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Featured Application: Synchrophasor based data compression and post-mortem analysis as well
as online detection and classification of grid disturbances.

Abstract: Synchrophasor based applications become more and more popular in today’s control
centers to monitor and control transient system events. This can ensure secure system operation
when dealing with bidirectional power flows, diminishing reserves and an increased number of
active grid components. Today’s synchrophasor applications provide a lot of additional information
about the dynamic system behavior but without significant improvement of the system operation
due to the lack of interpretable and condensed results as well as missing integration into existing
decision-making processes. This study presents a holistic framework for novel machine learning
based applications analyzing both historical as well as online synchrophasor data streams. Different
methods from dimension reduction, anomaly detection as well as time series classification are used to
automatically detect disturbances combined with a web-based online visualization tool. This enables
automated decision-making processes in control centers to mitigate critical system states and to ensure
secure system operations (e.g., by activating curate actions). Measurement and simulation-based
results are presented to evaluate the proposed synchrophasor application modules for different use
cases at the transmission and distribution level.

Keywords: disturbance detection; data compression; post-mortem analysis

1. Introduction

The electrical power system is in a transition process. While the number of converter-interfaced
renewable generation rises, conventional power plants are decommissioned, which leads to a reduced
system inertia and rises volatility in the electrical power system [1,2]. The deregulation of electricity
generation and unbundling of the market from transmission and distribution tasks introduces additional
challenges [3]. Thus, today’s control room operators are facing a large number of events during daily
system operation. To address these challenges, synchronized phasor measurements and wide area
monitoring (WAM) systems are deployed worldwide in power system control rooms [4]. Being a
valuable resource to observe and understand the dynamics of power systems, they additionally enable
a new quality of operator decision support functions, assistant systems and automated control [4–6].
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This study presents a novel framework of machine learning-based applications for analyzing historical
and online synchrophasor measurements. This enables the efficient processing and post-mortem
analysis of large, unlabeled measurement records as well as the online detection and classification of grid
disturbances in an automated fashion. The interaction of these novel applications as well as the online
visualization of the results allow an enhanced situational awareness for the recognition and assessment
of critical system states and the activation of appropriate counter measures to ensure a secure system
operation. Chapter 2 presents a state of the art for synchrophasor applications, their current usage in
today’s power systems as well as limitations for a widespread utilization. Following a literature review
of recent research fields in Section 2.3, the novel framework for advanced synchrophasor applications
is presented in Section 3.1. Sections 3.2 and 3.3 describe the offline applications spatiotemporal data
compression module and disturbance extraction module and Sections 3.4 and 3.5 follow with detailed
descriptions of the disturbance detection module and disturbance classification module. Section 4 presents
and discusses the application results from different case studies including field measurements as
well as dynamic grid simulations. A short presentation of a web-based visualization tool is given in
Section 5. Section 6 concludes the investigations and gives a short outlook for possible future work.

2. Synchrophasor Technology and State of the Art Applications

2.1. Application of Synchrophasors in Modern Control Centers

Conventional supervisory control and data acquisition (SCADA) systems do not provide the
ability to monitor transient events [7,8]. Even though the connected remote terminal units (RTU)
can communicate cyclically, the measurements samples are typically not time aligned when arriving
at the control center [9,10]. Thus, a state estimator is required [9]. Unless a general interrogation is
inquired, traditional SCADA protocols (e.g., IEC 60870-5-101 /-104 [11] and DNP3 [12]) only transmit
spontaneous messages in case of measurement value changes or if a switch status message has been
received. This requires a state estimation (SE) to generate a valid steady-state power flow image of
the system state. This state estimate is used by most secondary energy management system (EMS)
functions and applications (i.e., contingency analysis, optimization, etc.); hence the SE module is often
referred to as the cornerstone of an EMS. Dynamic stability assessment (DSA) systems can enhance the
situational awareness in transmission control centers significantly [13]. DSA systems run time-domain
simulations to evaluate possible contingencies as well as suitable mitigation strategies. These results can
also be used for the creation of training sets for machine learning based analysis modules. Additionally,
phasor measurement unit (PMU) based wide area monitoring (WAM) systems increase the dynamic
observability by recording transient events by time synchronized samples. The synchronization
accuracy of modern GPS linked PMUs is below 1µs [14]. Modern phasor data concentrators (PDC)
can acquire data from several hundred PMUs [15–17]. An IEEE C37.118 [18] conform interface to
IEC 61850 [19] is available, which increases the flexibility of PMU data processing [20]. The synthetic
patterns created by DSA systems and the recorded patterns from WAMS can be used to improve the
training set as well as the DSA time-domain model. A promising application is the HVDC based
RAS, an automated control strategy to exploit the flexibility of the VSC technology to substitute the
expensive generator-based redispatch [21].

Today’s synchrophasor applications typically run in parallel to existing SCADA based control
room applications (see Figure 1). According to [22], common PMU applications can be distinguished
into real-time operation tasks (e.g., frequency stability monitoring, power oscillation monitoring,
phasor-only state estimation, dynamic line rating) and planning tasks (e.g., model calibration,
primary frequency response analysis, post-mortem analysis). Further applications as well as possible
enhancements of SCADA based monitoring and control applications were also investigated in [23,24].
A recent study identified the following hindering issues for a wider application of synchrophasor
technology in today’s system operation [25]:
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• A clear determination of accurate, dynamic operating limits (i.e., phase-angle differences,
or oscillations) is not available, which diminishes the value of the information gain for the
system operation.

• The data quality still strongly depends on the quality of the instrument transformers, as well as
the ICT infrastructure.

• The rising observability due to a newly installed WAMS can lead to an exposition of new issues,
which can lead to a commitment of valuable personnel to investigate the problems.

• Unless some TSOs exchange data of strategic important PMUs, the data exchange is often subject
to cyber security issues or other sensitivities.

• A separate development of EMS and WAMS lead to challenges for human operators, who prefer a
single unified user interface to support a smoother workflow and a clear decision-making.

• A general evaluation scheme of system dynamics and correlating actions still needs to be defined.
• An operator training, addressing the understanding and the interpretation of dynamic phenomena,

needs to be established to raise the level of operator awareness and to establish a flexible response
to events, instead of a mainly rule-based operation.
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Figure 1. Simplified scheme of a modern control center.

2.2. Enhanced Situational Awareness

The most commonly used definition of situation awareness (SA) describes it as “the perception
of the elements in the environment within a volume of time and space, the comprehension of their
meaning, and the projection of their status in the near future” [26]. As the complexity of the power
system operation grows, the risk of human induced errors with consequences for the system security
will rise. In future, human operators need appropriate tools to assist their cognitive capabilities in
the evaluation of a growing amount of data gathered in the control room for a quicker diagnosis and
decision-making [27]. Assistance systems can enhance the SA during the system operation and allows
to perceive critical situations earlier.

2.3. State of the Art Analysis of Synchrophasor Based Detection and Mitigation of Critical Events

Current research in the field of synchrophasor based applications for enhanced monitoring and
control mainly focus on online or real-time methods. This includes robust statistical or machine
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learning based algorithms for the automated detection, localization and identification of critical
events or cascading events [28–30]. Online algorithms for the automated detection or assessment of
system instabilities (e.g., by computing stability margins), like transient and small signal stability,
were introduced in [31,32]. Apart from recognition tasks, authors in [33–35] suggest the utilization of
PMUs for the real-time control of active grid components (e.g., for damping of inter-area oscillations
or activating special protection schemes) as part of a wide area monitoring, protection and control
(WAMPAC) system. This also enables a synchrophasor based congestion or restoration management
including suitable monitoring and control algorithms. In addition to the use of PMUs in transmission
power systems, authors in [36,37] investigated the application of low-cost µ-PMUs for lower voltage
levels (distribution grids). The automated detection of grid disturbances and the activation of suitable
countermeasures (e.g., curative actions) is an important application to prevent or mitigate major supply
disruptions or blackouts. It enables a fast and reliable system operation with reduced human supervision.
Existing approaches for the online detection, identification, and localization of grid disturbances
from synchrophasor measurements utilize different feature extraction and classification techniques.
Additionally, there are major differences with regard to the addressed task (detection, identification
or localization), the investigated contingency events and the used input data (e.g., measurement
channels, pre- and post-disturbance time). Authors in [38] propose a simple k-Nearest Neighbor based
method to detect different events from its oscillation modes using frequency measurements. More
sophisticated approaches utilize support-vector machines [39] or decision rules [40] to identify different
disturbance events voltage spikes, load losses or line trips. The combined identification and localization
(disturbance classification) of different line trip and short circuit events is investigated in [28,41] by
analyzing voltage signals. Other works use frequency and voltage measurements to classify various
disturbance events by combining wavelets and support vector machines [42,43] or S-Transforms and
extreme learning machines [30]. The disturbance classification, as a supervised learning task, relies on a
sufficient training database with a predefined selection of critical contingencies. The sole generation of
a measurement based training dataset using post-mortem analysis is computationally costly, has high
risks to incomplete datasets (only observed contingencies can be considered) and requires a large
amount of historical phasor measurement records. Most of the studies, therefore, utilize dynamic grid
simulations to generate a representative training dataset. This requires a detailed knowledge of the
grid topology and the control parameters of the relevant active grid components as well as a suitable
simulation tool to perform large scale contingency simulations for a wide range of grid scenarios.

Existing recognition approaches mainly focus on measured or simulated online phasor data
streams and neglect potential useful information from historical measurement records. In contrast
to that, a combined online and offline analysis framework can improve simulation-based detection
methods by utilizing knowledge from historical measurements.

3. Novel Framework for Advanced Synchrophasor Analysis in Modern Control Centres

3.1. Framework Architecture and Analysis Modules

In this study, a novel framework for analyzing historical and online synchrophasor measurements
is presented in order to detect and classify grid disturbances and to activate suitable countermeasures.
In contrast to existing approaches (see Section 2.3), additional knowledge from historical measurement
records can be integrated in order to increase the recognition capabilities and the classification accuracies
of the online analysis modules. This framework combines different offline and online synchrophasor
applications to enable an efficient analysis and decision-making based on simulated and measured
critical events. The proposed analysis modules comprise of a spatiotemporal data compression module,
disturbance extraction module, disturbance detection module and disturbance classification module.

The spatiotemporal data compression module eliminates redundant information for an efficient
processing and analysis of large historical phasor measurement records. Due to the high reporting rates
(typically between 10 and 50 frames per second [18]) and the large number of installed PMU sensors
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especially in large power grids, high data volumes and transmission rates occur when collecting
synchrophasor data in control centers. With the use of statistical methods, the storage demand in
modern control centers can be drastically reduced. This enables a long-term archiving of phasor data as
well as an efficient post-mortem analysis of large datasets. A detailed description of the spatiotemporal
data compression module is given in Section 3.2.

The disturbance extraction module analyzes compressed synchrophasor data records to extract
potential critical events and to enhance the training database of the disturbance classification module.
For this purpose, an intelligent analysis procedure is proposed to automatically explore historical
measurement records and to discover potential interesting events that were not detected with existing
grid monitoring tools. These events mainly include disturbances like malfunctions, outages, oscillations,
faults or other unusual deviations from regular grid operation. It is to be expected, that only a small
part of the measurement records contain relevant events. Additionally, no prior knowledge is available,
which further complicates the recognition task. Extracted events or disturbances can be processed
further, e.g., for root-cause event analysis, the assessment of grid assets and the enhancement of
training data or subsequent signal analysis algorithms (e.g., for the disturbance detection module and
disturbance classification module in Sections 3.4 and 3.5).

The disturbance detection module detects deviations from steady conditions by computing an
anomaly score for each PMU measurement channel. In contrast to the previous application modules,
this is done online using a sliding window-based approach. Generally, there is a vast number of
possible events or disturbances, which lead to deviations from steady state conditions including
outages, short circuits / faults, oscillations or malfunctions. The automated recognition of these
events is a basic prerequisite to prevent undesired or unstable system states and to initiate suitable
countermeasures. In contrast to the disturbance classification module, an exact identification of the
disturbance type or the location of the disturbance origin is not performed. Instead, the goal of the
disturbance detection module is to recognize possible disturbances, if only undisturbed system conditions
are known. Therefore, the disturbance detection module can act as a trigger for subsequent process
analysis or can enhance the training data base.

In case of high anomaly scores, the disturbance classification module estimates the disturbance type
and location of the transient event by computing the corresponding probabilities of occurrence. Similar
to the disturbance detection module, this is done online by analyzing the current phasor data stream.
Compared to traditional SCADA or protection systems, a wide range of possible disturbances can
be detected within short time spans (< 1 s) including outages from generators, lines, or renewable
energy sources as well as short circuits or load trips. Precise information about the origin and type
of the disturbance as well as additional time and frequency analysis information (e.g., oscillation
modes, frequency drops) enable the initialization of precise countermeasures (e.g., curative actions)
to restore a stable system state. These actions can be precomputed for different disturbances and
updated with each new steady state condition. Today’s DSA systems provide sufficient computation
options to simulate different contingencies and to select and assess suitable countermeasures [13].
Further descriptions are given in Section 3.6.

For a better understanding, Figure 2 shows the simplified workflow and interaction between
the different synchrophasor based online and offline analysis modules. The phasor data concentrator
collects the phasor measurements and continuously updates a database. At the same time, the online
data stream is forwarded to the online analysis modules. The offline analysis modules can be activated
periodically to process a certain amount of historical measurement records. The measurement and
analysis results can be visualized with a web-based user interface (see Section 5) and can be transferred
to subsequent EMS applications.
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3.2. Spatiotemporal Synchrophasor Data Compression

The idea of data compression is to transform the original input measurements into a small subset
of coefficients with minimum information loss. The smaller this subset is compared to the size of the
uncompressed signal, the higher is the compression rate. The applied signal transformation aims to
eliminate all redundant information and can be inverted to reconstruct the original signals with a
certain error (reconstruction error). In contrast to existing single-step approaches, the spatiotemporal data
compression module combines two compression stages to identify and eliminate redundant synchrophasor
data in space (e.g., by PMU sensors with close proximity) and time (e.g., by low signal variations over
long time spans)–see Figure 3. This enables high compression rates in presence of transient events
and preserves low reconstruction errors. The compression rate rC is calculated according to (1) given
the cardinality of the normalized input signal XN divided by the cardinality of the compressed signal
XC. The transformation coefficients θC must also be taken into account, because they are required to
reconstruct the original signals.

rC =
|XN|

|XC|+
∣∣∣θC

∣∣∣ (1)

The reconstruction error eR is based on the L2-norm (squared Euclidean distance) between the
original signal and the reconstructed signal X̂N–see (2).

eR = ‖XN − X̂N‖ (2)

Minimizing this error ensures a close approximation of the original measurement matrix.
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For the spatial compression stage, different dimension reduction techniques can be used including
principle component analysis (PCA), independent component analysis and non-negative matrix
factorization. In case of the temporal compression, time-frequency transformations are suitable like
discrete wavelet transform (DWT), discrete cosine transform or fast Fourier transform. Based on
preliminary work [44], PCA and DWT are used as best combination to achieve low reconstruction
errors and high compression rates. In the spatial compression stage, PCA is applied on the normalized
measurement matrix, which creates a set of “virtual” PMU sensors depending on the number of chosen
principle components. This ensures that only non-redundant information (highest signal variances)
are captured by the first principle components. In this step, the temporal dimension (number of time
steps) remains the same. In the second compression stage, DWT transforms each “virtual” sensor
signal into the frequency domain. In case of multiple decomposition levels, this transform is applied
recursively to generate the approximation and detailed coefficients. A compression is achieved by
setting some detailed coefficients to zero depending on a predefined, global threshold value. PCA
and DWT are both linear signal transform techniques. The PCA and the DWT parameters can be
reused in the spatial and the temporal inverse processes to reconstruct the “virtual” sensor signals as
well as the input measurement matrix–see Table 1. This procedure is applied on each PMU channel
separately assuring optimal compression rates and reconstruction errors. A detailed description of the
methodology as well as a comparison between the different compression techniques is given in [44].

Table 1. Overview of the data compression techniques and main parameters.

Method Compression Result Parameters

PCA PCA scores (principle components) PCA loadings, sample means

DWT approximation and detailed coefficients low- and high-pass filters,
wavelet expansion coefficients

3.3. Disturbance Extraction (Post-Mortem Analysis)

The disturbance extraction module detects a predefined number of possible grid disturbances by
analyzing historical records of a single phasor measurement signal (e.g., frequency). The lack of positive
examples (non-outliers) and negative examples (outliers) as well as the high diversity of outlier types
makes an exact prediction very difficult. To minimize the variance of the model predictions, different
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feature extraction, dimension reduction and outlier score estimation techniques are combined within an
ensemble-based approach. Each outlier detection algorithm uses different metrics for the outlier scores,
which makes a direct comparison difficult. Therefore, a rank transformation aggregates the outlier
scores of the base detectors, such that high rank values correspond to low outlier scores and vice versa.
In a final clustering stage, only the samples with the lowest total rank values are chosen. The goal of
the clustering algorithm is to group similar disturbance patterns into meaningful classes. Therefore,
a similarity matrix is computed using time-warp edit distance (TWED) [45]. The resulting dissimilarity
matrix is passed to a hierarchical density based clustering algorithm (HDBSCAN) [46] to identify
the cluster groups without prior knowledge about the number of cluster groups. For the disturbance
extraction module, three outlier detection algorithms are used including local outlier factors (LOF) [47],
correlation outlier probabilities (COP) [48] and single-linkage based outlier detection (SiLiOd) [49].
These algorithms compute an outlier score to measure the deviation to the normal or majority signal
behavior. The main principles of the three algorithms for the outlier scores are given in Table 2.

Table 2. Overview of the outlier detection techniques and outlier score properties.

Method Main Principle Outlier Score

LOF Local density of data points and its neighborhoods Local outlier factor
COP Deviation within local correlation model using robust PCA Correlation outlier probability

SiLiOd Hierarchical clustering using shortest distances Path lengths to final cluster

As mentioned earlier, the ensemble-based disturbance extraction module uses multiple base detectors
to compute outlier scores and extract potential unusual or abnormal records. The base detectors
differentiate with respect to the used dimension reduction technique (PCA or Isomap) and the outlier
detection method (LOF, COP or SiLiOd). This leads to a total number of six base detectors within the
disturbance extraction module. Each base detector calculates in total 13 features including statistical and
information-based metrics in time-domain as well as energy based features from Stockwell transform
coefficients and discrete wavelet transform coefficients. This comprehensive feature representation
allows to capture various signal traits in different disturbed situations like abrupt signal changes,
oscillations, or other dynamic variations. A short overview of the different base detectors is given in
Figure 4. Further literature can be found in [49,50].
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the outlier detection method (LOF, COP or SiLiOd). This leads to a total number of six base detectors 
within the disturbance extraction module. Each base detector calculates in total 13 features including 
statistical and information-based metrics in time-domain as well as energy based features from 
Stockwell transform coefficients and discrete wavelet transform coefficients. This comprehensive 
feature representation allows to capture various signal traits in different disturbed situations like 
abrupt signal changes, oscillations, or other dynamic variations. A short overview of the different 
base detectors is given in Figure 4. Further literature can be found in [49,50]. 
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Figure 4. Overview of base detectors for the disturbance extraction. Figure 4. Overview of base detectors for the disturbance extraction.
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3.4. Disturbance Detection

Anomaly detection or novelty detection is an active research area in machine learning to
automatically detect abnormal signal behavior or signal patterns that deviate strongly from the
expected or majority behavior. This is different from the outlier detection (see Section 3.3), in which
the negative examples in the training dataset are unlabeled or unknown. Different techniques
are proposed in literature including classification based approaches (e.g., one-class support vector
machine), clustering based approaches (e.g., density-based clustering) or subspace-based approaches
(e.g., principle component analysis) and have a high resemblance with outlier detection methods.
Further literature can be found in [51,52]. Compared to other approaches, the z-score based disturbance
detection module computes anomaly scores instead of a binary decision. This is done by deriving features
in the time- and frequency-domain and by applying a Z-transformation considering a fixed amount of
historical feature values. The resulting z-scores are computed for each PMU measurement channel
separately assuming a Gaussian feature distribution within the normal grid operation. The basic
workflow is given in Figure 5.
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The input matrix X consists of the N last measurement samples xn and are normalized into the
range [0; 1]. Within the feature extraction step, a feature vector xn

F is created for each sample using
signal analysis techniques in the time- und frequency-domain–see (3) and (4).

xn
F = fF

(
xn

N,θF

)
(3)

XF =
[
xn

F

]n=N

n=1
=

[
xk

F

]k=K

k=1
with xk

F ∈ R
N and xn

F ∈ R
K (4)

After the feature extraction phase, z-scores zk are computed for each feature using the actual feature
value xk

F,N, the mean and the standard deviation of all past N features of the current measurement

channel xk
F. The z-score vector z contains the z-scores from all feature values–see (5) and (6).

zk
(
xk

F

)
=

∣∣∣∣xk
F,N − µ

(
xk

F

)∣∣∣∣
σ
(
xk

F

) (5)

z =
[
zk

]k=K

k=1
(6)
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The final z-score for a given PMU measurement channel can be derived from the maximum value
within the z-score vector. A short overview of the K features is given in Table 3. As a very rough approach,
an anomaly level can be estimated depending on these z-score values using the overview in Table 4.

Table 3. Features for z-score based disturbance detection.

Feature Description

Basis: time-domain values
F1 absolute slope
F2 Variance

Basis: Stockwell transform coefficients
F3 energy variance along time axis
F4 energy variance along frequency axis

Table 4. Overview z-scores and corresponding anomaly levels.

Z-Score Anomaly Level

0–1 Normal
1–2 Low
2–3 Medium
3–4 High
>4 Extreme

3.5. Disturbance Classification

From machine learning perspective, the PMU based identification and localization of grid
disturbances can be solved with a time-series classification (TSC) system. A general classification
system comprises of the following sub-modules:

• preprocessing: normalize the input data into a suitable data range,
• feature extraction: extract relevant features to distinguish between the given classes,
• classification: compute affiliation values (e.g., probabilities) for each class using the features and
• decision-making: final class assignment of the current observation based on the maximum

affiliation value.

In particular, the feature extraction from multidimensional sequential data is a challenging
task that takes into account the spatiotemporal relationships within the input data. Current TSC
approaches include sequence-based, similarity-based (e.g., dynamic time warping), feature-based (e.g.,
symbolic piecewise aggregation) and model-based techniques (e.g., hidden Markov models, neural
networks)–see [53,54]. Especially recurrent neural networks like long short-term memories (LSTM)
or gated recurrent units (GRU) provide state-of-the-art results when dealing with high-dimensional
sequential inputs like speech, text or video data–see [55–57].

Compared to existing approaches, see Section 2.3, the disturbance classification module uses a single
prediction model to simultaneously identify and locate grid disturbances from phasor measurements.
Dynamic simulations are used to create the training data for a predefined set of contingencies. The input
matrix for the classification algorithm comprises of K normalized measurements from multiple PMU
sensors of the grid (no full observability required) over a fixed time span T–see (7). The target values of
the classifier are the disturbance location yLoc and the disturbance type yType, which are summarized
within the class label y–see (8).

XN =
[
xk

]k=K

k=1
with xk =

[
xt

k

]t=T

t=0
and XN ∈ RT×K (7)

y =
[
yLoc, yType

]
(8)
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First investigations of a simultaneous disturbance identification and localization were performed
in [58] by comparing five different classification approaches. From these results and additional
research [59], recurrent neural networks were rated as very suitable for the online classification of grid
disturbances regarding the classification accuracy and prediction time. Recurrent neural networks like
LSTMs or GRUs can capture autoregressive, non-linear dependencies and time-varying patterns in
high-dimensional sequential data by utilizing flexible gating mechanisms within the LSTM or GRU
cells. Within this study, GRUs were preferred over LSTMs to increase the robustness and to minimize
overfitting problems. The principle workflow of the GRU-based disturbance classification approach is
shown in Figure 6.

In the feature extraction step, a hidden state matrix H is computed by a single GRU layer with Q
dimensions given the normalized measurement matrix XN and the learned parameters θF. Afterwards,
a feature vector xF of dimension P is generated from the high-dimensional hidden state matrix using
an embedding function fE with θE. The general equations are given in (9) and (10).

H = fF
(
XN,θF

)
with X ∈ RT×K and H ∈ RT×Q (9)

xF = fE
(
H,θE

)
with xF ∈ R

P (10)
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The goal of the embedding function is to capture the necessary information from the hidden state
matrix to differentiate between the classes. According to (11) and (12), the classifier fC is based on a
standard softmax regression to compute the class probability vector xP with the parameters θC over all
C classes.

xP = fC
(
xF,θC

)
with xP ∈ R

C (11)

xP =
exp

(
wCxF + bC

)
∑

C exp
(
wCxF + bC

) with wC ∈ R
P (12)

The final class assignment ŷ is based on the maximum probability value estimated by the classifier.
The parameters of the feature extraction θF, embedding θE and classifier θC are learned jointly via
backpropagation using the cross-entropy loss formulation given in (13).

e = −
∑

C

yC log xP (13)
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The GRU layer in the feature extraction step contains the most expensive operations in the
disturbance classification module. For each time step t, the GRU computes a hidden state vector ht using
the actual input vector xt and the hidden state vector from the previous time step ht−1. This is done
sequentially over all T time steps to compute the hidden state matrix H. The weights and biases of the
GRU θF are shared among all time steps. The principle workflow is shown in Figure 7.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 35 
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Inside a GRU, the input vector and the last hidden state vector are used to compute the output

vectors of the update gate zt and the reset gate rt. From that, a candidate hidden state vector h̃
t

is
estimated, which represents the actual information gained by the GRU. In the last step, the new hidden
state vector ht is computed depending on the output of the update gate vector, which decides whether
to keep the old information (zt

→ 1) or to forget them and to use the new information (zt
→ 0). These

gating mechanisms allow a very flexible control over the learned representations and accounts for the
vanishing gradient problem when applying backpropagation over time (BPTT). The basic formulations
for the gate calculations are given in (14) to (17).

zt = σ
(
Uzht−1 + Wzxt + bz

)
with Uz ∈ RQ×Q and Wz ∈ RK×Q (14)

rt = σ
(
Urht−1 + Wrxt + br

)
with Ur ∈ RQ×Q and Wr ∈ RK×Q (15)

h̃
t
= tanh

(
Uh

(
rt
◦ ht−1

)
+ Whxt + bh

)
with Uh ∈ RQ×Q and Wh ∈ RK×Q (16)

ht = zt
◦ ht−1 +

(
1− zt

)
◦ h̃

t
(17)

Despite of the gating mechanisms, the information cannot be maintained over long time periods.
As the number of time steps increases, some information might be lost or overwritten such that the
final hidden state vector hT does not contain all necessary information to classify the time series. Hence,
different embedding functions are proposed to create a representative feature vector from the full
hidden state matrix including feedforward neural networks as well as parametric and non-parametric
attention models–see Figure 8.
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Feedforward neural network-based embedding: A very straightforward solution includes a single layer
feedforward neural network with sigmoid activation function applied on the vectorized hidden state
matrix. Depending on the number of time steps T and hidden dimensions Q, this can result in a large
weight matrix WS. The equation is given in (18).

xF = σ
(
WSvec(H) + bS

)
with WS ∈ RP×(T·Q) and bS ∈ R

P (18)

Parametric and non-parametric attention model based embedding: A more efficient approach utilizes
attention models to compute a weighted sum of the hidden state vectors–see (19). According to (20),
these attention weights αt are computed for each time step using a softmax normalization on the
score values st. In this case, the feature dimension equals the hidden dimension P = Q, such that no
additional dimension reduction is performed within the embedding function.

αt =
exp

(
st
)∑

t exp(st)
(19)

xF =
∑

t

αt
·ht (20)

A score value indicates the importance of the current hidden state, such that high score values lead
to high attention weights and vice versa. Within the parametric attention model (derived from [60]),
a small feedforward neural network with tangent hyperbolic activation function computes the score
values–see (21). The network parameters can be shared over time steps (global parametric attention
model) or calculated for each time step separately (local parametric attention model).

st = tanh
(
wSht + bS

)
with wS ∈ R

Q (21)
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The non-parametric attention model uses dot-product (22) or cosine similarity (23) to calculate the
score values. For this, the actual hidden state ht is compared with the last hidden state hT for each
time step.

st =
〈
ht, hT

〉
(22)

st =

〈
ht, hT

〉
‖ht
‖·‖hT

‖

(23)

3.6. Curative Actions

A main security aspect for the system operation is the maintenance of the N-1 criterion. It is
applied to the system operation in such a way, that equipment outages do not result into a violation
of operational constraints or limit violations and to prevent cascading outages. The N-1 criterion is
conservative in terms of unexploited transmission capacities. “Curative actions are operational measures
that are executed immediately after the occurrence of a foreseeable contingency” [61]. Thus, the application of
curative actions is suitable to sensitively dissolve or extend the conservative N-1 criterion under certain
conditions to gain transmission capacity. It is important to note, that curative actions are selective
against distinguished events or critical contingencies. They can include line switching, redispatch or
adaptation of VSC active power set points [21].

4. Results from Case Studies

Different datasets are used to evaluate the proposed synchrophasor applications for efficient
data processing and post-mortem analysis (see Sections 3.2 and 3.3) as well as enhanced situational
awareness (see Sections 3.4 and 3.5). These include low- to medium-voltage field measurements as well
as high-voltage PMU signals extracted from dynamic grid simulations. Table 5 gives a short overview.

Table 5. Overview of used datasets within this study.

Dataset # of PMU
Stations

Measurement
Channels [a]

Voltage
Level

Reporting
Rate

LVField 5 F, VAMP, VANG, IAMP, IANG, FC 0.4 kV–20 kV 10 f.p.s.
MVField [62] 6 F, VAMP, VANG 0.4 kV–120 kV 30 f.p.s.

HVSim 21 F, VAMP, VANG 400 kV 25 f.p.s.
[a] F . . . frequency, VAmp . . . voltage amplitude, VAng . . . voltage angle, IAMP . . . current amplitude, IANG . . . current
angle, FC . . . rate of change of frequency.

The LVField dataset contains synchrophasor measurements of five PMUs from a public vendor,
which are placed at a low-voltage distribution grid in Germany. The M-class PMUs provide three-phase
voltage and current phasors (12 phasors per PMU) as well as frequency and rate of change of frequency
values at 10 f.p.s reporting rate. The total record time covers 16.5 h. The MVField dataset contains
measurements from the Texas Synchrophasor Network. It contains a 1 h record of single-phase voltage
phasors and frequency measurements from six different PMUs placed at a medium-voltage distribution
grid. Further information as well as the dataset provides [62]. In contrast to the previous datasets,
the HVSim records are based on dynamic grid simulations from a generic transmission power grid.
The synthetic PMU signals comprise of single-phase voltage phasors and frequencies from 21 PMUs
(25 f.p.s. reporting rate). Detailed descriptions are given in the following Section 4.1.

4.1. Dynamic Grid Simulations

4.1.1. Grid Topology and Key Assumptions

For the HVSim dataset, a single-phase grid model based on the ENTSO-E European Transmission
System is used to facilitate the modelling and the analysis of the dynamic behavior of the power
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system. The 380 kV transmission system consist of 33 substations, where each interconnection consists
of multiple circuit transmission lines to ensure the N-1 criteria. In order to emulate the dynamic of the
system under outage conditions or load/generation changes, some generator units are equipped with
Automatic Voltage Regulators (AVR) and Power System Stabilizers (PSS) to ensure the system stability
in the simulated scenarios. Furthermore, multiple protection mechanisms for generators and lines are
modeled. The frequency protection maintains the generator connected for frequency ranges between
47.5 Hz to 51.5 Hz and disconnects them otherwise for 5 s to 30 s to preserve the technical integrity
of the equipment. Additionally, a fault-ride-through (FRT) capability for the generators protects
the equipment under long duration short circuits. Finally, a simple maximum loading protection
schema is implemented for the lines, which allows a line overloading for short time periods (<5 s).
The implementation of these protection scheme allows simulating cascading effects for certain grid
states. The basic grid topology with station and line labels is given in Figure 9. In a preprocessing step,
different generation and load conditions are evaluated using optimal power flow (OPF) simulations.
For a selected number of suitable steady states or operational points, different contingencies are
simulated using RMS symmetric simulations with 1 ms time steps. A DIgSILENT® Programming
Language (DPL) script controls the simulations with regard to events creation, stability check and
saving of the results. For each operational point, about 440 different contingencies are simulated
considering generator outages, line trips, short circuits at different line positions, partial photovoltaic
(PV) outages as well as partial load losses. An online assessment of the simulated signals checks the
system stability and aborts the current simulation in case of violations of predefined frequency or
voltage limits. The RMS values are averaged to extract PMU signals at the given temporal resolution
of 40 ms (corresponds to 25 f.p.s.). Compared to field measurements, the phasor estimation procedure
and consequent signal deviations (e.g., filtering effects) are neglected.
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4.1.2. Dynamic Simulation Results

For a better illustration of the dynamic grid model, some exemplary contingencies are presented
for simulated frequency and voltage magnitude signals from four different PMUs. Figure 10 shows the
corresponding simulations results over a period of 10 s for a partial PV plant outage of 50% installed
capacity for two different operational points. In both cases, a frequency drop of about 20 mHz can
be noticed resulting from a 0.5 MW PV capacity loss (about 1 MW nominal capacity). The voltage
magnitudes increase from steady conditions of up to 1.5 kV in adjacent substations. A comparison
between both operational points reveals minor differences between frequency signals but larger
deviations between voltage magnitude signals due to the difference in the supplied reactive power.
A short circuit at 90% length of line L19 is shown in Figure 11 for the same PMU sensor signals and
operational points. Compared to the previous contingency, the frequency is oscillating within the first
seconds of the disturbance between +20/−40 mHz and returns slowly to the pre-disturbance frequency
level of 50 Hz. Characteristic voltage drops of about 110 kV can be observed for both operational
points shortly after the disturbance event.
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4.2. Validation of Synchrophasor Applications Using Field Measurements

4.2.1. Results from Spatiotemporal Synchrophasor Data Compression

The evaluation of the spatiotemporal data compression module is based on the LVField dataset.
The spatiotemporal compression algorithm is applied on randomly selected measurement records with
a fixed time range of 100 s (1000 observations). Within the data pre-processing, the raw measurement
values are normalized into the range [0,1] and filtered using backward sliding moving averages to
eliminate high-frequency oscillations. To avoid signal discontinuities, the voltage and current phase
angles are unwrapped before normalization. Regarding Section 3.2, the evaluation is focused on PCA
as spatial and DWT as temporal compression algorithm whereas the chosen DWT hyperparameters are
given in Table 6. The number of principle components is varied during the evaluation. Original and
reconstructed voltage magnitude and frequency values are compared in Figure 12 for one and three
principle components. Increasing the number of principle components reduces the compression rate
roughly from 17 to 5. At the same time, the reconstruction error raises from 3.47 to 17.30 for voltage
magnitudes and from 0.64 to 2.59 for frequencies. As a result, high deviations between original and
reconstructed signals can be observed when reducing the number of principle components.

Table 6. Hyperparameters of the spatiotemporal synchrophasor data compression module.

Hyperparameter Value

Wavelet function Db5
Decomposition level 2
Coefficient threshold 0.05
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Figure 12. Original vs. reconstructed voltage magnitudes (left) and frequencies (right) after the
spatiotemporal data compression.

Spatial, temporal and total compression rates rC as well as reconstruction errors eR are summarized
for the different measurement channels in Table 7 assuming three principle components used within
the spatial compression stage.

Table 7. Compression rates and reconstruction errors for different measurement channels.

Channel
Spatial Temporal Total

rC er rC er rC er

Voltage (magnitude)

1.656

0.035

3.571

0.008

5.814

0.036
Voltage (angle) 0.001 0.001 0.001

Current (magnitude) 0.034 0.006 0.035
Current (angle) 0.001 0.004 0.003

Frequency 0.006 0.008 0.010
ROCOF 0.058 0.016 0.060

Using three principle components reduces the compression rate up to 5.8 and the reconstruction
error up to 0.04. The highest reconstruction errors can be observed especially during the spatial
compression and for voltage magnitude signals. The reconstruction errors heavily depend on the signal
variability and the deviations within the different measurement channels. Assuming 1000 observations,
a single measurement record of one voltage and current phasor as well as one frequency and ROCOF
signal comprises 240 kByte memory space allocation. Specific file formats or additional over-head
information are not considered here. The size of the compressed dataset varies between 14 kByte and
40 kByte depending on the number of principle components used in the spatial compression stage.
The necessary calculations are performed in Matlab® with the implementation of an additional toolbox
for wavelet decomposition [63].

4.2.2. Results from Synchrophasor Disturbance Extraction

The evaluation of the disturbance extraction module is based on the MVField dataset including
voltage magnitudes and angles as well as frequencies from different PMU sensors at medium-voltage
level. The reporting rate is 30 f.p.s. Before preprocessing, high frequency components are eliminated
from the raw measurements using a wavelet based denoising. A chosen time section of about 15 min
of the raw voltage phasors and frequencies is given in Figure 13.
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Figure 13. Voltage magnitudes (top), voltage angles (bottom left) and frequency (bottom right) raw
signals from the MVField dataset.

From visual inspection, some disturbances can be noticed including voltage oscillations at 2100 s,
2450 s and 2650 s as well as voltage sags at 1650 s, 1800 s and 2340 s. Additionally, the voltage oscillations
seem to coincide with frequency drops of about 50 mHz and 70 mHz. It can be expected that these
events are captured from the disturbance extraction module automatically. The chosen hyperparameters
of the different submodules are listed in Table 8. The influence of changing hyperparameters is
investigated in [49].

Table 8. Hyperparameters used for the disturbance extraction module.

Hyperparameter Value

S transform max. frequency 1 Hz
DWT decomposition level 12

DWT wavelet function Db5
Isomap number of nearest neighbors 50

SiLiOd distance function Mahalanobis
LOF & COP distance function Euclidean

LOF & COP number of nearest neighbors 50

The disturbance extraction module is applied on a historical record of a single measurement channel.
Within this survey, results are shown for the voltage magnitude measurements. The dataset is sampled
with a window length of 3000 time steps (100 s) and normalized into the range [0,1]. The definition of
the window length is crucial for the disturbance extraction module and should be selected in accordance
with the expected disturbance time spans.

The outlier detection algorithms compute outlier scores for all samples depending on their
deviation from the major signal behavior. Figure 14 shows the distribution of outlier scores (outlier
map) for different combinations of outlier detection and dimension reduction techniques using
time domain features. The 10 samples with highest outlier scores (top-10 outliers) are additionally
highlighted in red.
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Figure 14. Outlier scores for different combinations of outlier detection techniques (LOF at top and
bottom left, SiLiOd at top right and COP at bottom right) and dimension reduction techniques (PCA
at top left and right, Isomap at bottom left and right) using features from time-domain.

The majority of data points are clustered close together and correspond to samples with very
similar features and signal behavior. For the LOF and COP, the outlier score decreases for data points
with a high distance to the center, while SiLiOd shows opposite behavior due to the different metric
calculation (see also Section 3.3). Additionally, PCA and Isomap compute slightly different feature
embeddings, which increases the variance of the results of the different base detectors. In all cases,
LOF, COP and SiLiOd mainly agree when detecting far-away outliers (data points with high distance
to center), but disagree when detecting near-by outliers (data points with medium or low distance to
center). Due to their low distances to neighboring data points, near-by outliers are more difficult to
detect and to distinguish from the majority signal behavior. As stated in Section 3.3, the outlier scores
of the different base detectors are aggregated via rank transformation and passed to the clustering stage.
For a better illustration, Figure 15 shows the rank transformed top-10 outliers for all base detectors in
the time and frequency domain. Low outlier ranks correspond to high outlier scores and vice versa.
A high agreement among all base detectors and domains can be observed for the samples 8, 9, 97 and 98
indicating a high outlier degree and a potential disturbance. These samples are assigned with low total
rank values. Other samples like 43, 65 or 85 are only detected by a minority of the base detectors which
results in a lower certainty of the results and higher total rank values. Figure 16 gives some exemplary
results for disturbed patterns (low total ranks) and undisturbed patterns (high total ranks). In case of
the disturbed signal patterns, sample 6 corresponds to a voltage sag and sample 10 corresponds to
a voltage oscillation. From Figure 15, sample 10 with the voltage oscillation shows low total ranks
among all base detectors in the time- and frequency-domain. In contrast to that, sample 6 with the
voltage sag can only be detected by a few base detectors in the time-domain resulting in high total
ranks. This maybe a result of the short time span of the disturbance compared to the window size.

The necessary calculations are performed in Matlab® with an additional open-source
implementation for the S transform [63,64] and a JAVA® based library for Isometric mapping [65].
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The outlier detection methods were taken from the JAVA® based ELKI (Environment for Developing
KDD-Applications Supported by Index-Structures) data mining framework [66].
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4.3. Validation of Synchrophasor Applications Using Dynamic Grid Simulations

4.3.1. Results from Synchrophasor Disturbance Detection

The disturbance detection module is evaluated for different contingencies using dynamic grid
simulations from the HVSim dataset as described in Section 4.1. A fixed hyperparameter set has been
chosen according to Table 9.

Table 9. Hyperparameters used for the disturbance detection module.

Hyperparameter Value

S transform max. frequency 10 Hz
# of S transform frequency bins 50

# of samples for feature assessment N 20
# of time steps per sample 50

The disturbance detection module is applied to assess features from 13 different PMU stations.
For each PMU measurement channel, the last 50 observations (corresponds to 2 s) are used to generate
the features in time and frequency domain. The resulting feature vector is compared with the features
from the last N samples to compute the anomaly scores (see also Section 3.4). Some exemplary results
are shown in Figures 17 and 18 for two different contingencies. It can be seen that high anomaly scores



Appl. Sci. 2020, 10, 5209 22 of 33

occur mainly within the first PMU samples, which represents the beginning of a disturbance and usually
causes high signal variations and fluctuations. During this time period, there is a transition from steady
to transient system states. For subsequent PMU samples, the anomaly scores decrease depending
on the measurement and the disturbance type. Especially in case of the line outage, high anomaly
scores can be observed for voltage magnitudes over the whole timespan, while the frequency values
almost remain unchanged. For a better understanding, some exemplary signal patterns of low and
high anomaly scores are given in Figure 19. Each frequency, voltage magnitude or voltage angle signal
represents a single PMU station.
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Figure 19. Example frequency (top and bottom left), voltage magnitude (top and bottom middle) and
voltage angle (top and bottom right) patterns for low to medium anomaly scores (top left to right)
and high anomaly scores (bottom left to right).

Clear differences can be observed between patterns with low and high anomaly score. At low
anomaly scores below or equal 1.0, only small signal variations occur over time for frequency, voltage
magnitude and voltage angle signals. At high anomaly scores between 3.0 and 4.0, high frequency
oscillations are present as well as significant changes of voltage magnitude and angle signals over
time. The necessary calculations are performed in Python® with additional packages for wavelet
decomposition [67] and statistical analysis [68].

4.3.2. Results from Synchrophasor Disturbance Classification

For the evaluation of the disturbance classification module, dynamic grid simulations are used
as described in Section 4.1. The base scenario comprises 20 different contingencies or disturbance
classes, which are concentrated at 4 different stations and lines in the grid–as shown in Table 10.
Generator outages are distinguished between small power plants (DKW) and large power plants
(GKW). PV power plant outages and load losses are modelled as partial outages related to their
installed capacities. Short circuits are modelled as 3-phase line-to-ground faults with varying fault
location with regard to the line length. These disturbances are simulated for three operational points
with different generation (renewable and conventional) and load profiles. The main parameters of
the base scenario are given in Table 11 concerning the used input data, the time windows and the
number of instances in training, validation and test phase. The time window equals the sampling
window T, while the post-disturbance time corresponds to the total time range for a disturbance event.
Training, validation, and test instances contain the same disturbance classes and operational points but
differ with respect to the number of samples included into the datasets which depends on the degree
of overlapping between subsequent samples. The following results relate to the base scenario and a
GRU-based classifier with a local parametric attention model (compare with Section 3.5). Table 12
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summarizes the chosen hyperparameters for the model. Hidden and feature dimensions are equal
due to the attention based embedding function. Optimizer, learning rate and batch size are chosen by
extensive investigations with different hyperparameter settings.

Table 10. Class configuration containing disturbance locations and types.

Location Type Label

Station 1D1 Outage of DKW generator 1D1.DKW_OT
Station 2D3 Outage of GKW generator 2D3.GKW_OT
Station 4D2 Outage of GKW generator 4D2.GKW_OT
Station 6D1 Outage of DKW generator 6D1.DKW_OT
Station 1D1 PV partial outage of 25% 1D1.PV_LC_25
Station 2D3 PV partial outage of 50% 2D3.PV_LC_50
Station 4D2 PV partial outage of 75% 4D2.PV_LC_75
Station 6D1 PV partial outage of 50% 6D1.PV_LC_50
Station 1D1 Load loss of 75% 1D1.L1_LC_75
Station 2D3 Load loss of 50% 2D3.L1_LC_50
Station 4D2 Load loss of 25% 4D2.L1_LC_25
Station 6D1 Load loss of 50% 6D1.L1_LC_50

Line 7 Line trip L7_OT
Line 19 Line trip L19_OT
Line 24 Line trip L24_OT
Line 32 Line trip L32_OT
Line 7 Short circuit at 10% line length L7_SC_10

Line 19 Short circuit at 90% line length L19_SC_90
Line 24 Short circuit at 50% line length L24_SC_50
Line 32 Short circuit at 10% line length L32_SC_10

Table 11. Parameters of the base scenario.

Scenario Parameter Value

Measurement channels Voltage magnitudes
Frequencies

# of PMUs 13
PMU reporting rate 25 f.p.s.

Time window 2 s
Post-disturbance time 10 s
# of operational points 3

Sample overlapping (training) (%) 50
Sample overlapping (validation) (%) 50

Sample overlapping (test) (%) 90
# of samples (training) 540

# of samples (validation) 108
# of samples (test) 3060

Table 12. Hyperparameters used for the disturbance classification module.

Hyperparameter Value

# of hidden dimensions Q 15
# of feature dimensions P 15

Optimizer rmsprop [69]
Learning rate 0.01

Batch size 50
Maximum # of epochs 1000
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Additionally, early stopping was used to limit the number of training epochs and prevent
overfitting. Table 13 shows the accuracy and F1-score results of the training, validation and test datasets
for a single training run. Appendix A gives additional information for calculating both metrics.

Table 13. Accuracies and F1-scores for training, validation and test predictions.

Metric Training Validation Test

Accuracy (%) 97.92 89.81 94.80
F1-score (macro) (%) 97.91 89.01 94.73
F1-score (micro) (%) 97.92 89.81 94.80

The validation accuracy and F1-score are quite low compared to the training and validation test
due to the small size of the validation dataset. The test performance is between the training and the
validation values as a result of the high number of samples. Additionally, the training and validation
instances cannot be excluded from the test dataset, because of the different sampling rates. Figure 20
shows the normalized confusion matrix for the true and predicted class labels from the training dataset.
Very high accuracies can be observed for the conventional and renewable power plant outages as well
as the load losses. A few misclassified training instances occur for line trips and short circuits of Line
32. Also in other cases, it can be seen that a correct differentiation between line trips and short circuits
represents a big challenge for the PMU based disturbance classification task. One possible reason could
be the short duration of these events, which makes a classification difficult for samples with a large time
lag to the start of the disturbance. Similar conclusions arise from the receiver operating characteristic
(ROC) analysis of the training and validation predictions shown in Figure 21. In accordance with the
previous findings, accuracy drops between training and validation can be observed for line outages
(minimum AUC value: 0.97) and short circuits (minimum AUC value: 0.99). Other disturbance classes
are affected only marginal.Appl. Sci. 2020, 10, x FOR PEER REVIEW 27 of 35 
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test accuracy about 4–5%. Feedforward neural network based embedding functions show very low
accuracies on the training (max. 85.88%), validation (max. 78.94%) and test datasets (max. 79.89%) and
even perform worse than the “no embedding” variant. This could be due to the vectorization of the
hidden state matrix ignoring the dependencies between the hidden state vectors. In contrast to that,
attention-based embeddings are more effective to summarize the information across the time steps but
keep the number of hidden dimensions unchanged. This can lead to performance degradations when
calculating distances between the high-dimensional feature vectors.

Furthermore, some parameters of the base scenario are varied to evaluate their influence on the
classification accuracies. For this, a GRU-based classifier with a local parametric attention based
embedding function is investigated using different hidden dimensions. The average accuracy deviations
to the base scenario are shown in Figure 23. Larger changes in the test accuracies can be observed
when decreasing (−3.1%) or increasing (+2.4%) the number of available PMUs, decreasing (−4.5%) or
increasing (+4.1%) the sample overlapping of the training instances and increasing the post-disturbance
time from 10 s to 40 s (−2.3%). A higher number of PMUs or sample overlapping increases the input
data size and improves the classification accuracies. In contrast to that, a high post-disturbance time
complicates the recognition of disturbances especially with short disturbance durations like short
circuits or line outages. The sole use of voltage magnitudes and angles as input measurements reduces
the training accuracy (−1.6%) but increases the test accuracy (+1.1%). Combining voltage phasors and
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frequencies has no significant impact on the test accuracy (−0.2%). The necessary calculations are
performed in Python® with additional packages for statistical analysis [68] as well as for creating and
training of neural networks [70].
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For a better integration into existing control center architectures, a web-based online visualization
tool has been developed for the proposed synchrophasor application modules. The application results
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are written into a PostgreSQL® database and continuously updated at the front end applying the
Highcharts® visualization framework. This enables a good interpretability of the results and gives the
operator access to the online PMU streaming data as well as notifications for potential disturbances
or critical system states. Some exemplary visualization charts for the disturbance detection module and
disturbance classification module are given in Figure 24.
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6. Conclusions and Future Work

In this study, a novel framework is presented with additional visualization capabilities for efficient
processing and analyzing historical as well as online PMU data streams. Integrated into existing
control centers, this framework provides valuable information for the automated online detection and
classification of critical system states as well as the activation of suitable countermeasures to maintain
secure system operation. The framework comprises of different application modules for efficient data
processing (spatiotemporal data compression module), post-mortem analysis (disturbance extraction module)
and online recognition (disturbance detection and classification module). Compared to existing approaches,
this framework enables a comprehensive situational awareness to recognize known disturbance events,
which belong to simulated contingencies, or new disturbance events, which are revealed post-mortem
from efficient analysis of large historical measurements. Within different case studies incorporating
field measurements at distribution level as well as dynamic grid simulation data at the transmission
level, the proposed application modules are evaluated. The investigations comprise of different



Appl. Sci. 2020, 10, 5209 29 of 33

recognition tasks including the spatio-temporal compression of measured PMU signals with an average
compression rate of 5.8, the detection and extraction of different voltage sag and oscillation events
from historical PMU voltage signals as new disturbance events, the computation of anomaly scores
for abnormal PMU signals as well as the automated identification and localization of predefined
contingencies (e.g., short circuits at different line positions, generator and line trips, partial PV and
load losses). High accuracies of about 95% can be achieved with a GRU based classification model
and an attention based embedding function. Additionally, a web-based visualization is presented
to integrate analysis results into subsequent decision processes for system operation. Future work
would comprise the demonstration of a combined disturbance classification and automated selection
of curative actions for critical system events. An evaluation of defined benchmark grids is preferable
for a better comparison with similar research. Additionally, cyber-security issues should be taken into
account in order to increase the robustness of the application modules in case of data manipulations or
communication interruptions. A combined online compression and encryption of PMU data streams
could be a promising solution for secure and effective data transmission.

Author Contributions: A.K. proposed the approach and prepared the manuscript with contributions by C.B.
and C.M. under the guidance of S.N. and D.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This paper is a partly result of the project DGCC (03ET7541D) funded by the German federal ministry
for Economic Affairs and Energy (BMWi) as part of the funding initiative “Future-proof Power Grids”.
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Nomenclature

X, XN raw PMU measurement matrix, normalized PMU measurement matrix
N number of PMU measurement samples
H, h hidden state matrix, hidden state vector
T, t number of PMU measurement time steps, single time step
Q, P, K number of hidden dimensions, number of features, number of measurements
α, s attention weight and score value
xF, XF feature vector, feature matrix
xP class probability vector
z z-score vector
µ, σ sampled mean, sampled standard deviation
y, yLoc, yType disturbance event, event location, event type
θF, θE, θC parameter for feature extraction, embedding, classification

Appendix A

According to (A1) the calculation of the classification accuracy ACC depends on the number of
true positives TP, true negatives TN, false positives FP and false negatives FN.

ACC =
TP + TN

TP + FP + TN + FN
(A1)

The F1-score is calculated using the positive precision rate PP and the right positive rate RPR as
described in (A2).

F1 = 2
PP·RPR

PP + RPR
with RPR =

TP
TP + FN

and PP =
TP

TP + FP
(A2)

In multi-class settings macro-averaging represents the mean of all class-wise evaluation metrics
whereas micro-averaging take into account all class samples to calculate an aggregated evaluation metric.
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