel and declaring independent variables at the start of the training process, ultimately decreasing
training complexity and computation time. The simpler model of XGBoost tends to show better
performance against overfitting. A pictorial representation of the XGBoost algorithm is illustrated in
Figure 11b.

3.5. Model Evaluation

The extracted features are fed into the two ensemble classifier algorithms, and the performance of
the classifiers is evaluated using the metrics listed in Table 4. Here, the true positives (TP) indicates the
data points, which are appropriately labeled as faults, whereas the false positives (FP) wrongly labeled
as faults to the normal data points. On the other hand, the data correctly labeled as normal is called the
true negatives (TN), and when faulty data is mistakenly labeled as normal, is known as false negatives
(FN).
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Table 4. Performance evaluation parameters.

Accuracy = TP+TN
TP+FP+TN+FN (23)

Precision = TP
TP+FP (24)

Sensitivity = TP
TP+FN (25)

Speci f icity = TN
FP+TN (26)

F1 = 2× Precision×Recall
Precision+Recall (27)
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Specificity indicates the rate of correct detection of the true negative class, whereas the sensitivity
measures the effectiveness for the model to detect events in the positive class. Though type I errors are
measured by sensitivity and type II errors by precision, precision and sensitivity typically are stated
pairwise. Finally, the F1 score provides the harmonic mean of precision and sensitivity. In addition,
the receiver operation characteristics (ROC) curve is presented to evaluate classifier performance.

3.6. Hyperparameter Selection

The optimal hyperparameters are determined through a process called hyperparameter search.
The appropriate values of the hyperparameters increases the accuracy of the training model. In order to
finding the set of optimal hyperparameters, each independent set is applied by k-fold cross-validation
and finally, the most appropriate set of hyperparameters is determined by applying “GridSearchCV”,
which a scikit-learn class. For both classifiers, a broad range of parameters was tested. The optimum
parameters found after the GridSearch method for two ensemble learning are listed in Table 5. Also,
we applied 5-fold cross validation to enhance reliability of the output.

Table 5. Optimum parameters.

Random Forest Xtreme Gradient Boosting

Parameters Values Parameters Values

max_depth 90 max_depth 20
max_features 3 learning rate 0.1

min_samples_leaf 3 n_estimator 500
min_samples_split 8 min_child_weight 1

n_estimators 200 gamma 1

Finally, with the optimum parameters of the classifiers, the feature matrix was split into training
and testing subsets with 80:20 ratio for training and validation of the fault classification abilities for the
RF and XGBoost classification algorithms.

4. Results

After selecting the hyperparameter values, the two classifiers are trained. The training and test
ratios were chosen as 80:20. A 5-fold cross-validation approach was utilized to validate the trained
models. The overall process was carried out with the non-filtered data, and the parameters mentioned
in Equations (23)–(27) were determined, as provided in Table 6.

Table 6. The five evaluation parameters of two classifiers for three wavelets executed on the raw signal.

RF XGB

db4 Sym4 Haar db4 Sym4 Haar

Precision 0.96 0.94 0.96 0.97 0.97 0.97
Sensitivity 0.96 0.94 0.96 0.97 0.97 0.97
F1_score 0.96 0.94 0.96 0.97 0.97 0.97

Specificity 0.96 0.94 0.96 0.97 0.97 0.97
Accuracy 0.96 0.93 0.95 0.97 0.97 0.96

In the next step, the filtered signal from a notch filter is obtained, and the process is repeated.
In this approach with the filtered signal, greater than 99% accuracy was achieved for both classifiers.
The performance evaluation parameters for the filtered signal are listed in Table 7 for the two
ensemble classifiers.
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Table 7. The five evaluation parameters of two classifiers for three wavelets executed on the
filtered signal.

RF XGB

db4 Sym4 Haar db4 Sym4 Haar

Precision 0.99 0.99 0.99 0.99 0.99 0.99
Sensitivity 0.99 0.99 0.99 1.0 0.99 0.99
F1_score 0.99 0.99 0.99 1.0 0.99 1.0

Specificity 0.99 0.99 0.99 0.99 0.99 0.99
Accuracy 0.99 0.99 0.99 0.99 0.99 0.99

The bar chart in Figure 12 indicates the improvement in accuracy after filtering the current signal.
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The corresponding confusion matrices are presented in Figures 13–15. From the confusion
matrices, it is evident that the classifiers are very successfully classifying the faults, as the false positive
and the false negative numbers are negligible. Also, in the ROC, the area under the curve is provided
in Figure 16 and ensures that the models can distinguish among the classes.
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Finally, Table 8 presents a comparison of the other models investigated with the same dataset in
different works. Wavelet packet decomposition up to three levels, along with the special SVM approach
named SVM-PSO (SVM—particle swarm optimization), was implemented by Lessmeier et al. [50] and
achieved an accuracy of 86.03%. Information fusion (IF) and DL approaches were used [51] on a motor
current signal, which result almost 98.3% accuracy. Another study on the same dataset applied an
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empirical wavelet transform and CNN for fault classification, showing 97.37% accuracy [52]. Therefore,
by comparison with the recent research on the motor current signal, our approach provides a better
result, with greater than 99% accuracy for ensemble classifiers.

Table 8. Comparison of classification accuracy among the various methods.

Applied Methodology Classification Accuracy (%)

WPD + SVM-PSO [50] 86.03
IF+MLP [51] 98.3
SVM+ IF [51] 98.0
KNN+ IF [51] 97.7

CNN + EWT [52] 97.3
DWT + XGBoost [This paper] 99.3

5. Conclusions

In recent times, the complexity of the modern industrial system continues to advance because
the multi-sensor network has become an essential component in comprehensive systems. Electrical
current analysis has emerged as an intelligent solution that simplifies the fault diagnosis process
with a small number of sensors. Therefore, the cost is reduced by featuring sensor less and extensive
technologies. In this study, a data-driven approach using a motor current signal analyzed by DWT
and ensemble machine learning methods was proposed for IM bearing fault diagnosis. The three
mother wavelets of db4, sym4, and Haar were applied for signal decomposition. Both raw and filtered
signals were used separately as input of wavelet decomposition. Though we performed a high-level
decomposition, high and low frequency component properties showed equal importance. The feature
set was constructed from the detailed and approximation coefficients, which act as the input of the
two ensemble classifiers. Here, the two phased currents of three conditions of the IM bearing were
considered. The purpose of this study was to not only attain high accuracy, but also reduce power and
computational complexity by eliminating redundant data. Both RF and grid search classifiers achieved
greater than 99% accuracy for all three wavelets on the filtered signal, and other evaluation parameters
also outperformed. The time frequency domain-based feature extraction was efficient, with very high
accuracy and no feature selection. Finally, a comparison with some recent works is presented and
indicates that the wavelet decomposition techniques with the ML ensemble classifier algorithms can
be a promising model for bearing fault classification.
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