
applied
sciences

Article

Comparison on Search Failure between Hash Tables
and a Functional Bloom Filter

Hayoung Byun and Hyesook Lim *

Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, Korea;
hayoung77@ewhain.net
* Correspondence: hlim@ewha.ac.kr; Tel.: +82-2-3277-3403

Received:17 June 2020; Accepted: 27 July 2020; Published: 29 July 2020
����������
�������

Abstract: Hash-based data structures have been widely used in many applications. An intrinsic
problem of hashing is collision, in which two or more elements are hashed to the same value. If a hash
table is heavily loaded, more collisions would occur. Elements that could not be stored in a hash table
because of the collision cause search failures. Many variant structures have been studied to reduce
the number of collisions, but none of the structures completely solves the collision problem. In this
paper, we claim that a functional Bloom filter (FBF) provides a lower search failure rate than hash
tables, when a hash table is heavily loaded. In other words, a hash table can be replaced with an FBF
because the FBF is more effective than hash tables in the search failure rate in storing a large amount
of data to a limited size of memory. While hash tables require to store each input key in addition to its
return value, a functional Bloom filter stores return values without input keys, because different index
combinations according to each input key can be used to identify the input key. In search failure
rates, we theoretically compare the FBF with hash-based data structures, such as multi-hash table,
cuckoo hash table, and d-left hash table. We also provide simulation results to prove the validity of
our theoretical results. The simulation results show that the search failure rates of hash tables are
larger than that of the functional Bloom filter when the load factor is larger than 0.6.

Keywords: Bloom filter; hash table; functional Bloom filter; key-value data structure; search failure;
load factor

1. Introduction

A key-value data structure that returns a value corresponding to an input key has been used
in many fields [1–3]. Various network applications, such as Internet Protocol (IP) address lookup,
packet classification, name lookup in Named Data Networking (NDN), traffic classification in
Software-Defined Networking (SDN), and cloud computing [4–8], use key-value structures for data
storage. For example, in performing a Pending Interest Table (PIT) lookup in the NDN, a content name
is used as a key, and the input faces of each Interest packet are returned as the value corresponding to
the key [9–12].

As a representative key-value data structure, hashing has been popularly applied to various
applications [13–16]. Hashing converts an input key string to an index, which can be used to point
an entry in a hash table. The pointed entry stores both the key itself (or the signature of the key)
and a return value. Collision in hash indexes is an intrinsic problem of hash-based data structures.
Elements that could not be stored in a hash table because of hash collisions cause failures in search
process. To reduce the number of hash collisions, several variant structures have been studied such
as multi-hashing, cuckoo hashing, and d-left hashing [17–19]. In order to avoid an excessive number
of hash collisions, the load factor of a hash table, which indicates the ratio of the number of stored
elements compared to the number of entries in a hash table, should be small enough.

Appl. Sci. 2020, 10, 5218; doi:10.3390/app10155218 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-7355-0906
https://orcid.org/0000-0001-9857-937X
http://dx.doi.org/10.3390/app10155218
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/15/5218?type=check_update&version=2

Appl. Sci. 2020, 10, 5218 2 of 18

A functional Bloom filter satisfies the key-value operation required in various applications [20–25].
Unlike a hash table, a functional Bloom filter does not require to store input keys, as different
combinations of Bloom filter indexes for each input key can work as the signature of the input key.

Even though modern hardware equipments have a sufficient amount of internal memory to
accommodate large hash tables, an efficient use of the memory, which is a limited resource, is required
to provide scalability. For example, according to Cisco’s annual Internet report [26], IoT devices will
account for 50 percent of all networked devices by 2023, and a 5G connection will generate nearly three
times more traffic than the 4G connection of 2018 because there will be 29.3 billion networked devices
by 2023, up from 18.4 billion of 2018. In order to keep up with the ever-increasing network traffic, it is
necessary to build effective data structures which utilize limited memory resources efficiently [27–29].

In this paper, we claim that a functional Bloom filter provides a lower search failure rate than
hash-based data structures in storing a large amount of data to a limited size of memory. The search
failure is the most important criterion for evaluating the performance of key-value structures. Therefore,
as a key-value structure, the FBF can effectively replace hash tables. The basic idea of this paper was
briefly introduced in [30], and we provide a thorough theoretical analysis and compare each data
structure in their search failure probabilities in this paper. Our theoretical analysis is validated by
simulation results for each structure.

The remainder of this paper is organized as follows. Section 2 describes the Bloom filter and hash
table as related works. In Section 3, we explain and compare four data structures: a multi-hash table,
a cuckoo hash table, a d-left hash table, and a functional Bloom filter. Section 4 theoretically analyzes
the probability of signature collision and the probability of search failure for each structure. Section 5
evaluates and compares the performance of each data structure, and Section 6 concludes the paper.

2. Related Works

2.1. Bloom Filter Theory

A Bloom filter (BF) [31] is a bit-vector-based data structure used to represent the membership
information for set S = {x1, x2, . . . , xn} consisting of n elements in universe set U. We use key and
element interchangeably to denote xp ∈ S for 1 ≤ p ≤ n. A Bloom filter is an array of m bits, which is
initialized to zero. As each cell of a Bloom filter c[j], for 0 ≤ j < m, is composed of a single bit, the value
of each cell can have only 0 or 1. A Bloom filter uses k independent hash functions {h1, h2, . . . , hk} in
programming and querying. The optimal number of hash functions is as follows [32,33].

k =
m
n

ln2 (1)

For element xp ∈ S, hi(xp) can have any value in range {0, 1, 2, . . . , m − 1} for 1 ≤ i ≤ k,
and h1(xp), h2(xp), . . . , and hk(xp) are cell indexes for xp. In programming xp, the c[hi(xp)]s are set to
1 for 1 ≤ i ≤ k. In querying a given input y to check its membership, the Bloom filter verifies whether
all of the c[hi(y)]s are set to 1 using the same k hash functions as programming. If at least one of
c[hi(y)]s is 0, it is obviously y /∈ S, which is termed a negative. If all c[hi(y)]s are 1, it would be y ∈ S,
which is termed a positive. However, even in case of y /∈ S, all c[hi(y)]s may be set to 1 because of hash
collision, and it is termed a false positive. The false positive rate can be reduced by increasing the size
of the Bloom filter, but cannot be completely eliminated. However, negative results are always true.
The false positive rate of the BF is obtained as follows [32,33].

f =
(
1− (1− 1

m
)kn)k ≈

(
1− e−

kn
m
)k (2)

A Bloom filter and its variant structures have been popularly used for many applications due to
their simple and space-efficient nature identifying non-members of a given set [34–40].

Appl. Sci. 2020, 10, 5218 3 of 18

2.2. Hash Table

Each entry in a hash table stores an input key (or the signature of the key) and a return value
corresponding to the key. A useful property of a hash-based data structure is that a search can be
completed by a constant number of accesses. However, a hash table has the problem of collision,
where multiple different keys are hashed into a single bucket. Two different methods are used in
resolving hash collisions: chaining and open addressing [41,42]. The chaining stores the collided key
in an additional bucket using a linked list pointer. In the open addressing, a hash collision is resolved
by searching through alternative locations using a predetermined probe sequence, until an unused
bucket is found. Thus, the linked list pointer is not required, but probing can lead to a large number of
accesses in the worst case. In order to avoid an excessive number of hash collisions, a load factor does
not exceed 0.7 in general [43]. Variant structures have been studied such as multiple hashing, cuckoo
hashing, and d-left hashing to cope with the collision problem [17–19].

3. Hash-Based Key-Value Data Structures

A key-value data structure stores a key and a corresponding value in pairs, and returns
the value when a given input matches the key. In other words, assuming that set
S = {(x1, v1), (x2, v2), . . . , (xn, vn)} is stored in a hash table using hash function h(·), (xp, vp)

(for 1 ≤ p ≤ n) is stored in e[h(xp)]. In searching y, if xp in e[h(y)] is equal to y, vp is returned.
Figure 1 shows the hash-based key-value data structures considered in this paper: a multi-hash table,
a cuckoo hash table, a d-left hash table, and a functional Bloom filter. The basic idea of this paper was
briefly introduced in [30]. This paper additionally provides theoretical analysis and compares each
data structure in their search failure rates. We assume that hash tables store a fixed-length signature
(instead of a variable-length key) and a value corresponding to each key. Table 1 represents notations
and definitions used in key-value data structures.

(a) (b)

(c) (d)

Figure 1. Hash-based key-value data structures: (a) Multi-hash table; (b) Cuckoo hash table; (c) d-left
hash table; (d) Functional Bloom filter.

Appl. Sci. 2020, 10, 5218 4 of 18

Table 1. Notation and definition.

Symbol Meaning

Mh memory size of a hash table
n number of elements in a given set
m number of cells in a functional Bloom filter
k number of hash functions for an FBF
d number of hash functions for a d-left table
α load factor of a multi-hash table
Bm number of buckets in a multi-hash table
Bc number of buckets in a cuckoo hash table
Bd number of buckets in a d-left hash table
L number of bits for a return value in hash tables

number of bits of a cell in an FBF
2log2n number of bits of the signature of an element
r number of the available signatures (22log2n)

3.1. Multi-Hash Table

A multi-hash table [17] uses multiple hash functions instead of a single hash function for each
key to reduce the number of collisions. Figure 1a shows a multi-hash table with two hash functions
and two entries per bucket. For given set S = {(x1, v1), (x2, v2), . . . , (xn, vn)}, in inserting element
xp ∈ S to the multi-hash table in Figure 1a, among the two buckets pointed by two hash indexes,
the signature of xp and return value vp are stored in the bucket with a smaller number of loads. In this
way, a multi-hash table distributes a number of loads more evenly. If there is no empty entry in both
buckets, xp cannot be stored (i.e., overflow).

In searching, the first and second buckets are checked in turn, if there is no matching entry in the
first bucket. If an element could not be stored because of hash collision, searching for this element
causes a false negative. In this case, a search failure occurs for this specific input. Assuming that a
bucket of a multi-hash table has two entries, where n is the number of elements in a given set and α is
a load factor, the number of buckets (Bm) in the multi-hash table is n

2α . The amount of the memory
(Mh) is 2(2log2n + L)Bm, where the signature of a key has 2log2n bits and a return value has L bits.

3.2. Cuckoo Hash Table

A cuckoo hash table shown in Figure 1b uses two hash tables, and each bucket of a cuckoo hash
table stores a signature and a return value. Therefore, if the same amount of memory is used as a
multi-hash table, the number of buckets (Bc) in a cuckoo hash table is the same as Bm.

Each element uses a single index per table. When a new element is inserted, cuckoo hashing [18]
solves hash collision by pushing the preoccupied element to the other table. In Figure 1b,
when inserting xp ∈ S, if there is a collision in the bucket of the first table (i.e., e1[h1(xp)]), xp is
stored in the bucket and element x2 (of which bucket is taken away) is pushed to the second table
(i.e., e2[h2(x2)]). If a collision also occurs in the second table, this procedure is repeated until the
pushed element finds an empty bucket (i.e., e1[h1(x1)] in Figure 1b. Therefore, in inserting an element,
even though each element uses only one hash index for each table, more entries can be examined
in the cuckoo hashing by involving other elements already stored in the table. As will be shown in
Section 4.2.2, if there occur two loops in inserting an element, the element cannot be saved. The unsaved
element, due to an overflow in insertion procedure, causes a false negative in search procedure, and it
is classified as a search failure.

In searching, only two buckets pointed by two hash indexes for each given input are checked.
Therefore, the number of bucket accesses in searching an input is always two, even though the number
of accesses in inserting a key can be large as the load factor increases.

Appl. Sci. 2020, 10, 5218 5 of 18

3.3. d-Left Hash Table

In inserting xp ∈ S, the d-left hash table [19] uses d hash functions and stores xp in the bucket with
the smallest number of loads. Figure 1c shows a d-left hash table, where each bucket includes a single
entry and the number of hash functions is d. As we assume the d-left hash table with a single entry per
bucket, xp is stored in the topmost empty bucket (i.e., e[hd(xp)] in Figure 1c. If collisions occur in all d
entries, xp cannot be saved. The unsaved element, due to an overflow in insertion procedure, causes a
false negative in the search procedure, and it is classified as a search failure.

In searching an input, each bucket is checked from the topmost bucket to the dth bucket until the
input has a match. If the same amount of memory is used as a multi-hash table, the number of buckets
(Bd) in a d-left hash table is equal to Mh

2log2n+L , as each bucket stores a signature and a return value.

3.4. Functional Bloom Filter

A functional Bloom filter (FBF) [20–22] is a variant of a standard Bloom filter that returns a value
corresponding to a key as well as its membership. Figure 1d shows a functional Bloom filter with m
cells and k hash indexes. As each cell is composed of L bits, each cell can have a value with range
{0, 1, . . . , 2L − 1}. In a functional Bloom filter, the signature of each key is not stored and only a value
corresponding to each key is stored in each cell, as various combinations of k hash indexes can serve as
the signatures.

Every cell in an FBF is initialized to 0. To program set S = {(x1, v1), (x2, v2), . . . , (xn, vn)} to an
FBF, in inserting element xp ∈ S, k independent hash functions {h1, h2, . . . , hk} are used. The FBF is
programmed by setting return value vp of xp in all cells pointed by hi(xp)s for 1 ≤ i ≤ k. Key xp is
used to obtain hash indexes to access k cells but not stored, and the return value vp is only stored.

An important issue when dealing with a functional Bloom filter is how to resolve collision because
a cell cannot store two or more different return values. Collided cells are not used in returning a value
in a functional Bloom filter. In other words, in storing an element, if a value different from the return
value of the element is already stored in an accessed cell, the cell is set to the maximum value 2L − 1
to represent the collision. Cells with the maximum value are named conflict cells, denoted with X in
Figure 1d. Thus, each cell can represent 2L − 2 return values in a functional Bloom filter, and values in
conflict cells are not used in querying.

In querying, a functional Bloom filter returns three types of results: negative, positive,
and indeterminable. For input y, if there exists at least one cell with c[hi(y)] = 0 for 1 ≤ i ≤ k,
it obviously means y /∈ S, which is termed negative. Additionally, for cells with values other than
conflict, if there are any cells with c[hi(y)] 6= c[hj(y)] for 1 ≤ i, j ≤ k, it is also y /∈ S, as these
cells are programmed by different keys other than y. For cells with values other than conflict, if all
c[hi(y)]s are the same, it would be y ∈ S and the FBF returns c[hi(y)], which is termed positive.
It should be noted that, as in a standard BF, an FBF can return a false positive. For 1 ≤ i ≤ k, if all
c[hi(y)] = 2L − 1, which means that conflicts occur in every cell, the FBF fails to return a value, and it
is termed indeterminable. Search failure of a functional Bloom filter is defined by false positive and
indeterminable results.

If the same amount of memory is used as a multi-hash table, the number of cells (m) in a functional
Bloom filter is calculated by Mh

L , as each cell only stores a return value without the signature of a key.
As described in the querying procedure, by comparing the values of multiple cells pointed by an input,
a functional Bloom filter can determine the return value without storing key xp (or the signature of xp).

4. Theoretical Analysis

A theoretical analysis of hash collisions inevitably occurring in hash-based structures has been
studied [15,16,44,45]. We theoretically analyze signature collision and search failure probabilities for
the hash-based key-value data structures described in Section 3.

Appl. Sci. 2020, 10, 5218 6 of 18

4.1. Signature Collision

A key with a variable length needs to be converted to a fixed-length signature to be stored in a
fixed-width hash entry. Since a signature is generated by hashing, signature collision can also occur,
in which two or more different keys are mapped to the same signature. The number of bits for a
signature is set as 2log2n in this work, where n is the number of elements stored in a hash table.

In a hash table, a signature collision can cause two types of search failures: false result and false
positive. A false result occurs for elements included in a given set if two or more different keys which
have the same signature but different return values are mapped to the same entry in a hash table in
insertion procedure. In this case, if the key which could not be stored because of entry collision is given
as an input, a wrong value can be returned in search procedure, as the signature of the key matches
the stored signature.

False positive occurs for an input not included in a given set if the input has the same signature
as an element included in the set and the hash index of the input is mapped to the entry, where the
signature of the element is stored. In search procedure, the input is recognized as the element that has
been stored in insertion procedure.

The probabilities of false result and false positive caused by signature collision can be derived as
follows. Let r represent the number of available signatures. If the number of bits of a signature is set as
2log2n, then r = 22log2n = n2. Probability that a signature value is unused after one element is mapped
to a signature by hashing is 1− 1

r . Thus, probability that a signature is unused after n elements are
mapped by hashing is (1− 1

r)
n
.

Let E(Nunused) be the expected number of unused signatures.

E(Nunused) =
r

∑
i=1

(1− 1
r
)

n
= r(1− 1

r
)

n
(3)

Let E(Nused) be the expected number of used signatures.

E(Nused) = r− E(Nunused) = r− r(1− 1
r
)

n
(4)

Each used signature would contain one key (element) that has not been collided in the process
of signature mapping. Therefore, the number of collisions would be n minus the number of used
signatures. Let E(Ncollision) represent the expected number of collisions in signature mapping.

E(Ncollision) = n− E(Nused) = n− r + r(1− 1
r
)

n
(5)

If we set r = n2, then

E(Ncollision) = n− n2 + n2(1− 1
n2)

n
. (6)

We can numerically show that E(Ncollision) in Label (6) converges to 0.5 as n becomes large.
Let Pco represent the probability that an element are collided in the process of signature mapping.

Pco =
E(Ncollision)

n
= 1− n + n(1− 1

n2)
n

(7)

If an element is mapped to a bucket, where another element with the same signature was already
stored, the element that has been collided in signature mapping cannot be stored because the element
is considered to be already stored. Therefore, when both signature collision and bucket collision occur
in an insertion procedure, a false result occurs in the search procedure. Let B represent the number of
buckets in a hash table and Pf r represent the probability of false results. In other words, Pf r represents
the probability that an element is mapped to the bucket where another element with the same signature
as itself is stored.

Appl. Sci. 2020, 10, 5218 7 of 18

Pf r = Pco ·
1
B
=

(
1− n + n(1− 1

n2)
n)
· 1

B
(8)

Let Pus represent the probability that a non-programmed input (which is not included in the
insertion set) is mapped to a used signature. As there are r possible signatures,

Pus =
E(Nused)

r
= 1− (1− 1

r
)

n
= 1− (1− 1

n2)
n
. (9)

A false positive occurs in search procedure, when a non-programmed input is mapped to a
specific used signature and its hash index is mapped to the bucket, where the specific used signature is
stored. Let Pf p represent the probability of false positives.

Pf p = Pus ·
1
B
=

(
1− (1− 1

n2)
n)
· 1

B
(10)

As shown in Labels (8) and (10), the probabilities of false result and false positive occurring in
search procedure due to signature collision are very small, and therefore it proves that 2log2n bits are
enough for signature length. Therefore, signature collision is not considered when analyzing search
failure probability in the next section. The functional Bloom filter does not have a signature collision
problem because it stores return value only without storing signature at all.

4.2. Search Failure Probability

Search failure probability of a hash table is equal to false negative probability, which occurs when
an element could not be inserted to a hash table because of index collision. Search failure probability of
the functional Bloom filter is the summation of false positive and indeterminable probabilities. The false
positive occurs when a value is returned for a non-programmed input. The indeterminable occurs when
every cell pointed by an input has a conflict value. The indeterminable means that the result cannot be
determined by the functional Bloom filter. For theoretical analysis, we assume that the number of
inputs in searching set U is 3n, i.e., |S| = n, |Sc| = 2n, and |U| = |S + Sc| = 3n.

4.2.1. Multi-Hash Table

In inserting an element to a multi-hash table shown in Figure 1a, if four entries in two buckets
were already occupied, the element cannot be stored. When i− 1 elements were stored, the number
of buckets where both entries are occupied is b i−1

2 c. The ith element cannot be inserted when each of
the two hash indexes of the ith element is mapped to one of the b i−1

2 c occupied buckets. Let Poi be the
probability that an overflow occurs for the ith element. Then, Poi has the upper bound as follows.

Poi ≤
(b i−1

2 c
Bm

)2
(11)

Let Pm be the probability that an element cannot be stored when n elements are inserted in a
multi-hash table. Then, from Label (11), Pm is derived as follows.

Pm =
1
n

n

∑
i=1

Poi ≤
1
n

n

∑
i=1

(b i−1
2 c

Bm

)2
(12)

Assuming that n is even,

Appl. Sci. 2020, 10, 5218 8 of 18

Pm ≤
1
n

n

∑
i=1

(b i−1
2 c

Bm

)2

=
1

nBm
2

(
02 + 02 + 12 + 12 + · · ·+ (

n− 2
2

)2 + (
n− 2

2
)2
)

=
2

nBm
2

n−2
2

∑
j=1

j2. (13)

As Bm = n
2α in a multi-hash table, and assuming that n is very large, Label (13) can be formulated

as follows,

Pm ≤
2

nBm
2

n−2
2

∑
j=1

j2 =
(n− 2)(n− 1)

12Bm
2

=
(n− 2)(n− 1)

12(n
2α)

2 =
α2(n2 − 3n + 2)

3n2

≈ α2

3
(14)

where α is the load factor of a multi-hash table. When n is odd, the same result is obtained.
Let P(Fm) represent the false negative probability of a multi-hash table. It can be formulated as

P(Fm) = P(S)P(Fm|S) + P(Sc)P(Fm|Sc) (15)

where P(S) and P(Sc) represent the probability that input y is included in S and Sc, respectively,
and U = S ∪ Sc and S ∩ Sc = ∅. For 3n inputs, P(S) = n

3n = 1
3 and P(Sc) = 2n

3n = 2
3 . Among n

elements in S, false negatives occur for the elements that could not be stored, and P(Fm|Sc) = 0 as any
element in Sc does not produce false negatives. Therefore, P(Fm) has the following upper bound.

P(Fm) = P(S)P(Fm|S) =
1
3

Pm ≤
α2

9
(16)

Labels (14) and (16) hold true when α ≤ 1. In case of α > 1, the number of elements is more than
the number of entries in a hash table (i.e., n > 2Bm). Assuming that no empty entry exists in a hash
table when the number of programmed elements is 2Bm, the ith element cannot be inserted in the table
for 2Bm < i ≤ n. In other words, in calculating Pm for α > 1, the probability that the ith element cannot
be inserted is 1, which means that the collision unavoidably occurs. Thus, for α > 1, Pm is derived
as follows.

Pm ≤
1
n

(1
Bm

2 ·
(
02 + 02 + 12 + 12 + · · ·+ (

2Bm − 2
2

)2 + (
2Bm − 2

2
)2)+ (n− 2Bm)

)
=

1
n

(2
Bm

2

Bm−1

∑
j=1

j2 + (n− 2Bm)
)

≈ 1− 2
3α

(17)

Therefore, P(Fm) for α > 1 has the following upper bound.

P(Fm) = P(S)P(Fm|S) =
1
3

Pm ≤
1
3

(
1− 2

3α

)
(18)

Appl. Sci. 2020, 10, 5218 9 of 18

4.2.2. Cuckoo Hash Table

A false negative that results in search failure in a cuckoo hash table also occurs when searching
an element that could not be inserted. Figure 2 shows a case where an element cannot be stored in a
cuckoo hash table. In inserting 3 elements, x1, x2, and x3, in sequence, if h1(x1) = h1(x2) = h1(x3) and
h2(x1) = h2(x2) = h2(x3), element x3 cannot be stored, as two loops occur. The insertion procedure
should stop; otherwise, the insertion procedure will repeat infinitely.

Figure 2. Element x3 cannot be stored because of two loops in a cuckoo hash table.

To find the upper bound of probability that an element cannot be stored in a cuckoo hash table
because of two loops, assume that the 2(i − 1) indexes of i − 1 elements are mapped to only i − 1
buckets and elements are evenly distributed to both tables (the difference between the number of
occupied buckets in the first table and the second table is equal to 0 or 1). When the ith element needs
to be inserted, if the ith element selects two (one in each table) of the i− 1 buckets, two loops occur.
Let Pc represent the probability that an element cannot be stored in a cuckoo hash table because of two
loops. Assuming that n is even, then Pc is formulated as follows.

Pc ≤
1
n

(
02 + 02 + (

1
Bc
· 1

Bc
) + (

2
Bc
· 1

Bc
) + · · ·+ (

n−2
2

Bc
·

n−2
2

Bc
) + (

n
2

Bc
·

n−2
2

Bc
)
)

=
1

nBc
2

(n−2
2

∑
j=1

j2 +

n
2

∑
j=1

j(j− 1)
)

(19)

As Pc has to be handled depending on whether the ith element is an odd-numbered or an
even-numbered element, the summation in Label (19) consists of two types of sequences for j.
Because Bc = Bm, and assuming that n is very large, Label (19) can be formulated as follows.

Appl. Sci. 2020, 10, 5218 10 of 18

Pc ≤
1

nBc
2

(n−2
2

∑
j=1

j2 +

n
2

∑
j=1

j(j− 1)
)
=

1
24Bc

2 (2n2 − 3n− 2)

=
α2(2n2 − 3n− 2)

6n2 ≈ α2

3
(20)

where α is the load factor of a multi-hash table. When n is odd, the same result is also obtained.
Let P(Fc) represent the false negative probability of a cuckoo hash table. For 3n inputs,

as P(Fc|Sc) = 0, the P(Fc) has the following upper bound.

P(Fc) = P(S)P(Fc|S) + P(Sc)P(Fc|Sc)

= P(S)P(Fc|S) =
1
3

Pc ≤
α2

9
(21)

Labels (20) and (21) hold true when α ≤ 1. In case of α > 1, the number of elements is more than
the number of entries in a hash table (i.e., n > 2Bc). Assuming that no empty entry exists in a hash
table when the number of programmed elements is 2Bc, the ith element cannot be inserted in the table
for 2Bc < i ≤ n. In other words, in calculating Pc for α > 1, the probability that the ith element cannot
be inserted is 1, which means collision unavoidably occurs. Thus, for α > 1, Pc is derived as follows.

Pc ≤
1
n

(
02 + 02 + (

1
Bc
· 1

Bc
) + (

2
Bc
· 1

Bc
) + · · ·+ (

2Bc−2
2

Bc
·

2Bc−2
2

Bc
) + (

2Bc
2

Bc
·

2Bc−2
2

Bc
) + (n− 2Bc)

)
=

1
n

(1
Bc

2

(Bc−1

∑
j=1

j2 +
Bc

∑
j=1

j(j− 1)
)
+ (n− 2Bc)

)
≈ 1− 2

3α
(22)

Therefore, P(Fc) for α > 1 has the following upper bound.

P(Fc) = P(S)P(Fc|S) =
1
3

Pc ≤
1
3

(
1− 2

3α

)
(23)

4.2.3. d-Left Hash Table

The d-left hash table is assumed to have only one entry per bucket in this work. If collisions occur
in all d buckets, an element cannot be stored. When searching an element that could not be inserted,
search failure occurs due to false negative. Let Pd represent the probability that an element cannot be
stored in a d-left hash table because of collisions in all d buckets. Then, Pd is formulated as follows.

Pd =
1
n

(
0d + (

1
Bd

)d + (
2

Bd
)d + · · ·+ (

n− 1
Bd

)d
)

=
1

nBd
d

n−1

∑
j=1

jd (24)

Let P(Fd) represent the false negative probability of a d-left hash table. For 3n inputs, since P(Fd|Sc) = 0,
P(Fd) is as follows.

P(Fd) = P(S)P(Fd|S) + P(Sc)P(Fd|Sc)

= P(S)P(Fd|S) =
1
3

Pd =
1

3nBd
d

n−1

∑
j=1

jd (25)

Labels (24) and (25) hold true when α ≤ 1. In case of α > 1, the number of elements is more than
the number of entries in a hash table (i.e., n > Bd). Assuming that no empty entry exists in a hash table

Appl. Sci. 2020, 10, 5218 11 of 18

when the number of programmed elements is Bd, the ith element cannot be inserted in the table for
Bd < i ≤ n. In other words, in calculating Pd for α > 1, the probability that the ith element cannot be
inserted is 1, which means collision unavoidably occurs. Thus, for α > 1, Pd is formulated as follows.

Pd =
1
n

(
0d + (

1
Bd

)d + (
2

Bd
)d + · · ·+ (

Bd − 1
Bd

)d + (n− Bd)
)

=
1
n

(1
Bd

d

Bd−1

∑
j=1

jd + (n− Bd)
)

(26)

Therefore, P(Fd) for α > 1 is as follows.

P(Fd) = P(S)P(Fd|S) =
1
3

Pd

=
1

3n

(1
Bd

d

Bd−1

∑
j=1

jd + (n− Bd)
)

(27)

4.2.4. Functional Bloom Filter

Based on the analysis of a functional Bloom filter (FBF) in [22], we compare search failure
probability with other hash-based data structures in this paper. Let P(Fb) represent the search failure
probability of a functional Bloom filter. As the search failure of an FBF is caused by indeterminable or
false positive, P(Fb) can be formulated as follows.

P(Fb) = P(I) + P(FP) (28)

where P(I) represents the probability of indeterminables and P(FP) represents the probability of false
positives in a functional Bloom filter.

Let L represent the number of bits in a cell of an FBF. Among 2L possible values in a cell, value
2L− 1 is reserved to represent conflict. Value 0 is reserved for the initial before programming. Therefore,
a functional Bloom filter can have 2L − 2 return values. Let Sq represent the set of elements whose
return value is q with Sq ⊂ S (1 ≤ q ≤ Q), where Q = 2L − 2. Assuming that return values are
uniformly distributed, let n′ = n

Q be the number of elements in Sq for 1 ≤ q ≤ Q.

• Indeterminable Probability

In the querying procedure, if all the return values of k cells for input y are set as 2L− 1, i.e., conflict,
then the functional Bloom filter cannot return a value, termed an indeterminable. Conflict occurs when
a specific cell that was hashed by any element in Sq is hashed at least once by any other element in
S− Sq.

The probability of indeterminable, P(I), can be formulated as

P(I) = P(S)P(I|S) + P(Sc)P(I|Sc). (29)

In Label (29), P(S) and P(Sc) represent the probability that an input y is included in S and Sc,
respectively, where U = S ∪ Sc and S ∩ Sc = ∅.

Consider P(I|S) first. If input y is included in S (y ∈ S), input y would be included in one of Sq

among q = 1, . . . , Q. Consider a specific cell that is hashed by y ∈ Sq. If the specific cell is hashed at
least once by any other element in S− Sq, then the cell would set conflict. The probability that the
specific cell is not selected (hashed) by n− n′ elements in S− Sq with k hash functions is (1− 1

m)k(n−n′).
Let Pc,i represent the probability of conflict for an element in set S, which is the event that the specific
cell is hashed at least once by n− n′ elements with k hash functions.

Pc,i = 1− (1− 1
m
)k(n−n′) (30)

Appl. Sci. 2020, 10, 5218 12 of 18

There would be k cells that are hashed by the specific input y with k hash functions.
An indeterminable event occurs when all k cells hashed by y get conflict.

P(I|S) = (Pc,i)
k =

(
1− (1− 1

m
)k(n−n′)

)k
(31)

Now we consider P(I|Sc). Let Pc,n represent the probability of conflict for input y which is not in
set S (y /∈ S). Consider a specific cell that is hashed by y. If the specific cell was hashed by any element
in Sq and it was also hashed at least once by any other element in S− Sq in programming, then the
specific cell is in conflict. The numbers of elements in Sq and S− Sq are n′ and n− n′, respectively.
Pc,n is calculated as follows.

Pc,n =
(

1− (1− 1
m
)kn′

) Q−1

∑
q=1

(
1− (1− 1

m
)k(n−qn′)

)
(32)

Pc,n is calculated avoiding duplications for q = 1, . . . , Q. An indeterminable event occurs when
all k cells hashed by y with k hash functions get conflict.

P(I|Sc) = (Pc,n)
k (33)

For 3n inputs (with n elements in S and with 2n elements in Sc), then P(S) = n
3n = 1

3 and
P(Sc) = 2n

3n = 2
3 . Therefore, from Label (29)

P(I) =
1
3
(Pc,i)

k +
2
3
(Pc,n)

k. (34)

• False Positive Probability

A false positive that results in a search failure can occur for input y /∈ S only. In other words,
P(FP|S) = 0, which means that inputs included in set S do not cause false positives. Therefore,
the probability of false positives in a functional Bloom filter, P(FP), can be formulated as

P(FP) = P(Sc)P(FP|Sc). (35)

We need to consider P(FP|Sc). Let Pp,n represent the positive probability for input y which is not
in set S (y /∈ S). Consider a specific cell that is hashed by y. If the specific cell was hashed by any
element in Sq and it was not hashed by any other element in S− Sq in programming, then the specific
cell has value q for 1 ≤ q ≤ Q. The probability that the specific cell is not hashed by n− n′ elements in
S− Sq with k hash functions is (1− 1

m)k(n−n′).

Pp,n =
(

1− (1− 1
m
)kn′

)
(1− 1

m
)k(n−n′) (36)

The false positive event occurs when all of the cells other than conflict cells among k cells hashed
by y have the same value. Note that there can be Q cases with equal probability for q = 1, . . . , Q.

P(FP|Sc) = Q
k

∑
j=1

(
k
j

)
(Pp,n)

j · (Pc,n)
k−j (37)

For 3n inputs, as P(Sc) = 2n
3n = 2

3 , P(FP) is as follows.

P(FP) =
2
3

Q
k

∑
j=1

(
k
j

)
(Pp,n)

j · (Pc,n)
k−j (38)

Appl. Sci. 2020, 10, 5218 13 of 18

From Labels (28), (29), and (35), the search failure probability of a functional Bloom filter, P(Fb),
can be formulated as follows.

P(Fb) = P(I) + P(FP)

=
(

P(S)P(I|S) + P(Sc)P(I|Sc)
)
+ P(Sc)P(FP|Sc) (39)

= P(S)P(I|S) + P(Sc)
(

P(I|Sc) + P(FP|Sc)
)

(40)

=
1
3
(Pc,i)

k +
2
3

(
(Pc,n)

k + Q
k

∑
j=1

(
k
j

)
(Pp,n)

j · (Pc,n)
k−j

)
(41)

We have an interesting question here of whether false positive or indeterminable is more harmful
to raise search failure. While some of the indeterminables are caused by positive inputs, which are the
elements included in the programming set, every false positive is caused by negative inputs, which are
not included in the programming set. It has been recently shown that the indeterminables caused
by positive inputs can be identified and resolved in the programming procedure by constructing
an additional functional Bloom filter [46]. Therefore, false positives are more harmful to raise the
search failures.

5. Performance Evaluation

In this section, we evaluate and compare the performance of four hash-based data structures
described in the previous section using a specific example of name lookup in Named Data Networking
(NDN), which uses a key-value data structure. In this application, keys are URLs and values are their
output faces. As an FBF stores values only, the number of bits in an FBF cell is allocated according to the
number of output faces; however, hash tables store the signature of a key and a corresponding value
in pairs. Simulations are carried out using random URLs provided by Web Information Company
ALEXA [47]. For simulation, we have randomly selected and made three experimental sets.

Table 2 shows experimental data sets. Set S is stored to hash tables and to a functional Bloom
filter. The number of URLs in input set U used in searching is three times the number of URLs of set
S. One-third of set U is the same as set S, which means that these inputs should have a match from
hash tables and from the functional Bloom filter. The remaining two-thirds is included in set Sc, which
means that these inputs do not have a match. We assume 14 kinds of return values, and therefore the
size of a return value is 4 bits.

Table 2. Number of elements in experimental data sets.

Set n(S) n(U)

8k 213 213 + 213 × 2
32k 215 215 + 215 × 2

130k 217 217 + 217 × 2

In our simulation, search failure performance is evaluated in various load factors, and load factors
are controlled by adjusting the size of a hash table instead of the number of stored elements. In other
words, the number of elements to be inserted in a hash table is fixed, and the load factor is increased
by reducing hash table sizes. We first construct a multi-hash table with load factors (α) of 0.6, 0.8, 1, 1.2,
and 1.4, and then measure the required amount of memory for each multi-hash table according to α.
We then construct a cuckoo hash table, a d-left hash table, and a functional Bloom filter, using the same
amount of memory as the multi-hash table. We assume that the number of hash functions d in a d-left
hash table is equal to k, which is the optimal number of hash indexes of a functional Bloom filter.

A 64-bit cyclic redundancy check (CRC) generator is used as a hash function for our simulation.
A number of hash indexes were extracted by combining a variable number of bits of a CRC code

Appl. Sci. 2020, 10, 5218 14 of 18

generated by a key or an input. Therefore, even if multiple hash indexes are required, there is almost
no difference in the amount of computational overhead, once a CRC code is obtained.

Figure 3 shows the average number of memory accesses in inserting an element according to
load factors. As the load factor increases, the cuckoo hash table requires a large number of accesses
because many buckets are affected until an empty entry is found. The multi-hash table shows the best
performance in most cases, as elements can be inserted if an empty entry is found even before two
accesses. However, it is worth noting that the multi-hash table, the d-left hash table, and the functional
Bloom filter have the performance proportional to O(1). The average number of memory accesses for
the functional Bloom filter is always k obtained from Label (1). As the load factor increases, k decreases,
as m

n in Label (1) decreases.
Figure 4 shows the worst-case number of memory accesses in inserting an element according to

load factors. As shown, the multi-hash table, the d-left hash table, and the functional Bloom filter show
better performance than the cuckoo hash table, and these structures have a performance proportional
to O(1). The worst-case performance of the cuckoo hash table is not acceptable as shown. For the
functional Bloom filter, the average and the worst-case number of accesses are the same as the number
of memory accesses is always equal to k.

Figures 5 and 6 show the average and the worst-case number of memory accesses during search
procedure, respectively. Unlike insertion performance, the cuckoo hash table practically has the
same performance as the multi-hash table because two hash functions for each element are used,
and therefore each of the search procedure is completed within two accesses. In case of the d-left
hash table, as the number of hash functions d is equal to k, the search procedure is completed within
k accesses. The search performance of the functional Bloom filter is also k accesses as the same as
insertion performance.

Figure 7 shows the comparison on search failure rates between theoretical and simulation results
as the load factor increases. It is shown that the theoretical and simulation results become similar as
the load factor increases. For the theoretical results of hash tables, Labels (16), (21), and (25) are used
for α ≤ 1, and Labels (18), (23), and (27) are used for α > 1. In cases of the multi-hash table and the
cuckoo hash table, parameters determining the performance of a data structure, such as the number
of buckets and the number of hash functions, are the same, and therefore these tables have almost
the same theoretical upper bounds. In evaluating the performance of data structures, the worst-case
performance is the most critical, and thus the upper bound is important. It is shown that simulation
results are less than the upper bound, as the worst case was assumed in calculating the upper bounds
for these structures. Because a cuckoo hash table can access more buckets in inserting an element than
a multi-hashing table, it has a better search failure rate when the load factor is 0.6, but no meaningful
difference when the load factor is larger than 0.6.

(a) (b) (c)

Figure 3. Average number of accesses in inserting an element: (a) 8k; (b) 32k; (c) 130k.

Appl. Sci. 2020, 10, 5218 15 of 18

(a) (b) (c)

Figure 4. Worst-case number of accesses in inserting an element: (a) 8k; (b) 32k; (c) 130k.

(a) (b) (c)

Figure 5. Average number of accesses in a search: (a) 8k; (b) 32k; (c) 130k.

(a) (b) (c)

Figure 6. Worst-case number of accesses in a search: (a) 8k; (b) 32k; (c) 130k.

In cases of the d-left hash table and the functional Bloom filter, simulation results show very
similar patterns to their theoretical results. As shown in Figure 7, the functional Bloom filter shows
the best search failure rate when α increases. More specifically, in terms of the simulation result for
130k at α = 1 shown in Figure 7c, the search failure rate of the Multi-HT is 5%, and it is ten times
larger than that of the FBF, which is 0.5%. Note that the search failure rate of the FBF decreases
slightly as the number of elements increases, as m

n for the FBF increases as the number of elements
increases. Therefore, the functional Bloom filter is the most efficient structure which can replace hash

Appl. Sci. 2020, 10, 5218 16 of 18

tables, when the search failure rate is the most concern in storing a large set of elements to a limited size
of memory.

(a) (b) (c)

Figure 7. Comparison on search failure rates: (a) 8k; (b) 32k; (c) 130k.

6. Conclusions

In this paper, we claim that a functional Bloom filter as a key-value structure is better than hash
tables, especially in search failure probability, when a vast amount of information is required to be
processed and retrieved in a restricted memory. While hash tables require storing each key in addition
to its return value, a functional Bloom filter stores return values without keys, because different index
combinations according to each key can be used to identify the key. In order to prove that the functional
Bloom filter has a lower search failure probability than a multi-hash table, a cuckoo hash table, and a
d-left hash table as the load factor increases, the search failure probabilities of the key-value data
structures are theoretically analyzed. The theoretical analysis has been validated through simulations.
Simulation results show that the search failure rates of the hash tables are larger than that of the
functional Bloom filter, when the load factor is larger than 0.6.

Author Contributions: Conceptualization, H.B. and H.L.; methodology, H.L.; software, H.B.; validation, H.B.;
formal analysis, H.B.; investigation, H.L.; resources, H.B.; data curation, H.B.; writing—original draft preparation,
H.B.; writing—review and editing, H.L.; visualization, H.B.; supervision, H.L.; project administration, H.L.;
funding acquisition, H.L. Both authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Research Foundation of Korea (NRF), NRF-2020R1A2C1004071.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to
publish the results.

Abbreviations

IP Internet Protocol
NDN Named Data Networking
PIT Pending Interest Table
SDN Software-Defined Networking
HT Hash Table
BF Bloom Filter
FBF Functional Bloom Filter
CRC Cyclic Redundancy Check

Appl. Sci. 2020, 10, 5218 17 of 18

References

1. Xiong, S.; Yao, Y.; Li, S.; Cao, Q.; He, T.; Qi, H.; Tolbert, L.; Liu, Y. kBF: Towards Approximate and Bloom
Filter Based Key–Value Storage for Cloud Computing Systems. IEEE Trans. Cloud Comput. 2017, 5, 85–98.
[CrossRef]

2. Zhang, Y.; Li, D.; Guo, C.; Wu, H.; Xiong, Y.; Lu, X. CubicRing: Exploiting Network Proximity for Distributed
In-Memory Key–Value Store. IEEE/ACM Trans. Netw. 2017, 25, 2040–2053. [CrossRef]

3. Qiao, Y.; Chen, S.; Mo, Z.; Yoon, M. When Bloom Filters Are No Longer Compact: Multi-Set Membership
Lookup for Network Applications. IEEE/ACM Trans. Netw. 2016, 24, 3326–3339. [CrossRef]

4. Rawat, D.B.; Reddy, S.R. Software Defined Networking Architecture, Security and Energy Efficiency:
A Survey. IEEE Commun. Surv. Tutor. 2017, 19, 325–346. [CrossRef]

5. Mendiola, A.; Astorga, J.; Jacob, E.; Higuero, M. A Survey on the Contributions of Software-Defined Networking
to Traffic Engineering. IEEE Commun. Surv. Tutor. 2017, 19, 918–953. [CrossRef]

6. Chen, Q.; Yu, F.; Huang, T.; Xie, R.; Liu, J.; Liu, Y. Joint Resource Allocation for Software-Defined Networking,
Caching, and Computing. IEEE/ACM Trans. Netw. 2018, 26, 274–287. [CrossRef]

7. Mun, J.; Lim, H. New Approach for Efficient IP Address Lookup Using a Bloom Filter in Trie-Based
Algorithms. IEEE Trans. Comput. 2016, 65, 1558–1565. [CrossRef]

8. Lee, J.; Byun, H.; Mun, J.; Lim, H. Utilizing 2-D Leaf-Pushing for Packet Classification. Comput. Commun.
2017, 103, 116–129. [CrossRef]

9. Zhang, L.; Claffy, K.; Crowley, P.; Papadopoulos, C.; Wang, L.; Zhang, B. Named Data Networking.
ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 66–73. [CrossRef]

10. Yi, C.; Afanasyev, A.; Wang, L.; Zhang, B.; Zhang, L. Adaptive Forwarding in Named Data Networking.
ACM SIGCOMM Comput. Commun. Rev. 2012, 42, 62–67. [CrossRef]

11. Lee, J.; Shim, M.; Lim, H. Name Prefix Matching Using Bloom Filter Pre-Searching for Content Centric
Network. J. Netw. Comput. Appl. 2016, 65, 36–47. [CrossRef]

12. Dai, H.; Lu, J.; Wang, Y.; Pan, T.; Liu, B. BFAST: High-Speed and Memory-Efficient Approach for NDN
Forwarding Engine. IEEE/ACM Trans. Netw. 2017, 25, 1235–1248. [CrossRef]

13. Aho, A.V.; Ullman, J.D.; Hopcroft, J.E. Data Structures and Algorithms, 1st ed.; Addison-Wesley: Boston, MA,
USA, 1983.

14. Bruno, D.G. Data Structures and Algorithm with Object Oriented Design In C++, 1st ed.; Addison Wesley
Publishing Company: Boston, MA, USA, 1999; pp. 225–248.

15. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; The MIT Press:
Cambridge, MA, USA, 2009; pp. 253–280.

16. Mitzenmacher, M.; Upfal, E. Probability and Computing: Randomized Algorithms and Probabilistic Analysis,
1st ed.; Cambridge University Press: Cambridge, UK, 2005. [CrossRef]

17. Broder, A.; Mitzenmacher, M. Using Multiple Hash Functions to Improve IP Lookups. In Proceedings of the
Twentieth Annual Joint Conference of the IEEE Computer and Communications Society, Anchorage, AK,
USA, 22–26 April 2001; Volume 3, pp. 1454–1463. [CrossRef]

18. Pagh, R.; Rodler, F.F. Cuckoo Hashing. J. Algorithms 2004, 51, 122–144. [CrossRef]
19. Bonomi, F.; Mitzenmacher, M.; Panigrah, R.; Singh, S.; Varghese, G. An Improved Construction for Counting

Bloom Filters. In European Symposium on Algorithms; Springer: Berlin/Heidelberg, Germany, 2006; Volume 14,
pp. 684–695._61. [CrossRef]

20. Bonomi, F.; Mitzenmacher, M.; Panigrah, R.; Singh, S.; Varghese, G. Beyond Bloom Filters: From Approximate
Membership Checks to Approximate State Machines. ACM SIGCOMM Comput. Commun. Rev. 2006,
36, 315–326. [CrossRef]

21. Byun, H.; Li, Q.; Lim, H. Vectored-Bloom Filter for IP Address Lookup: Algorithm and Hardware
Architectures. Appl. Sci. 2019, 9, 21. [CrossRef]

22. Byun, H.; Lim, H. A New Bloom Filter Architecture for FIB Lookup in Named Data Networking. Appl. Sci.
2019, 9, 329. [CrossRef]

23. Xiong, S.; Yao, Y.; Berry, M.; Qi, H.; Cao, Q. Frequent Traffic Flow Identification through Probabilistic Bloom
Filter and its GPU-Based Acceleration. J. Netw. Comput. Appl. 2017, 87, 60–72. [CrossRef]

24. Mun, J.; Lim, H. Cache Sharing Using Bloom Filters in Named Data Networking. J. Netw. Comput. Appl.
2017, 90, 74–82. [CrossRef]

http://dx.doi.org/10.1109/TCC.2014.2385063
http://dx.doi.org/10.1109/TNET.2017.2669215
http://dx.doi.org/10.1109/TNET.2016.2536618
http://dx.doi.org/10.1109/COMST.2016.2618874
http://dx.doi.org/10.1109/COMST.2016.2633579
http://dx.doi.org/10.1109/TNET.2017.2782216
http://dx.doi.org/10.1109/TC.2015.2444850
http://dx.doi.org/10.1016/j.comcom.2017.02.005
http://dx.doi.org/10.1145/2656877.2656887
http://dx.doi.org/10.1145/2317307.2317319
http://dx.doi.org/10.1016/j.jnca.2016.02.008
http://dx.doi.org/10.1109/TNET.2016.2623379
http://dx.doi.org/10.1017/cbo9780511813603
http://dx.doi.org/10.1109/INFCOM.2001.916641
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://dx.doi.org/10.1007/11841036_61
http://dx.doi.org/10.1145/1151659.1159950
http://dx.doi.org/10.3390/app9214621
http://dx.doi.org/10.3390/app9020329
http://dx.doi.org/10.1016/j.jnca.2017.03.006
http://dx.doi.org/10.1016/j.jnca.2017.04.011

Appl. Sci. 2020, 10, 5218 18 of 18

25. Huang, K.; Xie, G.; Li, R.; Xiong, S. Fast and Deterministic Hash Table Lookup Using Discriminative Bloom
Filters. J. Netw. Comput. Appl. 2013, 36, 657–666. [CrossRef]

26. Cisco. Cisco Annual Internet Report. Cisco White Paper. 2020. Available online: cisco.com/c/en/
us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
(accessed on 15 June 2020).

27. Hassan, A.; Palmieri, R.; Ravindran, B. Remote Transaction Commit: Centralizing Software Transactional
Memory Commits. IEEE Trans. Comput. 2016, 65, 2228–2240. [CrossRef]

28. Chen, Z.; Xiao, N.; Lu, Y.; Ou, Y. Me-CLOCK: A Memory-Efficient Framework to Implement Replacement
Policies for Large Caches. IEEE Trans. Comput. 2016, 65, 3083–3095. [CrossRef]

29. Zhang, W.; Yu, S.; Wang, H.; Dai, Z.; Chen, H. Hardware Support for Concurrent Detection of Multiple
Concurrency Bugs on Fused CPU-GPU Architectures. IEEE Trans. Comput. 2016, 65, 2665–2671. [CrossRef]

30. Byun, H.; Lim, H. Functional Bloom Filter, Better than Hash Tables. In Proceedings of the 2018
International Conference on Electronics, Information, and Communication (ICEIC), Honolulu, HI, USA,
24–27 January 2018. [CrossRef]

31. Bloom, B. Space/Time Tradeoffs in Hash Coding with Allowable Errors. Commun. ACM 1970, 13, 422–426.
[CrossRef]

32. Broder, A.Z.; Mitzenmacher, M. Network Applications of Bloom Filters: A Survey. Internet Math. 2004,
1, 485–509. [CrossRef]

33. Tarkoma, S.; Rothenberg, C.E.; Lagerspetz, E. Theory and Practice of Bloom Filters for Distributed Systems.
IEEE Commun. Surv. Tutor. 2012, 14, 131–155. [CrossRef]

34. Song, H.; Dharmapurikar, S.; Turner, J.; Lockwood, J. Fast Hash Table Lookup Using Extended Bloom Filter:
An Aid to Network Processing. ACM SIGCOMM Comput. Commun. Rev. 2005, 35, 181–192. [CrossRef]

35. Qian, J.; Zhu, Q.; Chen, H. Multi-Granularity Locality-Sensitive Bloom Filter. IEEE Trans. Comput. 2015,
64, 3500–3514. [CrossRef]

36. Saanchez-Maciaan, A.; Reviriego, P.; Maestro, J.A.; Liu, S. Single Event Transient Tolerant Bloom Filter
Implementations. IEEE Trans. Comput. 2017, 66, 1831–1836. [CrossRef]

37. Lim, H.; Lee, J.; Yim, C. Ternary Bloom Filter Replacing Counting Bloom Filter. IEEE Commun. Lett. 2017,
21, 278–281. [CrossRef]

38. Lee, J.; Byun, H.; Lim, H. Dual-Load Bloom Filter: Application for Name Lookup. Comput. Commun. 2020,
151, 1–9. [CrossRef]

39. Lim, H.; Lee, J.; Yim, C. Complement Bloom Filter for Identifying True Positiveness of a Bloom Filter.
IEEE Commun. Lett. 2015, 19, 1905–1908. [CrossRef]

40. Mun, J.; Lee, J.; Lim, H. A New Bloom Filter Structure for Identifying True Positiveness of a Bloom Filter.
IEEE HPSR 2017. [CrossRef]

41. Bello, S.A.; Liman, A.; Gezawa, A.M.; Garba, A.S.; Ado, A. Comparative Analysis of Linear Probing,
Quadratic Probing and Double Hashing Techniques for Resolving Collusion in a Hash Table. Int. J. Sci.
Eng. Res. 2014, 5, 685–687.

42. Nimbe, P.; Frimpong, S.O.; Opoku, M. An Efficient Strategy for Collision Resolution in Hash Table. Int. J.
Comput. Appl. 2014, 99, 35–41. [CrossRef]

43. Main, M. Data Structures & Other Objects Using Java; Addison Wesley: Boston, MA, USA, 1999.
44. Bellare, M.; Kohno, T. Hash Function Balance and Its Impact on Birthday Attacks. In International Conference

on the Theory and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2004;
pp. 401–418._24. [CrossRef]

45. Peyravian, M.; Roginsky, A.; Kshemkalyani, A. On Probabilities of Hash Value Matches. J. Comput. Secur.
1998, 17, 171–176. [CrossRef]

46. Byun, H.; Kim, S.; Yim, C.; Lim, H. Addition of a Secondary Functional Bloom Filter. IEEE Commun. Lett. 2020.
[CrossRef]

47. Alexa the Web Information Company. Available online: http://www.alexa.com (accessed on 17 May 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jnca.2012.12.031
cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
http://dx.doi.org/10.1109/TC.2015.2470245
http://dx.doi.org/10.1109/TC.2015.2495182
http://dx.doi.org/10.1109/TC.2015.2512860
http://dx.doi.org/10.23919/elinfocom.2018.8330628
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1080/15427951.2004.10129096
http://dx.doi.org/10.1109/SURV.2011.031611.00024
http://dx.doi.org/10.1145/1090191.1080114
http://dx.doi.org/10.1109/TC.2015.2401011
http://dx.doi.org/10.1109/TC.2017.2702174
http://dx.doi.org/10.1109/LCOMM.2016.2624286
http://dx.doi.org/10.1016/j.comcom.2019.12.029
http://dx.doi.org/10.1109/LCOMM.2015.2478462
http://dx.doi.org/10.1109/HPSR.2017.7968676
http://dx.doi.org/10.5120/17411-7990
http://dx.doi.org/10.1007/978-3-540-24676-3_24
http://dx.doi.org/10.1016/S0167-4048(97)82016-0
http://dx.doi.org/10.1109/LCOMM.2020.3003695
http://www.alexa.com
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Bloom Filter Theory
	Hash Table

	Hash-Based Key-Value Data Structures
	Multi-Hash Table
	Cuckoo Hash Table
	d-Left Hash Table
	Functional Bloom Filter

	Theoretical Analysis
	Signature Collision
	Search Failure Probability
	Multi-Hash Table
	Cuckoo Hash Table
	d-Left Hash Table
	Functional Bloom Filter

	Performance Evaluation
	Conclusions
	References

