
applied
sciences

Article

NetAP: Adaptive Polling Technique for Network
Packet Processing in Virtualized Environments

Hyunchan Park 1,2 , Juyong Seong 1, Munkyu Lee 3, Kyungwoon Lee 4,* and Cheol-Ho Hong 3,*
1 Division of Computer Science and Engineering, Jeonbuk National University, Jeonju 54896, Korea;

hyunchan.park@jbnu.ac.kr (H.P.); wndyd9557@jbnu.ac.kr (J.S.)
2 Research Center for Artificial Intelligence Technology, Jeonbuk National University, Jeonju 54896, Korea
3 School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Korea;

dse112@cau.ac.kr
4 College of Informatics, Korea University, Seoul 02841, Korea
* Correspondence: kwlee@os.korea.ac.kr (K.L.); cheolhohong@cau.ac.kr (C.-H.H.)

Received: 19 June 2020; Accepted: 27 July 2020 ; Published: 29 July 2020
����������
�������

Abstract: In cloud systems, computing resources, such as the CPU, memory, network, and storage
devices, are virtualized and shared by multiple users. In recent decades, methods to virtualize
these resources efficiently have been intensively studied. Nevertheless, the current virtualization
techniques cannot achieve effective I/O virtualization when packets are transferred between a
virtual machine and a host system. For example, VirtIO, which is a network device driver for
KVM-based virtualization, adopts an interrupt-based packet-delivery mechanism, and incurs frequent
switch overheads between the virtual machine and the host system. Therefore, VirtIO wastes
valuable CPU resources and decreases network performance. To address this limitation, this paper
proposes an adaptive polling-based network I/O processing technique, called NetAP, for virtualized
environments. NetAP processes network requests via a periodical polling-based mechanism. For this
purpose, NetAP adopts the golden-section search algorithm to determine the near-optimal polling
interval for various workloads with different characteristics. We implement NetAP in a Linux kernel
and evaluated it with up to six virtual machines. The evaluation results show that NetAP can improve
the network performance of virtual machines by up to 31.16%, while only using 32.92% of the host
CPU time used by VirtIO for packet processing.

Keywords: cloud computing; virtualization; I/O processing; adaptive polling

1. Introduction

Artificial intelligence, cloud computing, big data, and the Internet of Things are the main
technologies of the fourth industrial revolution. The importance of these technologies is emerging as an
international issue that requires significant involvement by academia and industry. Cloud computing
provides the main infrastructure of the fourth industrial revolution; it lays the foundation for other
major technologies. The computing environment of enterprises and individuals is rapidly moving
to the cloud. Many companies already have their own cloud infrastructures, and others are using
public cloud platforms, such as Amazon EC2. Moreover, several artificial intelligence services, big data
processing, and Internet of Things applications are currently performed on the cloud.

Virtualization is a key technology that enables and sustains cloud computing.
Through virtualization, computing resources, such as the CPU, memory, storage, and network devices,
of multiple physical nodes are consolidated and managed. Virtualization provides resources that are
required by users in the form of virtual machines (VMs) or containers. However, because the resources
are virtualized, applications running in cloud computing experience performance deterioration,

Appl. Sci. 2020, 10, 5219; doi:10.3390/app10155219 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-9879-5531
https://orcid.org/0000-0002-0705-623X
https://orcid.org/0000-0003-4730-950X
http://dx.doi.org/10.3390/app10155219
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/15/5219?type=check_update&version=3

Appl. Sci. 2020, 10, 5219 2 of 18

in contrast with applications executed in a native environment. The virtualization overhead for CPUs
has been addressed with some success, but the overhead for I/O devices, such as network and storage
devices, remains. This overhead is a major bottleneck for overall system performance [1,2].

The efficient virtualization of I/O devices is a critical factor in cloud computing. In a cloud
system, many users share a small number of I/O devices. If the virtualization overhead increases in
proportion to the number of users, the efficiency of the entire system decreases. Cloud computing
service providers then need to install additional equipment to meet user demand. This situation leads
to a decrease in competitiveness in cloud computing with an increase in the overall cost.

Another issue in I/O virtualization is that the virtualization overhead may appear in the form of
CPU consumption. The current virtualization techniques are heavily supported by hardware, but the
role of processing I/O devices is still often handled by software. For example, Linux incorporates a
kernel-based virtual machine (KVM) virtualization software and adopts an I/O driver for virtualization,
called VirtIO [3,4]. VirtIO is responsible for processing requests and responses to and from I/O devices.
Therefore, if VirtIO inefficiently uses the CPU for processing I/O operations, it results in additional
cost by wasting CPU resources that might otherwise be provided to users in the cloud system.

In this study, we implement NetAP, a novel network I/O processing method for virtualized systems
in KVM-virtualized environments. NetAP introduces a periodic polling technique in VirtIO in order to
maximize the use of network and CPU resources. The existing VirtIO processes I/O requests in a batch
manner when the number of requests is above a certain threshold. Upon meeting the condition, the VM
generates a virtual interrupt (vIRQ) to notify VirtIO to process the requests. However, this mechanism
causes expensive VM-Exit and VM-Entry operations, which decreases the I/O performance [5,6].
The periodic polling technique of NetAP regularly monitors the I/O request buffers and handles the
network requests in a timely manner. This mechanism prevents vIRQs from the VM, because the
requests in the buffer are processed before the number of requests reaches the threshold.

NetAP uses the golden-section search algorithm to dynamically find the near-optimal polling
interval for various workloads. The golden-section search technique helps NetAP to find the maximum
or minimum value within a given range of a unimodal function. The performance evaluation results of
NetAP show that it successfully finds a near-optimal polling interval for various scenarios consisting
of multiple VMs. NetAP improves the network performance by up to 31.16%, while only using 32.93%
of the CPU time that the original VirtIO used for packet processing in the host system.

Our contributions can be summarized as follows:

• We provide a new I/O processing mechanism that is based on adaptive periodical polling;
this method uses the network and CPU more efficiently than traditional interrupt-based
mechanisms in virtualized environments.

• We provide a fast and accurate adaptation technique that is based on the golden-section search
algorithm. Our evaluation demonstrates that the adaptation technique successfully finds a
near-optimal polling interval that maximizes network and CPU utilization for various workloads.

This paper is organized, as follows. In Section 2, we provide background information about
VirtIO and describes the related work. Section 3 presents the design of NetAP, including the new
polling-based mechanism for I/O processing and the adaptation mechanism that is based on the
golden-section searching algorithm. The experimental results are presented in Section 4. Section 5
presents our conclusions.

2. Background and Motivation

2.1. VirtIO

VirtIO modules are para-virtualized drivers for virtualized systems based on KVM; such modules
are widely used for network and block devices in KVM. Figure 1 shows the structure of VirtIO
with request and response flows. When a user application running in a guest OS requests a packet

Appl. Sci. 2020, 10, 5219 3 of 18

transmission via a system call, the network stack of the guest OS prepares a packet for transmission
and delivers the packet to the VirtIO front-end device driver, which is a virtual network device.
The front-end driver uses shared memory for data communication between the VM and the host;
the network packets are buffered into the queue in the shared memory region. A vIRQ is then generated
in order to notify the host OS that packets are ready for transmission. The vIRQ is generated when
the number of packets in the queue exceeds a certain threshold, rather than generating a vIRQ for
each packet.

Figure 1. VirtIO structure with request and response flows.

Upon receiving the vIRQ, the host OS schedules the virtual host (vHost) user thread to deliver the
packet fetched from the shared queue to the network stack of the host in kernel space. The vHost thread
adopts a combined interrupt–polling method, which combines the interrupt and polling mechanisms.
After the first vIRQ interrupt, the vHost thread fetches consecutive packets from the shared queue
with a polling mechanism and then delivers them to the network stack. The fetched packets are sent to
the MacVTap bridge, which is a virtual interface that transmits packets through the physical device.
Packet reception is similarly performed in the opposite direction.

The main overhead occurs in the process of requesting packets from the VM to the host. The VM
notifies the host system, using a vIRQ, that the packet to be processed is ready in the shared memory.
The host system then receives the interrupt and wakes up the sleeping vHost thread to perform packet
processing. This leads to frequent VM-Exit and VM-Entry operations to transfer the control between
the VM and KVM, which leads to a substantial virtualization overhead [5,6].

2.2. Related Work

2.2.1. Interrupt-Based and Polling-Based I/O Processing Techniques

Interrupt-based and polling-based techniques in I/O processing have the advantages and
disadvantages of complementary relationships; furthermore, such techniques are used selectively
depending on the workload characteristics. For example, G. Lettieri et al. analyzed the
producer-consumer model in I/O processing in a virtualized environment [7]. They compared the
busy-waiting method and the sleeping method. The busy-waiting method uses a polling-based
technique that continuously processes network packets on a dedicated CPU core. The sleeping
method periodically executes polling operations in order to process the stored network packets in
a buffer [7]. As a result, it was found that it is efficient to use different I/O processing methods
depending on the characteristics of the workload. Specifically, they found that the I/O processing
efficiency varied, depending on the period of the polling operations in the sleeping method, which
motivated our research.

Recently, high-speed I/O devices, such as 10 GbE and NVMe SSDs, have emerged. As interrupts
occur at very high speeds in these devices, the overhead of interrupt delivery becomes a bottleneck
in the I/O processing path [8]. To alleviate the overhead, busy-waiting polling techniques are used
in many systems that focus on high-speed network processing [9,10]. The busy-waiting techniques

Appl. Sci. 2020, 10, 5219 4 of 18

successfully improve network performance by processing incoming network packets continuously.
However, more than one CPU core should be dedicated to the busy-waiting workers for packet
processing. The workers occupy the dedicated CPU cores even though there are no incoming packets.
This leads to inefficient CPU management, because other processes cannot utilize the dedicated CPU
cores. This paper proposes an adaptive polling technique that occupies CPU cores when there are
incoming packets in order to overcome the inefficient CPU management of busy-waiting techniques.

There have been similar approaches to enhancing the busy-waiting techniques for storage devices.
For example, T.Y Kim et al. proposed the use of a periodic polling technique for NVMe SSDs [11].
However, their evaluation results show that the periodic polling technique is less efficient than interrupt
handling. This is because the storage used in the research only handles 400 K requests per second.
On the other hand, this paper focuses on a 10 GbE network device handling 14,880 K requests per
second for 64 B packets, which is approximately 30 times faster than the storage device. Even for
1500-B packets, there are 812 K requests in network devices, which imposes more interrupt-processing
overhead than in the case of the storage device. Additionally, previous engineering work suggests
adaptive polling, which is similar to NetAP, for block devices on KVM environments [12]. They limit
the time for busy-waiting polling algorithm and increase or decrease the polling duration through a
simple condition loop. When an I/O event occurs, the polling starts for a certain duration, for example,
32 us (microseconds). If additional I/O events occur, the polling duration increases. Otherwise,
the polling duration decreases, which is very simple optimization. The simple optimization does not
guarantee finding the optimal time for polling and lacks the mathematical proof and runtime analysis,
which is different from the golden-section search algorithm that we adopt. NetAP determines the
near-optimal polling interval while using the golden-section search algorithm, which is much more
efficient and effective than the simple optimization.

2.2.2. Efficient I/O Processing in a Virtualized Environment

Research for improving the I/O processing performance in virtualized environments can be
categorized into two types: one is to use additional hardware devices to increase I/O processing
performance and the other is to reduce the data-copying overhead in I/O processing.

First, single root I/O virtualization (SR-IOV) is a technique that allows VMs to directly access
physical network devices without the intervention of the host system [13–15]. Allowing the VMs
to process I/O requests directly increases the I/O processing performance significantly. However,
in SR-IOV, I/O processing is based on interrupts; therefore, it incurs a large overhead when the
interrupts occur at high speeds. To reduce the overhead, there have been attempts to minimize
the VM-Exit and VM-Entry operations using software methods [16] or hardware methods [17].
Furthermore, previous studies propose assigning specific CPU cores to dedicated vHost threads
to mitigate the interrupt handling overhead [18,19]. However, assigning CPU cores for I/O processing
degrades the CPU utilization at moderate I/O processing rates [20]. Thus, in existing cloud
environments, SR-IOV is only used for users who require very high or stable network performance at
high prices.

The second approach is to reduce the data-copying overhead. To this end, one study proposed
a zero-copy technique that eliminates memory copying in the packet forwarding path to speed up
processing and reduce CPU usage [21]. Complementary with the proposed method, it would be more
efficient if the adaptive polling of NetAP and a zero-copy method were simultaneously used.

2.2.3. Research for Optimizing the Polling Interval

Many previous studies have tried to overcome the limitations of interrupt-based and polling-based
techniques. Some studies [22] suggest changing the period of polling operations by creating and
evaluating a simple cyclic transformation equation through modeling and simulation. They focus
on general network processing, rather than on I/O processing in virtualized environments. Hence,
the results of previous studies [22–24] are difficult to apply to virtualized environments. Furthermore,

Appl. Sci. 2020, 10, 5219 5 of 18

in a real system environment, there are other considerations, such as the period of performance
monitoring and the change in the packet-processing speed of the VM, which are not included in the
previous studies. Therefore, more in-depth research is necessary in order to optimize the polling
intervals in virtual environments. This study provides a search method to optimize the polling
interval and a detailed analysis of the period of performance monitoring, which is essential for the
search method.

3. Design

This section describes the design goals, the periodic polling technique, and the algorithm for
determining the optimal polling interval of NetAP.

3.1. Design Goals

The design goals of NetAP include improving deployability and obtaining the optimal polling
interval for each VM, which are explained, as follows:

First, to improve deployability, NetAP only modifies the vHost thread of the host system. If we
modify the front-end device driver of each guest OS, the user may experience an inconvenience from
re-compiling the front-end driver and re-installing the driver module into the guest OS. Therefore,
by modifying only the vHost thread of the host OS, we preserve the interface with an unmodified
front-end driver.

Second, NetAP tries to obtain the optimal interval for each VM to reflect its individual workload
characteristics. A vHost thread is dedicated to its own VM and it fetches network requests from
its dedicated shared queue. Because each VM generates and consumes packets at a different speed,
each vHost thread needs to have different polling intervals. Therefore, we apply a novel algorithm to
determine the polling interval for each vHost thread.

3.2. Periodical Polling for Network Packet Processing

NetAP develops a periodic polling technique in the vHost thread to maximize the utilization of
network and CPU resources. The modified vHost thread in NetAP periodically polls the shared queue
instead of waiting for a vIRQ from the front-end device driver. At each polling interval, the vHost
thread is scheduled, and it processes packets sent from the guest OS. After the vHost thread completes
packet processing, it sleeps until the next polling interval. During this sleep time, the guest OS
generates packets, and they are buffered into the shared queue. At the next interval, the vHost thread
wakes up and processes the buffered packets in the shared queue.

The main difference between NetAP and the original VirtIO is that NetAP frequently monitors
the shared queue and proactively handles the buffered packets before a vIRQ is generated from the
front-end driver. In original VirtIO, the front-end driver produces packets and inserts them into the
shared queue. When the number of buffered packets in the queue is more than a certain threshold,
a vIRQ is delivered to the vHost thread to wake up the thread. However, NetAP processes the
buffered packets at an appropriate rate with periodic polling before the number of packets exceeds
the threshold. Therefore, the front-end driver does not generate vIRQs. This mechanism can prevent
expensive VM-Exit and VM-Entry operations and, therefore, improve network performance with
efficient CPU use.

3.3. Periodic Polling Algorithm

Algorithm 1 details the periodic polling technique. The core function is
the_packet_handler_o f _a_host_system(), which processes packets in a continuous loop. When the
loop is executed once, it processes the packets loaded in the RX and TX queues (line 21 and 22),
sleeps for an interval (line 24), and starts the next loop. Until it sleeps, interrupts are disabled for
packet arrivals (line 8 and 23). A round is a time unit for observing performance. To adapt NetAP
for a given workload, we change the polling interval for each round according to the observed

Appl. Sci. 2020, 10, 5219 6 of 18

performance for the previous round. Furthermore, round_length is the predetermined length of
a round (e.g., one second). Line 14 sets the start time of the next round by adding round_length
to current_time, and line 9 checks the time. At the start of a new round, the interval is updated
by running the golden_section_searching() function on line 10. The parameters are the number of
the current round, the size of the packet processed in the round (bytes), and the current interval.
The function is explained in detail in the next section.

The algorithm also provides a function to restart adaptation in response to characteristic changes in
the workload after adaptation was formerly completed. Line 11 checks whether the size of transferred
data changes greater than the predefined ratio MinChange, when the interval is no longer updated.
Line 17 checks whether the current round exceeds the predefined maximum number of rounds. If one
of the two conditions is satisfied, then adaptation is started again by setting the round number to 0.
This allows for NetAP to keep tracking the appropriate interval continuously against the changes of
workload characteristics within the running VM.

3.4. Adaptation Using Golden-Section Search

We use the golden-section search algorithm to find the near-optimal polling interval for various
workloads dynamically. The golden-section search technique searches the maximum or minimum
value within a given range in a unimodal function [25]. The method to find the maximum value for
the target function f (x) is as follows: First, we set two x-coordinates xl and xu to search. We assume
that the maximum value is between xl and xu. Second, we choose x1, where xl < x1 < xu and
the (xu − x1)/(xu − xl) is R, a reciprocal of the golden ratio (R ≈ 0.618). These three x-coordinates
are golden-section triplets. Third, we set the new x-coordinate, x2, where xl < x2 < xu and the
(x2− xl)/(xu− xl) is R. Subsequently, we evaluate the f (xl), f (x1), f (x2), and f (xu). If f (x2) < f (x1),
then xl , x1, x2 are chosen as new triplets, else if f (x2) > f (x1) then x1, x2, xu are chosen. Subsequently,
we iterate this process until the outer x-coordinates are closer than ε, which is the predetermined
minimal distance to terminate the algorithm.

The main advantage of the golden-section search algorithm is the efficiency. The evaluation of
f (x) requires a considerable time for the real-world workloads. The golden-section algorithm only
requires one additional evaluation for each iteration. Moreover, the complexity of the algorithm is
logarithmic. The big-O notation of the algorithm is shown in Equation (1), where N is the number of
iterations required to find the solution [26,27].

N = O(log
1
ε
) (1)

3.4.1. Considerations for Alternative Algorithms

We choose the golden-section search rather than other line search algorithms, such as the
bisection, Newton’s, Quasi-Newton’s, and Nelder-–Mead methods, because Golden-section searching
is unconstrained and derivative-free [28].

First, we need an unconstrained method, because the target function to be searched is not
specified. Because NetAP should supports various workloads with different characteristics, we cannot
assume any constraints for the searching algorithm. We only assume that the target function is
one-dimensional, so we avoid using complex multi-dimensional algorithms, such as the gradient,
random search, and Nelder–Mead methods [29].

Second, we need a derivative-free method, because we do not know the complete function in the
mathematical form. We only know few points that are collected from the execution results during
the round. In addition, the derivative cannot be correctly calculated in the Linux kernel, because the
floating point operations are not allowed in the kernel mode in order to maintain the user context
in the floating point unit [30]. Thus, we avoid algorithms that are based on derivatives, such as the
bisection search, Newton’s method, and Quasi-Newton’s method [31].

Appl. Sci. 2020, 10, 5219 7 of 18

Algorithm 1: Network packet handler with periodical polling
Data:
round indicates the number corresponding to the current round,
round_length is a predefined length of a round in seconds,
next_time indicates the next time for updating the interval,
current_time() returns a current wall-clock time,
bytes is the sizes of processed packets in the current round,
interval is a polling interval in the current round,
MaxRound is the maximum number of rounds without changing the interval,
MinChange is the minimum ratio of processed packet sizes between previous and current
rounds,
RX_queue, and TX_queue are the queues for the packets received and packets to be
transmitted.

1 Function the_packet_handler_o f_a_host_system(void):
2 start:
3 next_time← current_time();
4 round← 0;
5 bytes← 0;
6 interval← 0;
7 while true do
8 Disable interrupts for packet arrivals;
9 if current_time() >= next_time then

10 interval← golden_section_searching(round, bytes, interval);
11 if interval is not changed AND bytes is changed more than MinChange then
12 go to start;
13 end
14 next_time← current_time() + round_length;
15 bytes← 0;
16 round← round + 1;
17 if round = MaxRound then
18 go to start;
19 end
20 end
21 bytes← bytes + handle_packets_in_the_queue(RX_queue);
22 bytes← bytes + handle_packets_in_the_queue(TX_queue);
23 Enable interrupts;
24 Sleep for interval;
25 end
26 end
27 Function handle_packets_in_the_queue(queue):
28 processed_bytes = 0;
29 while queue has a packet do
30 Lock the queue;
31 Dequeue a packet;
32 Process the packet;
33 processed_bytes is increased by the size of the packet;
34 Unlock the queue;
35 end
36 return processed_bytes
37 end
38 Function current_time(void):
39 return Current wall-clock time;
40 end

Appl. Sci. 2020, 10, 5219 8 of 18

3.4.2. Preliminary Examination for Golden-Section Search Algorithm

Before we apply the algorithm to solve our problem, there are two requirements to examine:
the target function must be unimodal, and a near-optimal value must exist within a range of possible
intervals to perform a search. Thus, we demonstrate in advance whether our problem can be solved by
the golden-section search algorithm.

We performed a preliminary examination to determine whether a golden-section search can find
near-optimal polling intervals. As a result, we made two observations. First, the change in performance
over various polling intervals appears as a unimodal function. Second, there is a range of periods that
can be commonly applied to various workloads.

The environment of the experiment is as follows: the host system is equipped with a CPU with
six physical cores, 16 GB of memory, and a 10 GbE NIC. Simultaneous multi-threading was disabled,
and an additional 1 GbE NIC for controlling the host system was installed to increase the reliability of
the experiment. The Linux kernel used corresponded to version v5.1.5, released in May 2019. We ran
several VMs on this host system and performed Netper f benchmarks on each VM that was connected
to a separate Netperf server system. In the experiment, 64B packets were transmitted using TCP,
and we measured the aggregated network bandwidth in Mbps.

In this preliminary experiment, We executed one, two, three, and six Netperf threads on each of
one, two, three, and six VMs. We increased the polling interval by 500 every 60 s, from 500 us to 5000 us,
and observed the performance change that corresponded to each interval for each workload. We did
not evaluate each interval separately, but continuously changed the interval. This is to determine how
rapidly the effect of changing the polling interval becomes apparent.

Figure 2 shows the result. The first item on the X-axis shows the performance of unmodified VirtIO
without applying the periodic polling technique. Furthermore, the figure shows the performance
that corresponds to up to 5000 us with gradual increments of 500 us. The performance is shown
at five-second intervals. The overall trend forms a unimodal function in every case, and we can
find the point where the performance is maximized. As summarized in Table 1, intervals up to a
maximum of 3000 us maximized the performance for all workloads. The bandwidth comparison in
Table 1 is the relative performance of the best network bandwidth as compared to the performance of
unmodified VirtIO.

Through the preliminary examination, we determined that the golden-section search algorithm
can be applied to find the near-optimal polling interval in NetAP. We also found that the network
performance changed immediately after the polling interval was changed.

Appl. Sci. 2020, 10, 5219 9 of 18

0

1

2

3

4

5

6

7

8

Unmodified
VirtIO

500 1000 1500 2000 2500 3000 3500 4000

Ne
tw

or
k

ba
nd

w
id

th
 (G

bp
s)

Intervals (microseconds)

1 thread

2 threads

3 threads

6 threads

(a) 1 VM

0

1

2

3

4

5

6

7

8

Unmodified
VirtIO

500 1000 1500 2000 2500 3000 3500 4000

Ne
tw

or
k

ba
nd

w
id

th
 (G

bp
s)

Intervals (microseconds)

1 thread

2 threads

3 threads

6 threads

(b) 2 VMs

0

1

2

3

4

5

6

7

8

Unmodified
VirtIO

500 1000 1500 2000 2500 3000 3500 4000

Ne
tw

or
k

ba
nd

w
id

th
 (G

bp
s)

Intervals (microseconds)

1 thread

2 threads

3 threads

6 threads

(c) 3 VMs

0

1

2

3

4

5

6

7

8

Unmodified
VirtIO

500 1000 1500 2000 2500 3000 3500 4000

Ne
tw

or
k

ba
nd

w
id

th
 (G

bp
s)

Intervals (microseconds)

1 thread

2 threads

3 threads

6 threads

(d) 6 VMs

Figure 2. Results of preliminary examination for four scenarios.

Table 1. Polling interval maximizing the bandwidth, and comparison with unmodified VirtIO.

Best Polling Interval (Us) Bandwidth Comparison

Threads 1 2 4 6 1 2 4 6

1 VM 2500 1500 500 500 136% 139% 119% 128%

2 VMs 3000 1500 500 500 142% 131% 116% 107%

3 VMs 3000 2500 2000 1000 163% 142% 111% 109%

6 VMs 3000 2500 2000 1500 163% 142% 111% 109%

3.4.3. Golden-Section Search Algorithm

Algorithm 2 obtains the near-optimal interval using golden-section search. First, R is the so-called
golden ratio, which is 0.618, and MaxInterval and MinInterval are the predetermined maximum
and minimum intervals, respectively. MinDistance is a predetermined minimum distance to stop
the algorithm.

The golden_section_searching() function is called by Algorithm 1 with the round, bytes,
and previous interval as arguments. In the first and second rounds, intervallow and intervalhigh
are set using MaxInterval and MinInterval, respectively, with the same values of distance, and the
performance is collected for a round_length. From the third round, the function checks which value
of intervallow or intervalhigh achieved higher performance. If intervallow has higher performance,
intervalhigh is replaced by intervallow, and intervallow is replaced by (intervalhigh + distance).
Conversely, if intervalhigh provides higher performance, intervallow is replaced by intervalhigh,
and intervalhigh is replaced by (intervallow − distance). Subsequently, the updated interval is returned.
Furthermore, distance is decreased by the golden ratio in each round. When distance is less than
MinDistance, the algorithm terminates, and the previous interval is returned without an update.

Appl. Sci. 2020, 10, 5219 10 of 18

Through the aforementioned process, we can quickly search for the interval between MinInterval and
MaxInterval that maximizes the performance.

Algorithm 2: Golden-section search algorithm to find the near-optimal interval
Data: intervallow, intervalhigh, per flow, per fhigh, temp, distance, selected,
R, MinDistance, MaxInterval and MinInterval.
Input: round, bytes, interval
Output: The next polling interval

1 Function golden_section_searching(void)(round,bytes,interval):
2 if round = 0 then
3 distance← R × (MaxInterval −MinInterval);
4 intervallow ← MinInterval + distance;
5 return intervallow

6 end
7 if round = 1 then
8 per flow ← bytes;
9 intervalhigh ← MaxInterval − distance;

10 selected← High;
11 return intervalhigh

12 end
13 if selected = Low then
14 per flow ← bytes;
15 else
16 per fhigh ← bytes;
17 end
18 if distance <= MinDistance then
19 return interval
20 end
21 distance← distance × R;
22 if per flow > per fhigh then
23 temp← intervalhigh;
24 invervalhigh ← intervallow;
25 intervallow ← temp + distance;
26 per fhigh ← per flow;
27 selected← Low;
28 return intervallow

29 else
30 temp← intervallow;
31 invervallow ← intervalhigh;
32 intervalhigh ← temp - distance;
33 per flow ← per fhigh;
34 selected← High;
35 return intervalhigh

36 end
37 end

For the implementation in the Linux kernel, R and distance were calculated and entered in
advance as constant values. This is because floating-point operations cannot be performed within the
Linux kernel. MinInterval and MaxInterval were set to 100 and 4000, respectively. The numbers are

Appl. Sci. 2020, 10, 5219 11 of 18

chosen according to the results of our preliminary examination, which showed that the near-optimal
polling intervals can be found between 500 and 3000 us. In addition, MinDistance was set to 30,
so that the number of searches was limited to 11 iterations. The set of all distances is as follows:
2410, 1490, 921, 569, 352, 217, 134, 83, 51, 32. Note that the first distance is used twice, at the first and
second rounds.

4. Evaluation

We implemented NetAP on Linux v5.1.5 and evaluated the performance. We attempted to answer
the following questions.

• What is the most proper round length for performance collection and golden-section search
algorithm? (Section 4.1)

• How does the polling interval change at runtime? (Section 4.2)
• What is the impact of NetAP on CPU utilization and response time? (Section 4.2)
• Is NetAP also effective for various packet sizes and different system environments? (Section 4.3)

The experimental environment was the same as that described in Section 3.4.2. In addition, for all
experiments, the existing unmodified VirtIO processing was run at the beginning. Subsequently,
we applied NetAP after 30 s (in Section 4.1) or 20 s (in Section 4.2 and 4.3) to observe the impact of
NetAP on the performance of VMs easily. In the first and second experiments, we measured network
bandwidth for 64B packets only. This was because a substantial amount of data center traffic consists
of small packets, which consume more CPU resources than large packets [32,33]. Furthermore, per f
and pidstat were used to measure CPU utilization.

4.1. First Experiment: Round Length

The first experiment evaluated the adaptation performance of NetAP depending on the round
length. To find the near-optimal polling interval, the golden-section searching algorithm collects
performance over a period (i.e., a round length). Subsequently, the changed interval is applied to
VirtIO processing until the next round. If the round is very short, the polling interval changes frequently,
which makes it difficult for the algorithm to find the near-optimal polling interval. In contrast, a long
round length can degrade the average performance because inappropriate polling intervals can affect
the performance negatively. As a result, it is necessary to determine a proper round length for the
golden-section search algorithm.

We have four experimental scenarios: 1VM-6T, 2VM-3T, 3VM-2T, and 6VM-1T. This indicates the
number of Netperf threads and the number of VMs on which the aforementioned threads are executed.
For example, 3VM-2T means that two Netperf threads run on each of three VMs. In total, six Netperf
threads and three vHost threads are executed simultaneously for the 3VM-2T scenario. We ran all
experiments for 120 s, and unmodified VirtIO processing was executed in the first 30 s. Subsequently,
we measured the bandwidth of the 10G NIC shared by all VMs every 5 s. The lengths of the rounds
selected for the experiment were 0.25, 0.5, 1, 2, 3, and 5 s.

Figure 3 shows the performance change in aggregate bandwidth, depending on round length.
In most cases, NetAP shows performance improvement compared to the unmodified VirtIO running
for the first 30 s of the experiment. In addition, we observe that the performance of VMs decreases
during the time for the searching algorithm to find the near-optimal polling interval when the round
length is longer than one second. This is the aforementioned negative effect of a long round length.
During the long round, an inappropriate value calculated by the golden-section search algorithm may
be applied to the polling interval; this will result in performance degradation.

Table 2 depicts the performance shown in Figure 3 relative to the best bandwidth measured in
Table 1. We divide the results presented in Figure 3 into two parts: the second quarter (30–60 s) and
the last quarter (90–120 s). The last quarter shows the performance when the adaptation is completed,
and the second quarter shows the performance when the negative effect of adaptation is maximized.

Appl. Sci. 2020, 10, 5219 12 of 18

In Table 2, we find that NetAP can find the near-optimal polling interval and achieve a bandwidth
close to that of the best case when the round length is longer than one second. However, in 6VM-1T,
the relative performance is less than 90% for all round lengths, which indicates that NetAP has difficulty
in finding the near-optimal polling interval. We assume the reason is that the golden-section search
algorithm is executed in a distributed manner; furthermore, it does not consider the effects of the
interference between multiple vHost threads that are executed in parallel. We plan to overcome this
limitation of NetAP by enhancing the algorithm in future work.

In addition, Table 2 shows the performance under different round lengths during adaptation
(i.e., 30–60 s). Unlike the results after adaptation (i.e., 90–120 s), the performance obtained for
round lengths longer than two seconds is relatively low. This is because the inappropriate polling
interval reduces the performance of VMs for a long period, as illustrated in Figure 3. Based on
this result, we selected one second as the default round length for NetAP and performed the
following experiments.

(a) 0.25 s (b) 0.5 s (c) 1 s

(d) 2 s (e) 3 s (f) 5 s

Figure 3. Aggregate bandwidth of VMs with NetAP under the different round lengths.

Table 2. Performance relative to the best bandwidth in Figure 2.

(a) After Adapting (90 s–120 s) (b) While Adapting (30 s–60 s)

1VM-6T 2VM-3T 3VM-2T 6VM-1T 1VM-6T 2VM-3T 3VM-2T 6VM-1T

0.25 s 94.54% 102.53% 90.23% 74.96% 0.25 s 91.15% 99.94% 92.24% 78.91%

0.5 s 90.56% 101.69% 97.91% 78.96% 0.5 s 84.44% 98.95% 95.97% 84.00%

1 s 100.27% 100.15% 100.89% 80.58% 1 s 94.32% 98.76% 97.13% 81.30%

2 s 98.35% 102.49% 102.19% 78.84% 2 s 84.16% 94.38% 97.98% 81.35%

3 s 93.55% 100.39% 98.81% 78.44% 3 s 79.58% 92.02% 98.24% 87.28%

5 s 98.80% 101.59% 99.28% 88.13% 5 s 65.79% 89.90% 94.62% 85.35%

4.2. Second Experiment: CPU Utilization and End-User Latency

This subsection identifies the impact of NetAP on CPU utilization and end-user latency.
We constructed four scenarios, 2VM-4T, 3VM-3T, 4VM-2T, and 5VM-1T, which were not tested in
Section 4.1. We measured the aggregate bandwidth and polling intervals every second for 60 s. In this
experiment, NetAP starts to run at 20 s after the unmodified VirtIO has run for the first 20 s.

Appl. Sci. 2020, 10, 5219 13 of 18

Figure 4 illustrates the aggregate network bandwidth (left y-axis) and the polling interval (right
y-axis) of each VM over time. In all scenarios, the aggregate bandwidth increases when NetAP is
applied at 20 s. NetAP periodically checks whether there are pending packets for processing before
a vIRQ is generated. This procedure prevents expensive VM-Exit and VM-Entry operations and
improves the overall network performance. Furthermore, we find that NetAP offers more stable
performance than the unmodified VirtIO. In the unmodified VirtIO, a vIRQ to notify the vHost thread
can be generated after the corresponding VM is scheduled by the CPU scheduler. Therefore, the vIRQ
can be delayed, and this may cause unstable performance.

In the figure, the polling interval of each VM varies for approximately 10 s when NetAP is applied.
This is because the algorithm searches for the near-optimal polling 11 times for an adaptation. After the
near-optimal interval is found, NetAP continuously maintains the interval.

In addition, the near-optimal polling interval of each VM varies in Figure 4 when multiple VMs
run concurrently. As described in Section 4.1, the reason is that the golden-section searching algorithm
is executed in a distributed-manner. Each searching algorithm separately runs per vHost thread during
the round. However, NetAP still improves the aggregate bandwidth of VMs by adjusting the polling
intervals of each VM independently.

0

500

1000

1500

2000

2500

3000

0

1

2

3

4

5

6

7

8

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

In
te

rv
al

 (m
ic

ro
se

co
nd

s)

Ne
tw

or
k

ba
nd

w
id

th
 (G

bp
s)

Timeline (seconds)

bandwidth

interval-VM0

interval-VM1

(a) 2 VMs, 4 Threads

0

500

1000

1500

2000

2500

3000

0

1

2

3

4

5

6

7

8

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

In
te

rv
al

 (m
ic

ro
se

co
nd

s)

Ne
tw

or
k

ba
nd

w
id

th
 (G

bp
s)

Timeline (seconds)

bandwidth
interval-VM0
interval-VM1
interval-VM2

(b) 3 VMs, 3 Threads

0

500

1000

1500

2000

2500

3000

0

1

2

3

4

5

6

7

8

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

In
te

rv
al

 (m
ic

ro
se

co
nd

s)

Ne
tw

or
k

ba
nd

w
id

th
 (G

bp
s)

Timeline (seconds)

bandwidth
interval-VM0
interval-VM1
interval-VM2
interval-VM3

(c) 4 VMs, 2 Threads

0

500

1000

1500

2000

2500

3000

0

1

2

3

4

5

6

7

8

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

In
te

rv
al

 (m
ic

ro
se

co
nd

s)

Ne
tw

or
k

ba
nd

w
id

th
 (G

bp
s)

Timeline (seconds)

bandwidth interval-VM0 interval-VM1
interval-VM2 interval-VM3 interval-VM4

(d) 5 VMs, 1 Thread

Figure 4. Aggregate bandwidth and the polling interval of each VM over time in different
experiment scenarios.

Tables 3 and 4 show the aggregate bandwidth, CPU utilization, and latency for every 20 s in
each scenario; 0 to 20 s is the time for which unmodified VirtIO runs (VirtIO period), 20 to 40 s is
when the algorithm searches for the near-optimal polling interval (Adapting period), and the last 20 s
correspond to the time after the near-optimal interval has been applied (Adapted period). First, NetAP
in the Adapted period shows that the aggregate bandwidth is improved by up to 30.37% compared
to that in the VirtIO period. In each Adapted period, the CPU utilization of the host is decreased
compared to that in the VirtIO period because NetAP reduces the number of VM-Exit and VM-Entry
operations that occur in the case of the interrupt-based method in the existing VirtIO. In addition,
NetAP increases the guest CPU utilization as NetAP processes incoming packets on a timely basis
and allows the corresponding VM to generate more packets in the queue. As a result, NetAP achieves
improved efficiency in packet processing.

Appl. Sci. 2020, 10, 5219 14 of 18

In addition, end-user latency decreases by up to 89.49%. The standard deviation in the Adapted
period also reduces to a maximum level of 40%, and it shows improvement compared to the VirtIO
period for all scenarios. From these results, we can assume that the time for delivering vIRQs is
variable in the unmodified VirtIO. When the corresponding VM is selected by the CPU scheduler,
the VM can generate a vIRQ, Therefore, the time is not deterministic. This causes fluctuating end-user
latency. In contrast, NetAP offers stable and low latency by operating at periodic intervals determined
by the searching algorithm, thereby increasing the efficiency of packet processing.

Table 3. Detailed performance and CPU utilization in for 2VM-4T and 3VM-3T.

2 VMs, 4 Threads Each 3 VMs, 3 Threads Each
Period VirtIO Adapting Adapted Cf. VirtIO Adapting Adapted Cf.

Bandwidth (Gbps) 5.27 5.88 6.05 114.91% 5.34 5.93 5.89 110.31%

CPU-guest (%) 549.36 552.66 570.06 103.77% 561.66 568.44 574.86 102.35%

CPU-host (%) 36.36 11.34 12.78 35.15% 31.32 18.24 17.10 54.60%

Latency-mean (us) 0.76 0.67 0.67 87.21% 0.85 0.76 0.76 89.49%

Latency-stddev (us) 49.69 53.87 47.92 96.44% 60.86 61.35 54.06 88.82%

Table 4. Detailed performance and CPU utilization in 4VM-1T and 5VM-1T.

4 VMs, 2 Threads Each 5 VMs, 1 Thread Each
Period VirtIO Adapting Adapted Cf. VirtIO Adapting Adapted Cf.

Bandwidth (Gbps) 5.02 5.76 5.73 114.16% 3.86 4.93 5.04 130.37%

CPU-guest (%) 558.42 572.88 573.24 102.65% 513.06 520.50 519.30 101.22%

CPU-host (%) 32.10 19.62 21.36 66.54% 72.00 37.98 39.54 54.70%

Latency-mean (us) 0.79 0.69 0.69 87.36% 0.65 0.50 0.49 75.93%

Latency-stddev (us) 52.08 45.73 44.24 84.94% 24.69 12.31 10.08 40.82%

4.3. Third Experiment: Different Packet Sizes and System Environments

In this experiment, we evaluated NetAP for different packet sizes and system environments.
We intended to demonstrate that NetAP with the current parameters is effective in different
environments, and that, consequently, many of the pre-examination and workload analysis steps
are not mandatory.

First, we evaluated NetAP for various packet sizes: 128, 256, 512, and 1024 B. In this experiment,
we ran a single VM executing Netperf while using a single thread for 60 s and applied NetAP after 20 s,
the same as in the previous experiments described in Section 4.2. Figure 5 shows that performance
decreases briefly when NetAP starts to run at 20 s in order to determine the near-optimal interval;
then, the performance increases significantly. Table 5 depicts the relative bandwidth, CPU utilization,
and latency compared to the unmodified VirtIO, which shows that NetAP improves the performance
by at least 53.53% and by a maximum of 148.83%. The results of unmodified VirtIO were collected in the
first 20 s, and the results of NetAP were collected in last 20 s. The CPU utilization of the host drastically
decreased while the overall performance increased. Such efficient CPU utilization is an important
factor in the cloud system, which indicates that NetAP more efficiently handles network packets,
allowing for other CPU-intensive threads or different VMs to use more CPU resources. In addition,
the average latency decreased by 15.36%. For 256-B packets, the standard deviation of latency increased
by 15.36%, but the average latency decreased significantly, by 52.22%. As a result, NetAP provides
higher network performance with fewer CPU resources for both large packets and the small packets
that incur severe CPU contention.

Second, we constructed an additional experimental setup, as follows: two servers equipped with
Intel Xeon E5-2650 v2 CPUs (8 cores, 3.4 GHz) and 64 GB of memory were connected to a 10 GbE

Appl. Sci. 2020, 10, 5219 15 of 18

switch. The VM specifications and the network configurations are the same as in previous experiments.
This experimental setup shows the impact of CPU performance, which has a critical effect on network
performance in a virtualized environment. In terms of BogoMips, a single CPU core that was used in
the previous experiment recorded 6192, whereas a single CPU core in this experiment recorded 5200.
Thus, the CPUs that wew used in this experiment approximately exhibit a 20% lower performance.
We applied NetAP to this system without additional modifications. The experimental configuration
and method are identical to those presented in Section 4.2.

0

2

4

6

8

10

12

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Ne
tw

or
k

ba
nd

w
id

th
 (G

bp
s)

Timeline (seconds)

128 B 256 B 512 B 1024 B

Figure 5. Aggregate bandwidth over time for different packet sizes.

Table 5. Detailed performance and CPU utilization for different packet sizes.

128 B 256 B 512 B 1024 B

Bandwidth 153.53% 190.05% 248.83% 177.88%

CPU-guest 52.03% 54.09% 61.54% 47.96%

CPU-host 8.39% 16.47% 22.01% 15.77%

Latency-mean 64.62% 52.22% 61.18% 100.00%

Latency-stddev 41.00% 115.36% 12.69% 99.03%

Figure 6 shows similar results to Figure 4, which indicates that NetAP improved the aggregate
bandwidth as compared to the unmodified VirtIO. However, the overall network performance was
lower than that shown in Figure 4. This is because the performance of the CPU cores used in this
experiment is lower than that of the ones used to obtain the results that are shown in Figure 4.
Tables 6 and 7 show that the performance of NetAP improved by up to 31.16%, while showing results
that are similar to those in Tables 3 and 4 for CPU utilization and latency. These results show that
NetAP is also effective in systems with different hardware specifications. Thus, we can conclude that
the NetAP polling mechanism with the default parameters is effective in various system environments.

Table 6. Detailed performance and CPU utilization in 2VM-4T and 3VM-3T for the additional
experiment setup.

2 VMs, 4 Threads Each 3 VMs, 3 Threads Each
Period (s) 0–20 20–40 40–60 Comparison 0–20 20–40 40–60 Comparison

Bandwidth (Gbps) 3.92 4.46 4.54 115.78% 3.81 4.59 4.61 120.84%

CPU-guest (%) 738.16 747.36 764.00 103.50% 731.44 768.72 765.52 104.66%

CPU-host (%) 49.36 20.40 20.40 41.33% 55.68 15.44 18.40 33.05%

Latency-mean (us) 1.00 0.88 0.87 86.72% 1.17 0.95 0.96 82.13%

Latency-stddev (us) 30.74 33.10 20.09 65.36% 51.06 45.99 44.34 86.84%

Appl. Sci. 2020, 10, 5219 16 of 18

Table 7. Detailed performance and CPU utilization in 4VM-1T and 5VM-1T for the additional
experiment setup.

4 VMs, 2 Threads Each 5 VMs, 1 Thread Each
Period (s) 0–20 20–40 40–60 Comparison 0–20 20–40 40–60 Comparison

Bandwidth (Gbps) 3.54 4.48 4.58 129.15% 2.14 2.76 2.81 131.16%

CPU-guest (%) 708.88 761.52 762.00 107.49% 617.28 552.32 603.76 97.81%

CPU-host (%) 74.40 26.32 25.60 34.41% 102.56 34.88 33.76 32.92%

Latency-mean (us) 0.98 0.83 0.85 87.07% 1.19 0.91 0.92 76.88%

Latency-stddev (us) 40.42 19.74 20.29 50.18% 6.97 2.58 2.08 29.77%

0

500

1000

1500

2000

2500

3000

0

1

2

3

4

5

6

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

In
te

rv
al

 (m
ic

ro
se

co
nd

s)

Ne
tw

or
k

ba
nd

w
id

th
 (G

bp
s)

Timeline (seconds)

bandwidth

interval-VM0

interval-VM1

(a) 2 VMs, 4 Threads

0

500

1000

1500

2000

2500

3000

0

1

2

3

4

5

6

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

In
te

rv
al

 (m
ic

ro
se

co
nd

s)

Ne
tw

or
k

ba
nd

w
id

th
 (G

bp
s)

Timeline (seconds)

bandwidth
interval-VM0
interval-VM1
interval-VM2

(b) 3 VMs, 3 Threads

0

500

1000

1500

2000

2500

3000

0

1

2

3

4

5

6

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

In
te

rv
al

 (m
ic

ro
se

co
nd

s)

Ne
tw

or
k

ba
nd

w
id

th
 (G

bp
s)

Timeline (seconds)

bandwidth
interval-VM0
interval-VM1
interval-VM2
interval-VM3

(c) 4 VMs, 2 Threads

0

500

1000

1500

2000

2500

3000

0

1

2

3

4

5

6

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

In
te

rv
al

 (m
ic

ro
se

co
nd

s)

Ne
tw

or
k

ba
nd

w
id

th
 (G

bp
s)

Timeline (seconds)

bandwidth interval-VM0 interval-VM1
interval-VM2 interval-VM3 interval-VM4

(d) 5 VMs, 1 Thread

Figure 6. Aggregate bandwidth and polling interval of each VM over time for the additional environment.

5. Conclusions

This paper presented NetAP, an adaptive polling technique for improving the performance of
packet processing in VMs. The periodic polling approach of NetAP resolves the inefficient packet
processing of the existing VirtIO, which is interrupt-based. We used the golden-section search
algorithm and implemented NetAP on KVM hypervisor to find the optimal polling interval for
NetAP. We implemented NetAP in Linux v5.1.5 and evaluated it with up to six VMs. The evaluation
results showed that NetAP improves the network performance of VMs by up to 31.16%, while using the
host CPU for packet processing at only 32.92% of the usage exhibited by the existing VirtIO technique.

In this paper, we discovered areas for future work in adaptive polling-based network packet
processing. First, accurate control or adaptation for the performance isolation between VMs should be
provided for real-world cloud systems. When the VMs share the same host machine, the workloads
of the VMs influence each other. This “neighborhood effect” of the virtualized system incurs the
performance interference between VMs on the same host machine. When the performance of a
VM decreases due to other co-located VMs, the golden-section search algorithm receives erroneous
performance by the neighborhood effect and it has difficulty in finding the near-optimal polling
interval to achieve the maximum performance.

Another issue is the estimation of the optimal polling interval. If we can determine the optimal
polling interval for a workload without carrying out adaptation, the performance degradation during

Appl. Sci. 2020, 10, 5219 17 of 18

adaptation will disappear. The data that can be employed for the estimation of the optimal polling
interval include the average packet size, packet incoming rate, current throughput of the physical
NIC, and the number of vHost and client threads. The correct model cannot be easily developed
because several of the measurements are related to the interval. In our future work, we aim to develop
an AI-based model in order to solve this problem.

Author Contributions: The work presented here was completed in collaboration between all authors.
conceptualization, H.P., K.L., and C.-H.H.; validation, H.P., K.L., and C.-H.H.; formal analysis, H.P.; investigation,
H.P., J.S. and M.L.; writing–original draft preparation, H.P., K.L., and C.-H.H.; writing–review and editing, H.P.,
K.L., J.S., M.L., and C.-H.H.; supervision, H.P. and C.-H.H., funding acquisition, H.P. and C.-H.H. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by a National Research Foundation of Korea (NRF) grant funded by the
Korean government (MSIP) (No. NRF-2020R1F1A1067365). This research was also supported by the Chung-Ang
University Research Scholarship Grants in 2019.

Acknowledgments: The authors would like to thank the anonymous reviewers for their valuable comments and
suggestions to improve the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Menon, A.; Santos, J.R.; Turner, Y.; Janakiraman, G.; Zwaenepoel, W. Diagnosing performance overheads in
the xen virtual machine environment. In Proceedings of the 1st ACM/USENIX International Conference on
Virtual Execution Environments, Chicago, IL, USA, 11–12 June 2005; pp. 13–23.

2. Liu, J.; Huang, W.; Abali, B.; Panda, D.K. High Performance VMM-Bypass I/O in Virtual Machines.
In Proceedings of the USENIX Annual Technical Conference, General Track, Boston, MA, USA, 30 May–3 June
2006; pp. 29–42.

3. Russell, R. virtio: Towards a de-facto standard for virtual I/O devices. ACM SIGOPS Oper. Syst. Rev. 2008,
42, 95–103. [CrossRef]

4. Motika, G.; Weiss, S. Virtio network paravirtualization driver: Implementation and performance of a de-facto
standard. Comput. Stand. Interfaces 2012, 34, 36–47. [CrossRef]

5. Adams, K.; Agesen, O. A comparison of software and hardware techniques for x86 virtualization.
ACM Sigplan Not. 2006, 41, 2–13. [CrossRef]

6. Ben-Yehuda, M.; Day, M.D.; Dubitzky, Z.; Factor, M.; Har’El, N.; Gordon, A.; Liguori, A.; Wasserman, O.;
Yassour, B.A. The Turtles Project: Design and Implementation of Nested Virtualization. Osdi 2010, 10,
423–436.

7. Lettieri, G.; Maffione, V.; Rizzo, L. A study of I/O performance of virtual machines. Comput. J. 2018,
61, 808–831. [CrossRef]

8. Yang, J.; Minturn, D.B.; Hady, F. When poll is better than interrupt. FAST 2012, 12, 3.
9. Kohler, E.; Morris, R.; Chen, B.; Jannotti, J.; Kaashoek, M.F. The Click modular router. ACM Trans. Comput.

Syst. (TOCS) 2000, 18, 263–297. [CrossRef]
10. Intel, D. Data Plane Development Kit; 2014. Available online: https://www.dpdk.org/ (accessed on 29 July 2020).
11. Kim, T.Y.; Kang, D.H.; Lee, D.; Eom, Y.I. Improving performance by bridging the semantic gap between

multi-queue SSD and I/O virtualization framework. In Proceedings of the 2015 31st Symposium on Mass
Storage Systems and Technologies (MSST), Santa Clara, CA, USA, 30 May–5 June 2015; pp. 1–11.

12. Hajnoczi, S. Applying polling techniques to QEMU. In Proceedings of the KVM Forum 2017, Prague,
Czech Republic, 25–27 October 2017; pp. 25–27.

13. Dong, Y.; Yang, X.; Li, J.; Liao, G.; Tian, K.; Guan, H. High performance network virtualization with SR-IOV.
J. Parallel Distrib. Comput. 2012, 72, 1471–1480. [CrossRef]

14. Dong, Y.; Yu, Z.; Rose, G. SR-IOV Networking in Xen: Architecture, Design and Implementation.
In Proceedings of the Workshop on I/O Virtualization, San Diego, CA, USA, 10–11 December 2008; Volume 2.

15. Liu, J. Evaluating standard-based self-virtualizing devices: A performance study on 10 GbE NICs with
SR-IOV support. In Proceedings of the 2010 IEEE International Symposium on Parallel & Distributed
Processing (IPDPS), Atlanta, GA, USA, 19–23 April 2010; pp. 1–12.

http://dx.doi.org/10.1145/1400097.1400108
http://dx.doi.org/10.1016/j.csi.2011.05.002
http://dx.doi.org/10.1145/1168918.1168860
http://dx.doi.org/10.1093/comjnl/bxx092
http://dx.doi.org/10.1145/354871.354874
https://www.dpdk.org/
http://dx.doi.org/10.1016/j.jpdc.2012.01.020

Appl. Sci. 2020, 10, 5219 18 of 18

16. Gordon, A.; Amit, N.; Har’El, N.; Ben-Yehuda, M.; Landau, A.; Schuster, A.; Tsafrir, D. ELI: Bare-metal
performance for I/O virtualization. ACM SIGPLAN Not. 2012, 47, 411–422. [CrossRef]

17. Abramson, D.; Jackson, J.; Muthrasanallur, S.; Neiger, G.; Regnier, G.; Sankaran, R.; Schoinas, I.; Uhlig, R.;
Vembu, B.; Wiegert, J. Intel Virtualization Technology for Directed I/O. Intel Technol. J. 2006, 10, 179–192.
[CrossRef]

18. Landau, A.; Ben-Yehuda, M.; Gordon, A. SplitX: Split Guest/Hypervisor Execution on Multi-Core.
In Proceedings of the WIOV, Portland, OR, USA, 14 June 2011.

19. Xu, C.; Gamage, S.; Lu, H.; Kompella, R.; Xu, D. vturbo: Accelerating virtual machine i/o processing using
designated turbo-sliced core. In Proceedings of the 2013 USENIX Annual Technical Conference (USENIX
ATC 13), San Jose, CA, USA, 26–28 June 2013; pp. 243–254.

20. Yasukata, K.; Huici, F.; Maffione, V.; Lettieri, G.; Honda, M. HyperNF: Building a high performance,
high utilization and fair NFV platform. In Proceedings of the 2017 Symposium on Cloud Computing,
Santa Clara, CA, USA, 24–27 September 2017; pp. 157–169.

21. Hwang, J.; Ramakrishnan, K.K.; Wood, T. NetVM: High performance and flexible networking using
virtualization on commodity platforms. IEEE Trans. Netw. Serv. Manag. 2015, 12, 34–47. [CrossRef]

22. Dovrolis, C.; Thayer, B.; Ramanathan, P. HIP: Hybrid interrupt-polling for the network interface.
ACM SIGOPS Oper. Syst. Rev. 2001, 35, 50–60. [CrossRef]

23. Salah, K.; El-Badawi, K.; Haidari, F. Performance analysis and comparison of interrupt-handling schemes in
gigabit networks. Comput. Commun. 2007, 30, 3425–3441. [CrossRef]

24. Salah, K.; Qahtan, A. Implementation and experimental performance evaluation of a hybrid interrupt-handling
scheme. Comput. Commun. 2009, 32, 179–188. [CrossRef]

25. Kiefer, J. Sequential minimax search for a maximum. Proc. Am. Math. Soc. 1953, 4, 502–506. [CrossRef]
26. Chong, E.K.; Zak, S.H. An Introduction to Optimization; John Wiley & Sons: Hoboken, NJ, USA, 2004.
27. Luenberger, D.G.; Ye, Y. Linear and Nonlinear Programming; Springer: Reading, MA, USA, 1984; Volume 2.
28. Nocedal, J.; Wright, S. Numerical Optimization; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2006.
29. Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [CrossRef]
30. The Linux Kernel Documentation. Available online: https://www.kernel.org/doc/html/latest/ (accessed

on 29 July 2020).
31. Dennis, J.E., Jr.; Moré, J.J. Quasi-Newton methods, motivation and theory. SIAM Rev. 1977, 19, 46–89. [CrossRef]
32. Roy, A.; Zeng, H.; Bagga, J.; Porter, G.; Snoeren, A.C. Inside the social network’s (datacenter) network.

In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, London,
UK, 17–21 August 2015; pp. 123–137.

33. Ðukić, V.; Jyothi, S.A.; Karlaš, B.; Owaida, M.; Zhang, C.; Singla, A. Is advance knowledge of flow sizes a
plausible assumption? In Proceedings of the 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), Boston, MA, USA, 26–28 February 2019; pp. 565–580.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2248487.2151020
http://dx.doi.org/10.1535/itj.1003.02
http://dx.doi.org/10.1109/TNSM.2015.2401568
http://dx.doi.org/10.1145/506084.506089
http://dx.doi.org/10.1016/j.comcom.2007.06.013
http://dx.doi.org/10.1016/j.comcom.2008.10.001
http://dx.doi.org/10.1090/S0002-9939-1953-0055639-3
http://dx.doi.org/10.1093/comjnl/7.4.308
https://www.kernel.org/doc/html/latest/
http://dx.doi.org/10.1137/1019005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Motivation
	VirtIO
	Related Work
	Interrupt-Based and Polling-Based I/O Processing Techniques
	Efficient I/O Processing in a Virtualized Environment
	Research for Optimizing the Polling Interval

	Design
	Design Goals
	Periodical Polling for Network Packet Processing
	Periodic Polling Algorithm
	Adaptation Using Golden-Section Search
	Considerations for Alternative Algorithms
	Preliminary Examination for Golden-Section Search Algorithm
	Golden-Section Search Algorithm

	Evaluation
	First Experiment: Round Length
	Second Experiment: CPU Utilization and End-User Latency
	Third Experiment: Different Packet Sizes and System Environments

	Conclusions
	References

