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Abstract: Decentralization and immutability characteristics of blockchain technology has attracted
numerous blockchain-based systems and applications to be proposed. However, technical shortcomings
such as low transaction speed, complexity, scalability, and vulnerability to certain attacks have been
identified, making it challenging to use the technology on general consumer applications and services.
To address the problem, we propose a new application service platform architecture called DDNB
(Doubly Decentralized Network Blockchain). DDNB divides the system into multiple layers in order
to take advantage of permissioned blockchain for its processing speed and security, while allowing
permissionless open use of the system to application developers. To allow any node to freely
participate in application services, DDNB adopts a novel periodic node self-verification process and
query chaining mechanism to authenticate newly joining nodes and validate transactions effectively and
efficiently. The proposed architecture is evaluated in terms of its processing speed and security on a real
proof-of-concept prototype system.

Keywords: blockchain; decentralization; hierarchical architecture; application platform

1. Introduction

Bitcoin is one of the most representative cryptocurrency, and has contributed to building a
reliable and decentralized cryptocurrency environment on a P2P network without the need of
central trusted authorities [1]. Blockchain is the underlying data structure technology of Bitcoin,
which is a continuously growing chain of blocks each having a set of transactions that occur between
participating peers. Each participant maintains a distributed ledger consisting of sequentially chained
blocks, and these blocks are propagated and validated by full nodes with the proof-of-work consensus
protocol (in Bitcoin) between validator nodes. When an untrusted third party participates in the
service operation, blockchain suppresses any possible data manipulation through the consensus
process between the peers.

Characteristics such as immutability, irreversibility, and decentralization has attracted increasing
interest in blockchain for purposes other than cryptocurrency, and numerous blockchain-based systems
and applications have been proposed [2–17]. However, the architecture of the early blockchain systems,
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such as Bitcoin, also had several drawbacks which made it difficult to apply to applications demanding
more sophisticated operations than just ‘transfer-of-ownership’. That is because most core parts
of the system, like data structure and operations, are designed specifically for the purpose of
cryptocurrency to avoid various network attacks (e.g., 51% majority attack).

Despite the drawbacks, the potential of blockchain technology shown by Bitcoin has led to a
number of studies to improve it as a distributed or decentralized platform applicable to diverse types
of application. By applying the ‘smart-contract’ concept which makes it possible to derive deterministic
and immediate output under pre-defined conditions, the blockchain technology seemed effective
for developing decentralized applications (DApps). However, a fundamental problem driven by the
consensus protocol still remained; the network was far too slow to implement practical applications at
a large scale. Although the Proof-of-Work consensus protocol is an excellent way to deter arbitrary
attackers in an public environment with ruthless attack potential, it works as an obstacle upon
the DApps, restricting it from providing general services to users.

There have been several studies for more decisive but generous consensus protocols working
on a permissioned/private network [18–21], but these attempts still have the limits of scalability as
the network governs the access of the nodes to demarcate from outside. That is, the scalability and
performance are incompatible trade-off factors in running an application on blockchain based platforms.
In addition to the limitations mentioned above, service providers encounter several difficulties when
implementing actual applications running on blockchain based platforms. Service providers not only
need to handle the business logic specific to their services, but also tasks of designing and maintaining
blockchain systems. In Section 2, the problems that have been encountered to apply blockchain for
DApps will be discussed in more detail.

This paper presents ‘Doubly Decentralized Network Blockchain’ (DDNB), a platform
architecture that suppresses untrusted participants’ malicious behavior by separating the service
and blockchain layers, and allows the service providers to conveniently implement general business
logic on DApps. In DDNB, blockchain layer and the service layer are architecturally separated so that
they depend only on each other’s interfaces. While using the ‘chaining’ and ‘distributed’ concepts
of blockchain, it provides a structure for service developers to develop DApps without the need of
deeply understanding the blockchain technology.

2. Problem & Motivation

Blockchain has received explosive interest following the success of Bitcoin presented in Satoshi
Nakamoto’s paper [1]. Then, as the first blockchain based platform which supports smart contract,
Ethereum [22] has brought the possibility of immutability and decentralization to various fields.
Furthermore in Hyperledger Fabric [23], the network consists of permissioned nodes working upon
the ‘Practical Byzantine Fault Tolerance’ algorithm as its consensus protocol, providing faster and
cheaper finality for the blockchain system. Many attempts to improve blockchain have allowed the
technology to be used to ensure reliability of arbitrary data in a decentralized network, more than
just being used for cryptocurrency. For example, blockchain technology has been used in industry
fields such as Internet of Things [2–6,24], E-commerce [14–16], Health Care [7–10], and Digital Rights
Management [11–13] to take advantage of its properties for developing a variety of services.

However, there are several challenges that need to be addressed before applying blockchain
technology on industrial applications that are developed for server-client systems in general. First and
the most critical is the low transaction processing speed. Bitcoin adopted PoW (Proof-of-Work)
mechanism for its block consensus algorithm. This process requires huge amount of computing power
from participating full nodes (The nodes that can verify all of the rules of Bitcoin) in blockchain network,
and it limits block creation cycle to 10 min on average (for Bitcoin). Although PoW has the great
advantage of substantial ability in suppressing arbitrary participants’ malicious behavior, the amount
of resources wasted in the race for creating blocks is not negligible.
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Second is the issue of scalability [25]. Blockchain is literally a chain of blocks sequentially linked
by the hash value of previous block which contains a set of transactions. To maintain a consistent chain
of blocks, a consensus process between network participants is required. Hence, system performance
degrades significantly as the total network size increases due to the increase in amount of data that
need to be exchanged. If the block size is increased to contain more transactions per block, the amount
of information in a block can expand but the total propagation delay including the block verification
time required for synchronizing blocks between nodes increases [26,27]. The longer the time spent for
network synchronization, the longer the blockchain states remain inconsistent among the participants.
This can make the blockchain network vulnerable to attacks such as double spending. A remedy to solve
these defects is to establish a private network with permissioned nodes. By eliminating the possibility
of malicious user threats in advance, fastidious consensus protocols are no longer needed. Instead,
it is able to use optimized consensus algorithm within trusted environment resulting in increase
of throughput.

Third is related to the irreversibility of blockchain. Blocks recorded upon consensus in blockchain
network cannot be modified (without a full fork) even if the parties involved in the transaction agreed
to change. While the irreversibility guarantees transparency of blockchain, it works as a critical flaw
against several applications that need to provide certain reversible services. For example, when a
smart contract is automatically executed upon certain preset conditions, there is no way to reverse
the changes even if the outcome was an unexpected result due to a (malicious) bug in the smart
contract code.

Last one is the complexity of blockchain system. Due to the complex logic of blockchain and
issues mentioned above, arbitrary developers who want to launch application services with smart
contract cannot concentrate entirely on their own business logic, and it is required for them to have
advanced knowledge on the blockchain technology. Thus, it is still challenging to adopt blockchain
technology to applications. But still, numerous attempts are being made to take advantage of its
benefits. In this respect, DDNB would be a troubleshooter which allows to utilize the existing strong
points of blockchain and ensure sufficient service reliability at the same time. Table 1 shows a high-level
comparison of four different architectures that can be used for application development; the traditional
server-client architecture, permissioned and permissionless blockchain, and our DDNB. Each approach
has their own pros and cons, but our DDNB has its strong point in conducting business logic as
fully-supported as in traditional development while it takes all advantages of private blockchain.

Table 1. Comparison of four different architectures’ properties.

Properties

Architectures Server-Client Permissionless B.C. * Permissioned B.C. DDNB

Processing Speed Very-high Very-low High High
Scalability Very-easy Very-limited Very-limited Less-limited

Business Logic Fully supported Very-limited Limited Fully supported
Data Integrity Not sure, vulnerable Very-robust Robust Robust

* B.C. = Blockchain.

3. Related Work

This section explores several existing studies related to various attempts for adapting blockchain
to applications. In particular, we surveyed three directions; (1) stability or performance of the network
nodes maintaining blockchains, (2) new blockchain platforms for applications, and (3) applications on
the basis of existing blockchain platforms such as Ethereum and Hyperledger.

3.1. Blockchain Network

At a high-level, a blockchain network is (mostly) a peer-to-peer (P2P) overlay network that changes
dynamically and exchanges messages continuously. Nodes can join and leave at any time, and the protocols
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work in a completely distributed manner. To understand this network, Decker et al. experimentally
observed that increasing network delays with PoW leads to increased forks, which means an inconsistent
state of the blockchain [26]. In 2014, a list of 872,648 different IP addresses known to run Bitcoin node are
revealed by Donet et al. They used a client called ‘BTCdoNET’, a modified version of Bitcoin P2P Network
Sniffer, and presented information on the geographic distribution, network stability, and information
propagation latency [28]. Most recently, Park et al. collected information of participants of Bitcoin network
for 39 days, and analyzed geographical distribution, protocol/client version, and the type of nodes
(full-node vs. lightweight-node) [29].

3.2. Blockchain Platform

Among several proposals, HyperLedger presented by the Linux Foundation incubates and
promotes a range of business blockchain technologies. Hyperledger includes Fabric; an enterprise
grade permissioned distributed ledger framework, Besu; an open source Ethereum client written
in Java, Sawtooth; a modular platform for building, deploying, and running distributed ledgers and
so on. Changes to the consensus protocol are also significant developments. Delegated Proof-of-Stake
literally delegates to the ‘major node’ determined by the voting result of all nodes in the network.
The low number of major nodes reduces consensus time and costs [30–33].

To take advantage of P2P distributed nature of blockchain, several attempts to apply it on IoT
systems [34] have emerged. In particular, as the early blockchain systems require a lot of computing
resources and huge storage, most IoT related researches have focused on lightening the system or
adopting additional module to fit in the hardware limits of IoT devices. Dorri et al. suggests an
a lightweight blockchain based architecture for IoT which maintains most of legacy blockchain’s
security and privacy benefits while virtually eliminating the overheads [35]. This architecture also
implemented a hierarchical structure; smart home, overlay network, and cloud storage; with Cluster
Head, a cluster of constituent nodes. In a similar way, Novo et al. proposed a decentralized access
management system where access control information is stored and distributed using blockchain
technology [4]. They separated wireless sensor networks (WSN) from blockchain network and
implemented a Management Hub which is an interface between the two. More recently, Lei et al.
proposed Groupchain [36], a public blockchain of a two-chain structure designed for fog computing of
IoT services by taking advantage of the security of blockchain while enhancing scalability. It employs
the leader group to collectively commit blocks for higher transaction efficiency and introduces incentive
mechanism to supervise behaviors of members in the leader group.

Most of these researches focused on addressing the resource-constraint challenge of IoT devices.
However, to decrease blockchain network overhead, they compromised the distributed aspect with
an aspect of server-client structural. It is a significant difference to DDNB which has no single-point
standing for other things (e.g., devices, nodes). Although DDNB is not designed specifically to
be well-suited for IoT devices, it is still able to adopt those attempts while assuring distributed
Service Nodes. For example, it can be imagined that the additional nodes for certain IoT networks such
as Cluster Head or Management Hub run on our service layer of DDNB. DDNB is possible to scale up,
not only scale out.

3.3. Distributed Application

There has been several attempts to build distributed applications on top of blockchain.
For example, Herbert et al. presented a decentralized P2P software validation scheme using blockchain
where a user purchasing the license of a software sends cryptocurrency to the vendor on Bitcoin or
Bespoke model [37]. Schaubs et al. suggested a blockchain-based trustless reputation system where
every user of the system evaluates each other after a transaction, and all the evaluation data are safely
stored in the blockchain to prevent manipulation [38]. Xia et al. proposed an access control platform
based on blockchain which utilizes blockchain’s immutability to record and keep track of every access
to patients’ medical information data [10]. For this purpose, the structure for blocks and transactions
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were re-designed to store medical information. More recently, Zhaofeng et al. proposed BlockTDM [39],
a blockchain-based trusted data management scheme for edge computing. BlockTDM is a configurable
blockchain architecture that includes mutual authentication protocol, flexible consensus, smart contract,
block/transaction data management, and blockchain nodes management to provide trust and security
in edge computing environment for the large amount of data gathered from edge terminals or Internet
of Things (IoT) devices.

Aforementioned are just a few examples, and there are/were many more attempts. However,
most blockchain-based application developers face the common problems: they need to understand
how blockchain system works or build a blockchain platform which is specially designed to provide
specific services. With our ‘DDNB’, they can focus on implementing the service logic they want to
provide to clients while utilizing all of the blockchain’s properties.

4. Design of DDNB

DDNB is composed of two separated decentralized networks, one is a blockchain network that
forms the distributed ledger, and the other is a service network that performs application business logic.
This architecture allows service providers to treat service network as a server-side endpoint and
alleviate concerns about the blockchain network. Compared to prior distributed applications that
implement their services directly in blockchain network using smart contract, DDNB reduces the
fundamental difficulties that need to be considered. To do so, however, it is required for the nodes right
above blockchain layer to prove their reliability and trustworthiness. To accomplish this in DDNB,
service layer nodes self-verify each other by going through a mutual verification process. Overlaying
blockchain layer with verified nodes allows the blockchain nodes to remain as permissioned-only
without any additional verification.

4.1. Node Constitution

DDNB consists of 3 layers: Terminal layer, Service layer and Blockchain layer, as illustrated in
Figure 1. Each layer consists of different type of nodes respectively.

Terminal Node (TN) takes on a client-side user application role. It passes requests from users to
Service Nodes (SN) to provide a specific service. Depending on how service providers, which consist
of TNs and SNs, are designed, a number of logics can be implemented diversely.

Service Node (SN) provides and processes actual services. Therefore, SN is where actual service
is designed and implemented. SN can act like a server in traditional server-client architecture, and so is
the scope of logics which can be implemented in SN is almost unlimited. Thus, various types of services
can be provided, more than any smart contracts can do. SN performs a pre-defined function according
to the request of TN. It is responsible for delivering the results of the execution to Blockchain Node
(BN), and returning them to TN. In this process, no individual data are stored in SN. For this reason,
unlike typical web applications, session and sensitive information are managed in TN, not in SN.

Blockchain Node (BN) is the actual database for storing service related data. DDNB is designed
to use permissioned blockchain so that BN can provide high transactions per second (TPS) and security
while maintaining characteristics of blockchain. Also, by placing BNs behind VPN and firewall, it is
possible to access control SNs to only those that are authorized. Therefore, service providers do not
need to build their own nodes to participate in the blockchain. Instead, they only need to consider the
consortium of the service networks. There can be multiple service networks consisting of individual
domains to provide different services on a single blockchain network.
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Figure 1. Three-layered Hierarchical Architecture of Doubly Decentralized Network Blockchain (DDNB).

4.2. DDCP (Dynamic Decentralized Certification Protocol)

SN provides pre-defined services to TN, and TN generates specific transactions to use those
services. Before those transactions can access data in BN, DDNB verifies the integrity of the
transaction through DDCP (Dynamic Decentralized Certification Protocol). In DDCP, TN segments
a transaction logic into several query stages and sends a first query to a randomly selected SN.
The selected SN executes one of the divided processes sequentially as shown in Figure 2. During
this process, BN generates a short hashed string, nonce. DDCP uses this nonce to act as an “one-time
authentication key” for the transaction. This nonce is removed from the blockchain if the transaction
uses the nonce (one-time use), or after a period of time (timeout). From BN’s perspective, it is one of
the effective ways to verify transactions. When the transaction reaches BN as a final step, BN will not
refuse the execution as long as it is a completed form signed by TN. For this reason, the transaction
packet can be copied and sent over and over even if it has already been sent and there is no such nonce
value. Through the above process, it is possible to determine whether the packet is forged or not,
and also the integrity of the transaction can be ensured. In addition, this process can be executed in
parallel since multiple SNs with guaranteed integrity would work on concurrently.
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Figure 2. Dynamic Decentralized Certification Protocol (DDCP).

4.3. DDNC (Dynamic Decentralized Network Consensus)

To implement the service layer as an overlay network on top of a permissioned blockchain layer,
the authenticity of all service nodes must be verified first. As anyone can participate in service layer,
a verification process to ensure SNs’ reliability and trustworthiness is essential. SN should act
as intended by the application business logic, and every SN in a single domain acts like a clone
of itself. This means that all SNs must always output a consistent value given some input.
Based on this fact, a simple execution and comparison is carried out between SNs to determine
whether they behave identically. This verification process is named DDNC (Dynamic Decentralized
Network Consensus).

In DDNC, if a new node wishes to participate in the service layer, it will be verified by preexisting
nodes (verifier nodes) as shown in Figure 3. Candidate node sends a request for the list of SNs to
seed node, then asks for ‘add node’ permission to all SNs in the list. Each verifier node examines
whether the candidate node behaves identically or not via the ‘Service Node Verification Protocol’ in
Figure 4, and adds it to the host list if the candidate node behaves equally to a verified node. Otherwise,
it will be purged. This ‘peer-review’ process runs not only when ‘add node’ is requested, but also
periodically to make sure that all nodes continue to act as intended. Therefore, service layer can detect
abnormal SNs and remove them from the network automatically and autonomously at runtime. With
this verification process, SNs are assured and confirm the share of same domain and mutual trust.
Furthermore, it gives service providers the advantage of being able to scale out their SNs flexibly while
reducing unexpected risks.
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4.4. SN-BN Communication Process

One final component of our layered architecture is the node agents between SN and
blockchain network. Node agents are mediators between two networks and all accesses from SNs to
the blockchain network pass through the node agents. There can be multiple node agents. If a node
agent receives a request from an unauthorized SN, the node agent registers the SN into a blacklist
and blocks additional requests for a certain period of time. In addition, node agents serve as a load
balancer to prevent load concentration in one blockchain node and as a dispatcher of events from BNs.

Finally, using this 3-layer architecture, DDNB implements various functions to support application
business logic. For example, TN can connect to a randomly selected SN (with function ‘FindHost’),
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TN can get nonce from BN through SN (with function ‘GetNonce’), TN can get an account balance of
specific address (with function ‘GetBalance’), and TN can send a coin amount (virtual currency) from
an account to another one (with function ‘SendCoin’).

• FindHost is the function that TN uses to connect to randomly selected SN through seed node.
As the function does not reach BN, execution time is expected to be fast and stable. Changes in
the number of SNs is what the function is most sensitive to.

• GetNonce requests a nonce, a hashed string sent from BN, to identify the transactions which are
disassembled by several steps. Since any step in any transaction is processed on a randomly
selected SN, BN publishes a tiny hashed string for discrimination.

• GetBalance is a function that returns the balance of an account. It internally executes FindHost twice,
GetNonce once, and then finally a GetBalance query. This represents a single step transaction that
queries the network several times.

• SendCoin is the most representative transaction which invokes changes in the blockchain.
It consists of InfoTrans query which validates syntactic errors first, and then CreateTrans query
which validates semantic errors and executes the function as a final step. Every steps of the
process is shown in Figure 5 in detail.

API documentations of other functions will be available on our website at [40].

Terminal
Node

Service
Nodes
(random)

Blockchain
Nodes
(random)

Step 1. FindHost

Step 2. GetNonce

Step 3. FindHost

Step 4. InfoTrans

Step 5. FindHost

Step 6. GetNonce

Step 7. FindHost

Step 8. CreateTrans

Figure 5. Detailed query steps of SendCoin function.

5. Performance Evaluation

This section presents the methodology and evaluation results of DDNB. Two properties of DDNB
are investigated in this evaluation; performance and stability.

5.1. Experiment Setup

The environment on which the experiments are conducted are as follows. Terminal Nodes run on
a desktop PC with Intel(R) Core(TM) i5-4670 CPU @ 3.40 GHz and 8 GB RAM, with Windows 10 Pro
x64 multi-threading as the operating system. Service Nodes and Blockchain Nodes are established
on four different enterprise level servers. Service layer is composed with Docker containers to run a
large number of SNs. Blockchain layer is built as a permissioned blockchain based on Hyperledger.



Appl. Sci. 2020, 10, 5212 10 of 17

On this setup Figure 6, four most frequently used functions (among a larger set) were chosen to
evaluate DDNB as follows: FindHost, GetNonce, GetBalance, and SendCoin. In order to analyze the
correlation between execution time and the number of steps a function has, each function was chosen
according to the number of query steps they require.

Container

Container

Service Nodes

Server Server

Server Server

Blockchain NodesBatch Program

Thread

Terminal Nodes

Thread

Timestamp Data

Test Client DDNB

Thread Thread

Figure 6. Test flow: Test client runs a batch program that executes a predefined transaction and records
UNIX timestamps of every moment when packets are transmitted and received between nodes.

Each function is executed total of 1000 times by multiple TNs (end-users) on various topologies
having different sets of TNs and SNs. All functions are executed asynchronously, that is, all requests
are submitted without waiting for response from BN. The number of TNs are set to 5, 10, 20, 50, 100,
250, 500, and 1000 (emulating the number of end users), and SNs 1, 5, 10, and 20 (emulating service
provider servers). The interactions between TN and SN are accomplished with HTTP requests on
C++ application, and all queries between SN and BN are transmitted upon the RESTful APIs.

We assess the performance of DDNB in term of the average execution time and transaction per
second (TPS). For this purpose, following data are collected for each transaction.

• Transaction deployment time (Tdeploy) is the time when a transaction is deployed to TN
(beginning of execution).

• Transaction completion time (Tcomplete) is the time when a transaction completed the
whole process.

• Step (p) start time (Tp_start) and Step (p) end time (Tp_end) are the start and end times of every
step (p) in a transaction (when the request was responded from other node). Although detailed
records have been made to determine the cause of outliers, no step-by-step analysis is conducted
for the performance evaluation of the overall architecture.

Then for each topology, execution time is the total amount of time which the system took to
execute and confirm all transactions in the data set (Texecute = ∑1000

i=1 Tdeploy − Tcomplete). Since we are
more interested in the average execution time for each TN, we divide it by the number of TNs performed
in the experiment.

5.1.1. Average Execution Time

Figure 7 plots the execution time of 1000 transactions experimented on various topologies for
the four functions. Commonly, the average execution time decrease as the number of TNs increases
(thanks to increase in parallel, simultaneous execution of transactions), whereas the change with
increasing SN is not striking. This is an interesting result as we were concerned that a large number
of SNs might result in slower execution time due to validation overhead of DDNC. It turns out that,
thanks to parallel execution, the overhead of DDNC does not scale proportionally with the number
of SNs. The outliers for GetNonce and GetBalance are from packet drops between SN and BN due to
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authentication failure. For example, if they wait for a nonce that has already expired or disappeared,
the transaction will wait until timeout before it retransmits. This is an obvious problem observed in
the experiments and worth a future work. SendCoin, on the other hand, shows similar aspects overall
with no noticeable singularities, although it has the largest average execution time in every experiment
due to its complexity (in terms of query steps required).

(a) FindHost

(b) GetNonce

(c) GetBalance

(d) SendCoin

Figure 7. Average execution time over all topologies for four core functions: FindHost, GetNonce,
GetBalance, and SendCoin. X-axis denote the number of Terminal Nodes (TNs), Y-axis is time in units of
milliseconds, and the four colored bars represent the number of Service Nodes (SNs).

5.1.2. Transactions Per Second

TPS is the most commonly used indicator for network performance evaluation in
blockchain architectures. Table 2 presents the TPS results for the GetBalance and SendCoin functions
from the same experiment in Figure 7. It shows that in general, TPS is higher with larger number of
TNs thanks to parallelism and randomization of SN selection, and the number of SNs do not have
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direct correlation with TPS due to the same reasons as the execution time; that is, verification overhead
from the increase in the number of SNs is cancelled out thanks to the improvement from parallelism.

Table 2. Transactions per second (TPS) of GetBalance and SendCoin.

GetBalance

SN

TN 5 10 20 50 100 250 500 1000

1 47.9 71.0 100.1 142.3 182.3 280.7 200.5 206.1
5 47.7 70.6 101.1 141.3 189.9 213.9 350.9 126.7

10 47.7 71.0 102.2 138.5 166.0 230.7 397.2 768.8
20 47.3 71.3 101.4 151.3 174.9 255.1 408.5 340.7

SendCoin

SN

TN 5 10 20 50 100 250 500 1000

1 2.5 3.9 8.7 14.5 23.4 44.7 74.4 170.4
5 2.4 3.9 8.2 14.7 22.0 43.6 92.2 208.1

10 2.4 3.9 8.5 14.7 23.2 45.8 55.2 153.9
20 2.4 3.9 8.5 12 21.2 43.5 65.7 102.5

The combination with the highest in the fixed number of TNs is highlighted in gray.

5.2. Comparison with other Platforms

To better understand the performance characteristics of DDNB, we compared it with other
blockchain application platforms that employ the concept of smart contract. Nasir et al. measured the
performance of two different versions of Hyperledger Fabric: v0.6 and v1.0 [41]. Between the
two versions, there was a major re-architecture in the overall platform, including changes in the
consensus model and the addition of support for channels. They deployed a simple money transfer
application (chaincode) which has both the ‘invoke’ and ‘query’ functions. Pongnumkul et al. measured
the performance of two permissioned blockchain implementations—Ethereum and Hyperledger
Fabric v0.6 [42]. While the main Ethereum platform uses a public blockchain network, the software is
open-source and allows developers to configure the network to work as a private network, where only
granted nodes can participate in the network.

The two studies evaluated performance using various metrics, and we decided to focus on
a common metric for all studies; TPS of executing 1000 transactions. The functions used in the
comparison are the two representative functions in all compared schemes: invoke which changes the
state of the blockchain, and query, for simple queries. As the performance result data for Hyperledger
Fabric v0.6 differ in the two studies, we used median values for comparison.

Table 3 presents the TPS of the transactions executed on the respective platforms. Since the
Blockchain Layer of DDNB is based on Hyperledger, the difference in performance between
Hyperledger is not remarkable. However, DDNB’s query function (GetBalance) outperforms Ethereum
by 10.5 times, and 6.05 times for the invoke function. The benefits of separating the business logic in
DDNB can be maintained while there is no performance penalty.

Table 3. Average TPS of various platforms for query and invoke functions.

Platforms
Functions Query Invoke

DDNB 768.8 208.1
Ethereum 73.2 34.4
HLF v0.6 296.3 203.0
HLF v1.0 461.0 185.0
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5.3. Stability Assessment

We now evaluate the stability of DDNC. Since DDNC’s verification protocol is based on filtering
out abnormalities among ‘normal clones’, the entire SN system can be subverted if the abnormal
nodes occupy a 51% majority simultaneously. Therefore, the shorter the time it takes to execute
the verification protocol, the more overhead it may have, but the more robust it is. In order to
conduct experiments to evaluate the stability of DDNC, we measure how much time it took to
restore after applying an intentional forging for arbitrary SNs in a single domain of the Service layer.
Each experiment was conducted to obtain the time taken to blacklist all forged SNs with a DDNC set
to 10-minute periods. Then we randomly and deliberately forged SNs among normal SNs.

Table 4 shows the average time taken for the experiments which were performed
10 times respectively. Intuitively, the more nodes are forged, the longer it takes to cleanse the
entire system. Not only it has more forgeries to find, but it takes more time for each node because
larger ratio of forgery makes more difficult to determine whether it is normal or forged.

Table 4. Average time (in seconds) to blacklist forged nodes.

SN
Forged 1 3 9

1 - - -
5 262 - -

10 133 458 -
20 129 387 777

As can be seen from Figure 8, the case of (a) 9 forgeries in 20 SNs is mostly blacklisted in the first
period except the last or second node. On the other hand, in case of (b) 3 forgeries in 20 SNs which
forged less number of SNs, DDNC blacklists all forged nodes within first period in every experiments.
This result is consistent with when comparing (b) and (c). Also in (c) 3 forgeries in 10 SNs, several
experiments were observed that took more than one period to find the last forgery.
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Figure 8. Completion time of blacklisting (mutual verification process) with varying number of forged
nodes—results from 10 independent experiment runs.

6. Application Case Study

We now present an application case study using DDNB, implementations of sample application
services that benefit from the use of DDNB architecture.

Nodehome is a development environment for blockchain-based applications and also an operating
platform for running developed services on blockchain. Even without a complex understanding
of blockchain, developers are able to implement their own services according to the API rules
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(Terminal Layer↔ Service Layer) provided by the Nodehome platform [40]. Developers need not worry
about the terminals on which they run their services, nor how to prepare the hardware and network
infrastructure for their blockchain. If you can provide hardware that can run pre-developed services,
you can share the profits generated by services on Nodehome platform. Nodehome platform is equipped
with various blockchain based means to ensure trust, such as proof of assets, preservation of goods,
movement of goods, registration of property, evidence of actions, and protection of information. Many
blockchain-based services are currently being implemented and executed on the Nodehome platform,
and the information and assets are exchangeable between different services. Nodehome platform is
serviced currently in the form of a testnet, and web pages (https://nodehome.io/) provide block
explorers that provides detailed information about blocks, addresses, and transactions. In addition,
a simple guide for architects, developers, and users is provided as well.

As shown in Figure 9, a few client applications are also available. NH Token Wallet is a wallet
service that manages tokens issued from various applications in the DDNB’s Service Layer (of course,
some applications may not provide token-related services intentionally). fMusic-music streaming
service is one of the practical applications built on DDNB. Since it is provided as a distributed service
contrasting to existing services, it is able to connect singer-to-listener without sound production or
distribution company. Not only this simple difference, but in intellectual property or derived user
data perspective, it can also seek several new attempts that have not been possible before.

Figure 9. Screenshots of Nodehome mobile applications. From the left are the launcher main, wallet,
and fMusic-music streaming services.

7. Conclusions

This work presented DDNB, a blockchain-based application service platform that allows
application developers to take advantage of the integrity and reliability of blockchain technology
while tackling the disadvantages of existing blockchain systems. DDNB consists of three layers:
Application clients run in the public Terminal layer on top of the Service network, and accesses the
permissioned Blockchain network only through the service network. DDNB enhances the reliability
of the system through our proposed self-regulating mutual node verification and distributed query-chain
process while reducing the consensus delay of blockchain with the aid of the unique service layer
that separates the applications from the permissioned blockchain layer. Moreover, developers are
not required to have deep understandings of the blockchain technology to develop blockchain based
services on the Terminal layer, and end-users do not need to maintain blockchain nodes by themselves
for using the services. With all of these benefits, the performance comparisons with other blockchain
platforms showed that DDNB has no performance penalty, and the robustness of DDNC against

https://nodehome.io/


Appl. Sci. 2020, 10, 5212 15 of 17

random malicious attack was also evaluated. We also presented real-world application case studies
that are currently being developed and operated. We anticipate various invigorating blockchain based
services to emerge via DDNB.
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18. Vukolić, M. The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication. In International
Workshop on Open Problems in Network Security; Springer: Cham, Switzerland, 2015; pp. 112–125.

19. Sousa, J.; Bessani, A.; Vukolic, M. A byzantine fault-tolerant ordering service for the hyperledger fabric
blockchain platform. In Proceedings of the 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), Luxembourg, 25–28 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 51–58.

20. Mingxiao, D.; Xiaofeng, M.; Zhe, Z.; Xiangwei, W.; Qijun, C. A review on consensus algorithm of blockchain.
In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB,
Canada, 5–8 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2567–2572.

21. Wu, H.; Tsai, C. An intelligent agriculture network security system based on private blockchains. J. Commun. Netw.
2019, 21, 503–508.

22. Wood, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap.
2014, 151, 1–32.

23. Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.;
Laventman, G.; Manevich, Y.; et al. Hyperledger fabric: A distributed operating system for permissioned
blockchains. In Proceedings of the Thirteenth EuroSys Conference, Porto, Portugal, 23–26 April 2018;
ACM: New York, NY, USA, 2018; p. 30.

24. Islam, A.; Shin, S.Y. BUAV: A blockchain based secure UAV-assisted data acquisition scheme in Internet
of Things. J. Commun. Netw. 2019, 21, 491–502.

25. Hafid, A.; Hafid, A.S.; Samih, M. Scaling Blockchains: A Comprehensive Survey. IEEE Access 2020,
8, 125244–115262. [CrossRef]

26. Decker, C.; Wattenhofer, R. Information propagation in the bitcoin network. In Proceedings of the IEEE
P2P Proceedings, Trento, Italy, 9–11 September 2013; pp. 1–10.

27. Xu, Y.; Huang, Y. Segment Blockchain: A Size Reduced Storage Mechanism for Blockchain. IEEE Access
2020, 8, 17434–17441. [CrossRef]

28. Donet, J.A.D.; Pérez-Sola, C.; Herrera-Joancomartí, J. The Bitcoin P2P Network. In International Conference on
Financial Cryptography and Data Security; Springer: Berlin/Heidelberg, Germany, 2014; Volume 16, pp. 87–102.

29. Park, S.; Im, S.; Seol, Y.; Paek, J. Nodes in the Bitcoin Network: Comparative Measurement Study and Survey.
IEEE Access 2019, 7, 57009–57022. [CrossRef]

30. EOSIO. EOS. IO Technical White Paper. 2017. Available online: https://github.com/EOSIO/Documentation
(accessed on 18 December 2017).

31. Buchman, E. Tendermint: Byzantine Fault Tolerance in the Age of Blockchains. Master’s Thesis,
The University of Guelph, Guelph, ON, Canada, 2016.

32. Goodman, L. Tezos: A self-amending crypto-ledger position paper. Aug 2014, 3, 2014.
33. Li, X.; Xu, J.; Fan, X.; Wang, Y.; Zhang, Z. Puncturable Signatures and Applications in Proof-of-Stake

Blockchain Protocols. IEEE Trans. Inf. Forensics Secur. 2020, 15, 3872–3885. [CrossRef]
34. Da Xu, L.; Viriyasitavat, W. Application of blockchain in collaborative Internet-of-Things services. IEEE Trans.

Comput. Soc. Syst. 2019, 6, 1295–1305.
35. Dorri, A.; Kanhere, S.S.; Jurdak, R. Towards an optimized blockchain for IoT. In Proceedings of the

Second International Conference on Internet-of-Things Design and Implementation, Pittsburgh, PA, USA,
18–21 April 2017; ACM: New York, NY, USA, 2017; pp. 173–178.

36. Lei, K.; Du, M.; Huang, J.; Jin, T. Groupchain: Towards a Scalable Public Blockchain in Fog Computing of
IoT Services Computing. IEEE Trans. Serv. Comput. 2020, 13, 252–262. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.3007251
http://dx.doi.org/10.1109/ACCESS.2020.2966464
http://dx.doi.org/10.1109/ACCESS.2019.2914098
https://github.com/EOSIO/Documentation
http://dx.doi.org/10.1109/TIFS.2020.3001738
http://dx.doi.org/10.1109/TSC.2019.2949801


Appl. Sci. 2020, 10, 5212 17 of 17

37. Herbert, J.; Litchfield, A. A novel method for decentralised peer-to-peer software license validation
using cryptocurrency blockchain technology. In Proceedings of the 38th Australasian Computer Science
Conference (ACSC), Sydney, Australia, 27–30 January 2015; Volume 27, p. 30.

38. Schaub, A.; Bazin, R.; Hasan, O.; Brunie, L. A trustless privacy-preserving reputation system. In IFIP
International Conference on ICT Systems Security and Privacy Protection; Springer: Cham, Switzerland, 2016;
pp. 398–411.

39. Zhaofeng, M.; Xiaochang, W.; Jain, D.K.; Khan, H.; Hongmin, G.; Zhen, W. A Blockchain-Based Trusted Data
Management Scheme in Edge Computing. IEEE Trans. Ind. Inform. 2020, 16, 2013–2021. [CrossRef]

40. NODEHOME. Common APIs. Available online: https://nodehome.io/nh/content?curl=/jsps/platform/
svm_common.jsp&bbsId=17&menu1=2&menu2=16&scd=1 (accessed on 3 October 2019).

41. Nasir, Q.; Qasse, I.A.; Abu Talib, M.; Nassif, A.B. Performance analysis of hyperledger fabric platforms.
Secur. Commun. Netw. 2018, 2018, 3976093. [CrossRef]

42. Pongnumkul, S.; Siripanpornchana, C.; Thajchayapong, S. Performance analysis of private blockchain
platforms in varying. In Proceedings of the 26th International Conference on Computer Communication
and Networks (ICCCN), Vancouver, BC, Canada, 31 July–3 August 2017; IEEE: Piscataway, NJ, USA, 2017;
pp. 1–6.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TII.2019.2933482
https://nodehome.io/nh/content?curl=/jsps/platform/svm_common.jsp&bbsId=17&menu1=2&menu2=16&scd=1
https://nodehome.io/nh/content?curl=/jsps/platform/svm_common.jsp&bbsId=17&menu1=2&menu2=16&scd=1
http://dx.doi.org/10.1155/2018/3976093
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem & Motivation
	Related Work
	Blockchain Network
	Blockchain Platform
	Distributed Application

	Design of DDNB
	Node Constitution
	DDCP (Dynamic Decentralized Certification Protocol)
	DDNC (Dynamic Decentralized Network Consensus)
	SN-BN Communication Process

	Performance Evaluation
	Experiment Setup
	Average Execution Time
	Transactions Per Second

	Comparison with other Platforms
	Stability Assessment

	Application Case Study
	Conclusions
	References

