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Abstract: Additive manufacturing (AM) became widespread through several organizations due to
its benefits in providing design freedom, inventory improvement, cost reduction, and supply chain
design. Process planning in AM involving various AM technologies is also complicated and scarce.
Thus, this study proposed a decision-support tool that integrates production and distribution planning
in AM involving material extrusion (ME), stereolithography (SLA), and selective laser sintering (SLS).
A multi-objective optimization approach was used to schedule component batches to a network of
AM printers. Next, the analytic hierarchy process (AHP) technique was used to analyze trade-offs
among conflicting criteria. The developed model was then demonstrated in a decision-support
system environment to enhance practitioners’ applications. Then, the developed model was verified
through a case study using automotive and healthcare parts. Finally, an experimental design was
conducted to evaluate the complexity of the model and computation time by varying the number of
parts, printer types, and distribution locations.

Keywords: additive manufacturing; multi-objective optimization; analytic hierarchy process;
production and distribution; decision-support system

1. Introduction

Three-dimensional printing (3DP), also known as additive manufacturing (AM), is the technique of
manufacturing objects layer-by-layer from digital data using computer-aided design software [1]. Over
the past 29 years, the AM industry’s worldwide revenue has been estimated to increase approximately
27% for all products and services, with the AM industry reaching roughly $7.4 billion in 2017 [2]. Unlike
traditional manufacturing methods that constrain the geometric design of parts, AM provides more
design flexibility. Thus, manufacturers in the industry recently recognized AM as a capable method
and began implementing 3D printers in their research and development, design, and production
processes. Regardless, practical applications of AM technology pose many difficulties, owing to its
quality variation, cost inefficiency, and incompetent process and production planning [3–10].

Most AM production schedules are designed by human planners, and many orders to be printed
are mainly selected based on the intuition and experience of planners. A lack of systematic planning
causes under-utilization, thus further damaging the economic impact of implementing 3DP within
an organization [11,12]. Thus, the feasibility of the production and process planning of complex
AM systems with various printers and diverse process requirements, as well as the throughput and
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capacity in 3D printers, load balances of printers, production times, and operation costs, must be
explored [13,14]. Logistical considerations should also be considered when planning to account for
various stakeholders and to ensure that sub-optimality is avoided [15,16]. A multi-criteria decision
analysis (MCDA) technique was employed in this work to consider several criteria when making
decisions and supporting judgments [17]. Common MCDA techniques include the data envelopment
analysis, analytic hierarchy process (AHP), analytic network process, a technique for order of preference
by similarity to the ideal solution, and multi-objective programming (e.g., [11,18,19]).

In this study, the developed multi-objective optimization model aimed to manage production and
distribution problems for AM in an integrated way. Three common AM technologies were considered:
material extrusion (ME), stereolithography (SLA), and selective laser sintering (SLS) [2]. The tactical
decisions required for scheduling a batch of components to multiple printers were considered, in which
printed parts were to be delivered to different customers’ locations. An AHP process was also used
to evaluate the important criteria related to total operational and transportation costs, load balance,
lateness, and unassigned parts. The developed model was further illustrated using a decision-support
system (DSS) to support practitioners, which is an important aspect to manage the gap between
practitioners and researchers. The developed model was then verified through a case study using
automotive and healthcare parts. Finally, regarding the computation time, we conducted designed
experiments to analyze the important aspects of the integrated problem for the number of parts, printer
types, and distribution locations.

The remainder of this paper is structured as follows. In Section 2, we provide an overview of the
relevant literature. The proposed mathematical model is developed in Section 3. Then, the solution
method and designed experiment are deliberated in Sections 4 and 5, respectively. Finally, the research
conclusions and suggested future research directions are outlined in Section 6.

2. Literature Review

The emphasis within the AM community recently shifted from rapid prototyping (RP) toward
end-use parts, which is evident in the terminology frequently used for 3DP and AM, such as rapid
tooling, rapid manufacturing, and solid freeform fabrication. There are seven main categories of AM,
as classified by the American Society for Testing and Materials [20]: (1) photopolymer vat, (2) ME,
(3) powder-bed fusion, (4) sheet lamination, (5) directed energy deposition, (6) binder jetting, and (7)
material jetting. The top three AM processes surveyed by Wohlers [2] belong to the ME, photopolymer
vat (i.e., SLA), and powder-bed fusion (i.e., SLS) categories. In this study, we analyzed these three
AM technologies, as shown in Figure 1a–c, for ME, SLA, and SLS, respectively. Several advantages of
and challenges facing AM were detailed by various researchers [21–24]. In their national roadmap to
define future AM research for the United States, Bourell et al. [21] noted the need for design, process
modeling, and control to aid process and production engineers. Berman [22] suggested that while
traditional machining processes are constrained by geometries, resulting in parts with more weight and
material than are needed, the geometric build capabilities of AM could deliver near-complete design
freedom. The documented advantages of AM are inclusive of reduced tooling, reduction in inventory,
part consolidation, and a decentralized supply chain. On the other hand, challenges are related to
the quality assurance, effective support structures, orientation of parts, location on the printer, cost of
machines and materials, 3D printer selection, production and process planning, AM supply chain, and
logistics [2].

Unlike that of traditional manufacturing, the first tier of the supply chain for AM involves
web-based retailers, where an end customer orders a 3D-designed part via a web-based transaction
(e.g., see 3D Hubs [25] and Shapeways [26]). Thus, the supply chain structure shifts from the traditional
supply chain network toward a retail–production–distribution model [27]. Given multiple orders from
web-based retail transactions, production scheduling and logistical planning become an important
issue for a complex AM supply chain with various AM printers, in which customers’ due dates and
satisfaction need to be met. A lack of systematic planning will not only cause the under-utilization
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of AM printers but also affect the overall economic aspect of a company. Thus, a tool to support
decision-making is desired to aid a decision-maker or production planner involved in AM process
planning. The strategic, tactical, and operation planning levels of an AM supply chain are shown in
Figure 2. In particular, Figure 2 illustrates the AM supply chain’s strategic level planning at a macro
level and the proposed tactical/operation level at the production stage. That is, the production stage
consists of three related modules, which are part-to-printer assignment, part orientation, and part
location. Initially, parts to be printed will be assigned to each printer based on the properties of the
printer, part characteristics, and customer requirements. Then, the proper orientation of each part
assigned to a printer will be decided upon. Next, given an assigned printer and proper orientation of
the parts, an appropriate location on a printer chamber will be selected for part placement and printing.
In this study, our focus was on the first module of the part-to-printer assignment problem.

Figure 1. Additive manufacturing (AM) technologies: (a) material extrusion (ME), (b) stereolithography
(SLA), and (c) selective laser sintering (SLS) processes.

Figure 2. Production and distribution levels in an AM supply chain.

The use of the build chamber is an important aspect for the process planning of AM. Manogharan
et al. [28] suggested that increasing the AM batch size can help to mitigate production costs and
time. Several researchers (e.g., [11–14]) studied part orientation and printer utilization problems. For
example, Canellidis et al. [13] developed a model for SLA where the orientation of each part to be
printed is selected such that it exhibits a good quality, uses minimal support material, and requires a low
time to print in the first stage. Next, the part projection on the printer platform is selected in the second



Appl. Sci. 2020, 10, 5159 4 of 20

stage. Zhang et al. [29] proposed a model for the integrated orientation-optimization problem by using
a genetic algorithm to search for an optimal combination of the part build orientation. Ransikarbum et
al. [11] developed an optimization model for part scheduling to ME printers in a production process.
However, existing production-related optimization models only consider a particular AM technology,
without explicit consideration of other AM printers’ characteristics as a whole.

Various researchers have investigated the decentralization of the distribution operations for the
spare parts industry (e.g., [30–33]). For example, Hasan and Rennie [30] identified the potential of
AM applications in the spare parts industry and the need for a fully functional AM supply chain
to facilitate the exchange of 3DP services. Holmström et al. [31] described and evaluated potential
approaches to introducing AM into the spare parts supply chain. Holmström and Partanen [32] also
explored combinations of digital manufacturing, equipment use, and logistics, and they discussed
how these combinations might affect the relationship between users, equipment manufacturers, and
logistics service providers. Another line of research involved optimization models with cost- and
energy-related studies (e.g., [34–36]). For example, Thomas and Gilbert [34] discussed several cost
and time models for different AM processes, proposing that the efficient use of a 3D printer envelope
will reduce the cost of an AM part. A significant efficiency factor also lies in the ability to exhaust the
available build space. In addition, Yao et al. [37] proposed a cost-driven design methodology in which
a multi-objective optimization problem maximizes the design freedom and minimizes the cost.

Despite significant development, no model has yet successfully integrated AM production and
distribution problems. The integration aspect of these two problems ensures that the sub-optimality
causing inefficient planning can be avoided. The above models also lack the perspective and the
involvement of a decision-maker. In particular, gaps in prior work and the corresponding aims of this
work are highlighted as follows:

• Researchers typically considered a single economic objective. However, process planning
involves multiple conflicting criteria from different stakeholders. Thus, this work employed a
multi-objective technique to account for the diverse requirements needed when process planning
in AM.

• Existing models generally considered problems at either the production or distribution planning
level; the lack of integration between these two problems likely causes sub-optimality for the
planners. As such, this work aimed to account for production and distribution planning.

• Process planning in AM involves various stakeholders with often conflicting requirements
involving trade-offs. Thus, an AHP approach was introduced as the tool used to assess the
decision analysis under multiple criteria to analyze decision-makers’ preferences under the diverse
objectives of the multi-objective optimization model.

• Rather than investigating a singular AM technology as prior researchers have tended to do, three
AM technologies (i.e., ME, SLA, and SLS technologies) were combined and analyzed to review
various aspects of AM; in addition, a case study was used to verify and validate the model. In
particular, the energy source used and the part nesting or stacking capability of the build chamber
were analyzed.

• Although AM planning-related mathematical models were recently proposed in the literature,
these models lack integration with the DSS, which prohibits decision-makers that are not familiar
with the mathematical notations to properly plan for their actual process. Thus, a decision-support
tool was developed here to aid AM practitioners.

3. Multi-Objective Optimization Model

3.1. Problem Statement

A list of orientated parts and their associated locations on printers were taken as the input set for
the mathematical model, which then analyzes how parts can be optimally scheduled to each AM printer
type based on various requirements and performance measures. A decision-maker may wait for more
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parts for a batch or decide to print parts on a 3D printer, given the planning objectives and employed
strategy. In addition, a deviation from the customers’ delivery date can be obtained, such that tardiness
(delay) and earliness are computed in terms of positive and negative lateness, respectively. We next
discuss the formulation of the mathematical approximations of two key technical requirements of ME,
SLA, and SLS technologies, as shown in Table 1: (1) the printing time approximation and (2) the part
nesting and stacking requirement. These requirements can then be adjusted accordingly to model
other AM technologies and processes.

Table 1. AM printing time and part nesting approximation.

AM Process Type
Printing Time Approximation

Based on Energy Source
Part Stacking Requirement

in a Build Chamber

Laser Extruder With Nesting Without Nesting

Material extrusion (ME)
√ √

Stereolithography (SLA)
√ √

Selective laser sintering
(SLS)

√ √

3.1.1. Printer Time

The power source used in ME technology differs from that of SLS and SLA technologies. SLS
technology uses a laser as the power source to sinter powdered material to create a 3D solid structure.
Similarly, SLA uses a UV laser to selectively cure a vat of photopolymer resin layer-by-layer until the
resin is solidified to form the desired 3D object. Each part scheduled to either an SLS or SLA printer
will be scanned by a laser layer-by-layer at approximately the same time. Conversely, ME technology
produces a part by extruding a small filament of molten material from a heated nozzle to form layers
of parts. Thus, each layer of each part scheduled to an ME printer is dependent on the tool-path of the
extruder controlled by a software package.

3.1.2. Part Nesting/Stacking

The build chamber use of a particular AM technology was then accounted for. Whereas printing
parts using ME and SLA printers generally require special support structures to fabricate overhanging
designs, a part constructed in an SLS printer is surrounded by unsintered powder in the build chamber
at all times. ME printers also demonstrate some restrictions on the slope of the overhang, whereas
SLA printers use supporting structures attached to the build platform to hold newly created sections
during the printing and to hold cross-sections in place. Thus, the unused area of the build chamber in
the X-Y directions was instead used as a setting capacity to place multiple parts in either ME or SLA.
Conversely, the SLS platform allows for part nesting using the supporting powder; thus, the volume
of the build chamber in the X, Y, and Z directions was used for positioning multiple parts and thus
increasing the build capacity.

3.2. Assumptions

• The printer type required for the parts ordered from customers is known. That is, the customer
discusses with the manufacturer and decides beforehand which technology to use for printing.
In addition, the manufacturer and customers have agreed on the properties and tolerances of
the printed parts on each printer, the material desired for each specific part, and the due date to
receive the printed parts.

• In this study, all assigned parts were assumed to be taken out from a printer at the same time to
properly associate the time-related parameters for parts to the due date of consumers. In addition,
as the total printing time for SLS and SLA depends on the layout in a batch and scanned laser
technology, the scanning time for a layer is likely much less than recoating time (z-directional
moving) for the printing process. Thus, to simplify the mathematical model, the print time for
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SLS and SLA technologies was approximated and assumed based on the maximum time of all
parts, which are less than the print time for all parts. On the other hand, the print time for ME
was approximated and assumed from the print time for all parts.

• Although the SLS printers sometimes need a support structure to avoid deformation from residual
stress depending on the specific material used, such as metals, we assumed in this study that the
manufacturer can use a surrounding powder in a build chamber to allow part nesting and to use
the maximum efficiency of a printer, which is possible for some materials, such as Polyamide. On
the other hand, parts to be printed do not stack on top of each other for the ME and SLA printers.

• The time- and cost-related parameters were also simplified and extrapolated from the Magics
software version 18.03 from Materilise, Belgium [38] and existing literature (e.g., see [34]) to
reduce the complexity of the developed model. For example, the printer cost in this study was
approximated from the indirect cost involving the technician, overhead, and machine costs. The
part times and costs were directly obtained from an estimate from the Magics software. The
part costs, in particular, were approximated from the consumed material for each part, support
(if needed), and associated waste; meanwhile, the part print time was inclusive of the printer
preparation time, cooling time, and post-processing time.

3.3. Model Notation

3.3.1. Sets and Indices

I: Ordered parts to be printed
J: Available 3D printers
IME, ISLA, ISLS: ME parts, SLA parts, SLS parts ⊆ I
JME, JSLA, JSLS: ME printers, SLA printers, SLS printers ⊆ J
K: Destinations

3.3.2. Parameters

Part-related parameters
cpart

i : Printing cost of a part i ∈ I ($/part)

cholding
i : Holding cost of a remaining part i ∈ I ($/part)

li: Projection length of a part i ∈ I (millimeter/part)
wi: Projection width of a part i ∈ I (millimeter/part)
hi: Projection height of a part i ∈ I (millimeter/part)
ai: Projection area of a part i ∈ I (millimeter2/part)
vconvex_hull

i : Volume of the bounding box of a part i ∈ I (millimeter3/part)
f num_part: Minimum required number of parts to be assigned to operate a 3D printer
Printer-related parameters
cprinter

j : Printer cost for a printer j ∈ J ($/printer)

lcap
j : Build chamber length of a printer j ∈ J (millimeter/printer)

wcap
j : Build chamber width of a printer j ∈ J (millimeter/printer)

hcap
j : Build chamber height of a printer j ∈ J (millimeter/printer)

acap_max
j : Area capacity for a printer j ∈ JME; JSLA (millimeter2/printer)

vcap_max
j : Volume capacity for a printer j ∈ JSLS (millimeter3/printer)

bprod: Total planned production budget ($)
Distribution-related parameters
ctrans: Cost of distributing a printed part ($)
dtrans

k : Transportation distance to each destination k ∈ K (kilometer)
dk: Demand/order of each destination k ∈ K (parts)
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ulim
k : Volume limit of the shipping capacity to each destination k ∈ K (millimeter3)

btrans: Total planned transportation budget ($)
Time-related parameters
tpart_ini_hour
i : Initial print time expected for an individual part i ∈ I (hour)

tlate
i : Lateness computed from a deviation from the due date for a part i ∈ I (day)

olabor: Labor working time (hour/day)

3.3.3. Decision Variables

Xi, j: Part i ∈ I to be scheduled to a printer j ∈ J
Y j: Printer j ∈ J scheduled for printing during a planning period
Gi,k: Printed part i ∈ I to be shipped to destination k ∈ K
Gtrans

k : Total transported parts for each destination k ∈ K

Rprod
i : Part i ∈ I that is not scheduled for printing in a planning period

Rtrans
k : Printed part that is not delivered to a destination k ∈ K

Ti: Positive lateness of a part i ∈ I (day)
B j: Percentage of printer area/volume that is utilized j ∈ J

3.3.4. Other Time-Related Variables

tpart_wait_day
i : Wait time for a part that is not scheduled for printing i ∈ I (day/part)

tpart_out_day
i : Finishing time for a part that is printed i ∈ I (day/part)

tprocess_day
i : Processing time for a part i ∈ I (day/part)

tprinter_hour
j : Total print time for a specific 3D printer j ∈ J (hour/printer)

tprinter_day
j : Total print time for a specific 3D printer j ∈ J (day/printer)

3.4. Multi-Objective Optimization Model

3.4.1. Multi-Objective Function

The optimization model was formulated using a mixed integer-linear programming (MILP)
approach with multiple objectives, as shown in (1)–(6). Objective function Z1, shown in (1), minimizes
the total cost, including production and transportation costs. Objective function Z2, shown in (2),
maximizes the minimum of the load balance for all printers regardless of the AM technologies used in
the production process to reflect an efficient performance with a focus on resources. Since ME and SLA
processes need support materials, assigned parts are not stacked in the Z-direction, as indicated in (3).
Conversely, SLS uses unsintered materials as supports; thus, parts can be stacked in the build chamber
(4). In addition, objective functions Z3 and Z4 (i.e., (5) and (6), respectively) are used to minimize the
total lateness, as well as the total number of unprinted parts and undelivered printed parts to reflect
the effective performance, focusing on the result.

Minimize
Z1 :

∑
j∈J

cprinter
j Y j +

∑
i∈I

∑
j∈J

cpart
i Xi, j +

∑
i∈I

cholding
i Rprod

i +
∑

k∈K
ctransdtrans

k Gtrans
k

(1)

Maximize Z2 :
∑
j∈J

B j (2)

B j ≤

 ∑
i∈IFDM;ISLA

aiXi, j

acap_max
j

× 100 ;∀ j ∈ JFDM; JSLA (3)
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B j ≤

 ∑
i∈ISLS

vconvex_hull
i Xi, j

vcap_max
j

× 100 ;∀ j ∈ JSLS (4)

Minimize Z3 :
∑
i∈I

Ti (5)

Minimize Z4 :
∑
i∈I

Ri
prod +

∑
k∈K

Rk
trans (6)

3.4.2. Constraint Sets

Each assigned and unassigned part is to be printed using a specific AM technology that was
decided upon in the customer’s order. That is, each part is scheduled to at most one printer, depending
on the requested printer (7); unassigned parts remain on the future scheduling list (8). The number of
parts to be scheduled for printing must be larger than a requirement designated by a planner (9).∑

j∈J

Xi, j ≤ 1;∀i ∈ I (7)

Rprod
i = 1−

∑
j∈J

Xi, j;∀i ∈ I (8)

∑
i∈I

∑
j∈J

Xi, j ≥ f num_part

∑
i∈I

∑
j∈J

Xi, j +
∑
i∈I

Rprod
i

 (9)

Parts printed using ME- and SLA-type printers must not stack on top of each other in the
Z-direction since the extruded filament and photopolymer resin are used as materials in ME and SLA,
respectively. In addition, these printers also require a support structure. Thus, the area of each part is
used to measure the printer capacity (10). The maximum capacity of each printer is then computed
with (11). In addition, the total area of all parts to be scheduled for printing on the ME and SLA printers
cannot be higher than the maximum capacity restriction (12) of a printer.

ai = liwi;∀i ∈ IFDM; ISLA (10)

acap_max
j = lcap

j wcap
j ;∀ j ∈ JFDM; JSLA (11)∑

i∈IFDM;ISLA

aiXi, j ≤ acap_max
j Y j ;∀ j ∈ JFDM; JSLA (12)

Conversely, parts can be stacked and nested in the build chamber of SLS printers since the powder
material is kept full and support structures are not required. Thus, the volume of each part is computed
based on a bounding box (13). The maximum volume limit of each SLS printer is then computed using
(14) based on the printer capacity. Additionally, the total volume of all printed parts cannot violate the
maximum capacity (15) of each printer.

vi = liwihi;∀i ∈ ISLS (13)

vcap_max
j = lcap

j wcap
j hcap

j ;∀ j ∈ JSLS (14)∑
i∈ISLS

viXi, j,k ≤ vcap_max
j Y j ;∀ j ∈ JSLS (15)

In addition, sets of constraints are required to reveal the restrictions on the length, width, and height of
each part. In particular, the size of each scheduled part cannot exceed the size limit of the printer (16)–(21).
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Here, the binary variable U and an arbitrarily large number m are used to restrict a part that exceeds the
size of the printer’s build chamber.

liUl
i, j ≤ lcap

j ;∀i ∈ I, j ∈ J (16)

Xi, j ≤ Ul
i, jm;∀i ∈ I, j ∈ J (17)

wiUw
i, j ≤ wcap

j ;∀i ∈ I, j ∈ J (18)

Xi, j ≤ Uw
i, jm;∀i ∈ I, j ∈ J (19)

hiUh
i, j ≤ hcap

j ;∀i ∈ I, j ∈ J (20)

Xi, j ≤ Uh
i, jm;∀i ∈ I, j ∈ J (21)

The restriction for the planned production budget, inclusive of the cost of the printer, part printing,
and related holding costs, is illustrated in (22).∑

j∈J

cprinter
j Y j

+
∑

i∈I

∑
j∈J

cpart
i Xi, j

+
∑

i∈I

cholding
i Rprod

i

 ≤ bprod (22)

As the sizes and geometries of parts are varied and must be printed layer-by-layer, the print
time varies by part and by AM technology. The ME technology uses a heated extruder to dispense
a filament material from an extruder layer-by-layer and part-by-part; thus, the total print time for
an ME printer can be computed based on the sum of the print times of all the assigned parts, as
shown in (23). Conversely, SLS and SLA use laser technology, which scans each layer of all scheduled
parts such that the powdered material in SLS is sintered and the photopolymer resin in SLA is cured
approximately at the same time. As a result, the print time can be computed using the maximum
print time based on all parts assigned to the printer since the assigned part with the greatest time
requirement will determine the print time (24). This non-linear term was linearly transformed using
(25)–(27), in which the auxiliary variable Si, j is used in the transformation process. Next, the print time
in days is computed based on the print time in hours and labor working time (28).

tprinter_hour
j =

∑
i∈IFDM

tpart_ini_hour
i Xi, j;∀ j ∈ JFDM (23)

tprinter_hour
j = max(tpart_ini_hour

i∈ISLA;ISLS Xi, j);∀ j ∈ JSLA; JSLS (24)

tpart_ini_hour
i Xi, j ≤ tprinter_hour

j ;∀i ∈ ISLA; ISLS;∀ j ∈ JSLA; JSLS (25)

tpart_ini_hour
i Xi, j ≥ tprinter_hour

j −

(
1− Si, j

)
m;∀i ∈ ISLA; ISLS;∀ j ∈ JSLA; JSLS (26)∑

i∈ISLA;ISLS

Si, j ≥ 1;∀ j ∈ JSLA; JSLS (27)

tprinter_day
j = tprinter_hour

j /olabor;∀ j ∈ J (28)

The actual time in days for each scheduled part is computed using (29), given that all parts are
taken out of a printer at the same time. This non-linear term represented by the variable Wi, j in (30) is
linearly transformed using (31)–(35), in which p and q are arbitrary numbers.

tpart_out_day
i =

∑
j∈J

tprinter_day
j Xi, j;∀i ∈ I (29)

Wi, j = tprinter_day
j Xi, j;∀i ∈ I, j ∈ J (30)
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tpart_out_day
i =

∑
j∈J

Wi, j;∀i ∈ I (31)

Wi, j ≤ qXi, j;∀i ∈ I, j ∈ J (32)

Wi, j ≥ pXi, j;∀i ∈ I, j ∈ J (33)

Wi, j ≤ tprinter_day
j − p

(
1−Xi, j

)
;∀i ∈ I, j ∈ J (34)

Wi, j ≥ tprinter_day
j − q

(
1−Xi, j

)
;∀i ∈ I, j ∈ J (35)

Next, any parts that are not assigned to a printer will be assigned during the next decision-making
period (36), which is the next scheduling period. The actual process time in days for all parts is
computed using the constraint set (37) based on the assigned and unassigned parts. Positive lateness is
then computed using (38).

tpart_wait_day
i = eRprod

i ;∀i ∈ I (36)

tprocess_day
i = tpart_out_day

i + tpart_wait_day
i ;∀i ∈ I (37)

tlate
i + tprocess_day

i = Ti;∀i ∈ I (38)

We next discuss the transportation-related constraints. Initially, each printed part will be
transported to a specific customer location (39). The total number of distributed parts may not meet
the demand requirement at each destination; parts that are printed but not delivered in the current
planning period are computed using (40) and (41). The total volume of all shipments for 3D printed
parts, regardless of the printer types used, cannot exceed the shipping capacity (42). Additionally, the
sum of transportation expenses, based on the distance to the destination, cannot exceed the budget (43).∑

j∈J

Xi, j =
∑
k∈K

Gi,k;∀i ∈ I (39)

∑
k∈K

Gi,k = Gtrans
K ;∀k ∈ K (40)

Gtrans
K + Rtrans

K = dk;∀k ∈ K (41)∑
i∈I

vconvex_hull
i Gi,k ≤ ulim

k ;∀k ∈ K (42)

∑
k∈K

ctransdtrans
k Gtrans

k ≤ btrans (43)

Finally, the constraints for variable dimensions are shown in (44)–(57).

Xi, j = {0, 1};∀i ∈ I, j ∈ J (44)

Y j = {0, 1};∀ j ∈ J (45)

Gi,k = {0, 1};∀i ∈ I; k ∈ K (46)

Xprod
≥ 0 (47)

Gtrans
k ≥ 0;∀k ∈ K (48)

Rprod
i = {0, 1};∀i ∈ I (49)

Rtrans
k ≥ 0;∀k ∈ K (50)

Ti ≥ 0;∀i ∈ I (51)
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Si, j = {0, 1};∀i ∈ ISLA; ISLS;∀ j ∈ JSLA; JSLS (52)

B j ≥ 0 (53)

Wi, j ≥ 0;∀i ∈ I, j ∈ J (54)

Ul
i, j, = {0, 1};∀i ∈ I, j ∈ J (55)

Uw
i, j, = {0, 1};∀i ∈ I, j ∈ J (56)

Uh
i, j, = {0, 1};∀i ∈ I, j ∈ J (57)

4. Multi-Objective Solution

4.1. Non-Preemptive Solution Approach

The proposed optimization model in this study considers multiple objectives. Thus, the
single-objective, weighted-sum method known as a non-preemptive approach is presented to find a
solution from a model with multiple objectives. That is, the ideal (I) and anti-ideal (AI) solutions are
initially computed, representing the best and worst solution obtained on solving a particular objective
function. Then, the linear normalization technique shown in (58) is further used to obtain comparable
objectives regardless of their initial units by converting each objective function with different units
of measurement to be in the range [0,1]. Here, whereas ZI

i indicates the ideal solution based on the
max Zi for the benefit criterion and min Zi for the cost criterion, ZAI

i indicates the anti-ideal solution
based on min Zi for the benefit criterion and max Zi for the cost criterion. Then, all the linearly
normalized objective functions are transformed to a maximization problem and can be reformulated as
the weighted objective model, asc presented in (59). Weight αi emphasizes the importance of objective
function i, which can be obtained using the AHP method presented in the next section.

0 ≤
Zi −ZAI

i

ZI
i −ZAI

i

≤ 1 for benefit criterion; 0 ≤
ZAI

i −Zi

ZAI
i −ZI

i

≤ 1 for cos t criterion (58)

Maximize α1

ZAI
1 −Z1

ZAI
1 −ZI

1

+ α2

Z2 −ZAI
2

ZI
2 −ZAI

2

+ α3

ZAI
3 −Z3

ZAI
3 −ZI

3

+ α4

ZAI
4 −Z4

ZAI
4 −ZI

4

 (59)

4.2. Analytic Hierarchy Process (AHP)-Based Criteria Weights

This section discusses how the weight parameters (αi) are obtained from a decision-maker. Vaidya
and Kumar [39] indicated that future applications of AHP include decision-making and other complex
issues involving an integrated application of AHP and other techniques. More details regarding recent
AHP-based techniques and applications can be found in the literature (e.g., [40–42]). AHP works by
transforming empirical comparisons into numerical values, allowing a decision-maker to incorporate
their experience and judgment into an evaluation. In this study, the relative importance scale of 1–9
was used for pairwise comparisons, where indifference corresponds to 1; weak preference to 3; definite
preference to 5; strong preference to 7; very strong preference to 9; and 2, 4, 6, and 8 are used as
intermediate values for comparisons. These pairwise comparisons are then recorded in a matrix, as
shown in (60). The diagonal elements are always 1, illustrating the comparisons of the same element.
Only the upper triangular matrix needs to be evaluated, as the reciprocal value in the lower triangular
matrix can be simply converted. Thus, there are [n× (n− 1)]/2 judgments required to solve the matrix,
where n is the number of evaluated criteria.
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A =


1 a12 . . . a1n

a21 1 . . . a2n

. . . a ji = 1/ai j 1 . . .
an1 . . . . . . 1

 (60)

where ai j is the comparison between i and j based on the importance scale.
Once the comparison matrix is normalized by dividing each value by the total value in each

column, the normalized principal eigenvector is calculated, which provides the criteria weights by
computing the row average. To ensure that a decision-maker has been consistent, the consistency
index (CI) (61) and consistency ratio (CR) (62) can be calculated, based on the maximum eigenvalue
(λmax) and random consistency index (RI), respectively. The RI values can be obtained based on the
following (n, RI) pairs: (1, 0.00), (2, 0.00), (3, 0.58), (4, 0.90), (5, 1.12), (6, 1.24), (7, 1.32), (8, 1.41), (9, 1.45),
and (10, 1.49). The CR value is used to interpret the consistency, in which a CR of less than 10% implies
an acceptable consistency.

CI =
λmax − n

n− 1
(61)

CR =
CI
RI

(62)

Following the AHP approach, the objective functions and criteria weight were computed, as
shown in Table 2. Initially, an AM expert rated the criteria preference using the AHP’s scale for all
pairwise comparisons. For example, the total cost criterion was indifferent to weakly preferred (i.e.,
2) for both the load balance and total lateness criteria, whereas the total unassigned parts criterion
was strongly to very strongly preferred to the total cost criterion (i.e., 1/8). The pairwise-comparison
matrix was then normalized, the eigenvector was calculated, the maximum eigenvector (λmax) was
obtained, and the CI and CR were computed: λmax = 4.17, CI = (4.17 − 4)/(4 − 1) = 0.06. An RI of 0.90
was then chosen; as such, CR = 0.06/0.90 = 0.06 or 6%. Since the value of CR was less than 10% (i.e.,
0.1), the judgments were found to be acceptably consistent. The obtained criteria weights for the total
cost (Z1), load balance (Z2), total lateness (Z3), and total unassigned parts (Z4) were thus 0.135, 0.078,
0.082, and 0.705, respectively (Table 2). That is, the criteria were ranked from most to least important as
total unassigned parts, total cost, total lateness, and load balance, respectively. These obtained criteria
weights were then used in the non-preemptive method introduced earlier.

Table 2. Pairwise comparison matrix and criteria weight based on the analytic hierarchy process
(AHP) approach.

Criteria Total Cost Load Balance Total Lateness Unassigned Parts Criteria Weight

Total cost 1 (0.100) 2 (0.167) 2 (0.182) 1/8 (0.090) 0.135
Load balance 1/2 (0.050) 1 (0.083) 1 (0.091) 1/8 (0.090) 0.078
Total lateness 1/2 (0.050) 1 (0.083) 1 (0.091) 1/7 (0.103) 0.082

Unassigned parts 8 (0.800) 8 (0.667) 7 (0.636) 1 (0.718) 0.705

Note: Parenthetical values denote normalized values.

5. Case Study and Discussion

The case study and designed experiment are discussed in this section. The mathematical model
was developed and analyzed using A Mathematical Programming Language (AMPL) software with
CPLEX solver version 12.10 from AMPL Optimization Inc., CA, USA [43]. In particular, CPLEX
solves integer-type problems by using algorithms inclusive of branch-and-bound, cut generators,
and heuristics. The case study and data for an experimental design were analyzed on a PC with the
following properties: an Intel (R) Core (TM) i7-7500 CPU, 2.70 GHz, and 16.0 GB of RAM.
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5.1. Case Study Data

A 3DP dataset related to automotive and healthcare components was applied to test the model
functionality, as shown in Table 3. Thirty parts were planned and scheduled for printing, including 10
automotive parts requiring ME (parts A1–A10), 5 automotive and 5 healthcare parts requiring SLA
(parts A1–A5 and H1–H5), and 5 automotive and 5 healthcare parts requiring SLS (parts A6–A10
and H6–H10). In addition, three shipping destinations with varied transportation requirements were
included. Five printers were assumed available in this study: two ME printers (Sprout with a 235 ×
200 × 200 mm build chamber and MakerBot Z18 with a 300 × 305 × 457 mm build chamber), two SLA
printers (Formlabs with a build chamber of 128 × 128 × 200 mm and Replas RPS with a build chamber
of 450 × 450 × 300 mm), and one SLS printer (sPro 60 from 3D Systems with a 385 × 330 × 460 mm
build chamber). Then, part-related parameter data were obtained from Magics [38] and by randomly
generating data, as illustrated in Table 4. Furthermore, there are also existing cost and time models in
the literature (e.g., see [34]).

Table 3. Case study parts.

Automotive (A) * Healthcare (H) **

CAD File Length
(mm)

Width
(mm)

Height
(mm)

Volume/
Proj. Area CAD File Length

(mm)
Width
(mm)

Height
(mm)

Volume/
Proj. Area

1
214 120 7 179,760/

25,680 1
129 140 230 4,153,800/

18,060

2
78 77 45 270,270/

6006 2
100 84 118 991,200/

8400

3 291 85 88 2,176,680/
24,735 3

50 79 27 106,650/
3950

4
125 283 26 919,750/

35,375 4
50 48 29 69,600/

2400

5
72 24 28 48,384/

1728 5 30 100 56 168,000/
3000

6
311 48 44 656,832/

14,928 6
43 53 39 88,881/

2279

7
185 353 11 718,355/

65,305 7
27 38 25 25,650/

1026

8
176 90 60 950,400/

15,840 8
51 102 35 950,400/

15,840

9 89 80 52 370,240/
7120 9

83 68 86 485,384/
5644

10 135 146 33 650,430/
19,710 10 85 84 7 49,980/

7140

Remark: * Data adapted from Ransikarbum et al. [11]. ** Data adapted from NIH 3D Print Exchange [44]. CAD:
Computer-aided design.

Table 4. Parameters for the case study and experimental design.

Parameters Details

Cost-Related Parameters

Printer cost ($) ME (Small 500, Large 800); SLA (Small 600, Large
1000); SLS (Small 1200, Large 1500)

Part cost ($) Magics; ME: Uniform (20, 100);
SLA: Uniform (50, 200); SLS: Uniform (100, 300)

Part-holding cost ($) ME: Uniform (20, 100); SLA: Uniform (50, 200);
SLS: Uniform (100, 300)

Transportation cost ($) Uniform (5, 10)

Production budget ($) 20,000 a

Transportation budget ($) 20,000 a
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Table 4. Cont.

Parameters Details

Part and Printer-Related Parameters

Projection length/width/height (mm.) ME: Uniform (80, 220); SLA: Uniform (90, 230);
SLS: Uniform (100, 250)

Shrink-wrap and bounding box volume (mm.) Magics

Printer capacity (mm.)
ME (Small 235 × 200 × 200, Large 300 × 305 × 457);
SLA (Small 128 × 128 × 200, Large 450 × 450 × 300);
SLS (Small 385 × 330 × 460, Large 700 × 380 × 580)

Fraction determining the minimum area/volume of a
printer 3% a

Fraction determining the minimum number of parts
required to operate a printer 20% a

Logistics-Related Parameters

Transportation distance (km.) Uniform (50, 100)

Demand and order (pieces) Uniform (5, 30)

Shipping capacity (m3) Uniform (5, 8)

Time-Related Parameters

Print time for an individual part (hours)
Magics

ME: Uniform (5, 30); SLA: Uniform (10, 35);
SLS: Uniform (3, 20)

Labor working hours 8 h/day

Lateness computed from the customers’ due dates
(days) U (−5, 5)

Wait time for the next period for parts that are not
assigned (days) 7 days

a: The parameter value was adjusted according to the number of parts and printers.

5.2. Multi-Objective Solution

The case study was initially solved using the weighted-sum objective model, as presented in
Table 5. The computation time was also solved in seconds since the problem size of the case study
was relatively small. Each obtained objective function was then used as an ideal solution of the
non-preemptive method (i.e., ZI

1, ZI
2, ZI

3, and ZI
4 were 6158, 5.92, 139, and 10, respectively). By

converting the maximization to minimization and vice versa, the non-ideal solutions were obtained
(i.e., ZAI

1 , ZAI
2 , ZAI

3 , and ZAI
4 were 16,596, 0, 663, and 46, respectively). Solving each objective function

alone yielded different printer schedules. The parts assigned to each printer during the production
process and distributed to each location during the distribution process differed depending on the
planning objectives. For example, solving Z1 with the minimum cost policy resulted in the least usage
of the smallest-sized printers (i.e., the small ME, SLA, and SLS printers) and a small number of parts
assigned to meet the minimum requirements or a daily operation with the minimum possible cost.
Conversely, solving Z2 (i.e., maximizing the load balance of all printers, regardless of AM type) and Z3

(i.e., minimizing lateness) required all existing printers to be used. Solving Z4 (i.e., minimizing the total
number of unassigned parts) required that all existing printers be used, except the small SLA printer.

The solution set of each single-objective model highlighted trade-offs among the criteria. For
example, solving Z1 yielded the lowest total operating and distribution cost (i.e., $6,158); however,
the outputs related to the load balance and total lateness did not outperform solving other objective
functions, and a high number of parts were left unassigned when the holding costs were considered.
Meanwhile, solving Z3 provided the least total lateness (138 days), the total operating cost was higher
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than that of Z1 (i.e., $15,827 vs. $6,158), the load balance was less than that of Z2 (i.e., 4.76% vs.
5.92%), and there were a greater number of unassigned parts than that of Z4 (i.e., 8 vs. 5). Then, a
multi-objective solution was obtained by applying a non-preemptive method. Given the ideal (I) and
anti-ideal (AI) solutions obtained earlier, the developed model was converted into a single-objective
weighted optimization model. For example, let us assume that a decision-maker is interested in all
objectives with equal preference, implying that the criteria weights are all equal. The optimal result,
which was solved within a second, shows that the model tried to balance all the criteria optimally. That
is, the total cost was found to be $14,999, the load balance was found to be at least 5.92%, the total
lateness was 145 days, and the total unassigned parts were 6.

Table 5. Results of the case study based on each objective function.

Desired Criteria Z1 Z2 Z3 Z4 Multi-Objective

Solve time (s) 0.141 0.062 0.547 0.062 0.453

Assigned printers
ME1
SLA1
SLS1

ME1, ME2
SLA1, SLA2

SLS1

ME1, ME2
SLA1, SLA2

SLS1

ME1, ME2
SLA2
SLS1

ME1, ME2
SLA1, SLA2

SLS1

Assigned parts
ME1 (A2, 5, 10)

SLA1 (H3, 4)
SLS1 (A8, 10; H8)

ME1 (A2, 5, 10)
ME2 (A3, 4, 8)

SLA1 (A2; H3, 5)
SLA2 (A1, 3, 4; H1, 2, 4)

SLS1 (A6, 8, 9, 10; H6, 7, 8,
9, 10)

ME1
(A2, 5, 10)

ME2
(A3, 4, 8)

SLA1
(A5; H4, 5)

SLA2 (A1, 4, 5; H1, 2, 3)
SLS1 (A6, 8, 9; H6, 8, 9, 10)

ME1 (A2, 5, 10
)ME2 (A3, 4, 8)

SLA2 (A1, 2, 3, 4, 5; H1, 2,
3, 4, 5)

SLS1 (A6, 8, 9, 10;
H6, 7, 8, 9, 10)

ME1 (A2, 5, 10)
ME2 (A3, 4, 8)

SLA1 (A2; H4, 5)
SLA2 (A1, 4, 5; H1, 2, 3)

SLS1 (A6, 8, 9, 10; H6, 7, 8,
9, 10)

Part shipment Firm 2 (A2, 5, 8, 10, 10;
H3, 4, 8)

Firm 1 (A2, 3, 6, 9, 10; H2,
3, 5, 7, 8)

Firm 2 (A1, 3, 4, 4, 8, 10;
H1, 10)

Firm 3 (A2, 5, 8; H4, 6, 9)

Firm 1 (A2, 2, 4, 4, 5; H2, 4,
6, 8, 9)

Firm 2 (A3, 8, 8, 9, 10; H5,)
Firm 3 (A1, 5, 6; H1, 3, 10)

Firm 1 (A2, 4, 8; H6, 9, 10)
Firm 2 (A1, 5, 6, 8, 9, 10, 10;

H4, 5)
Firm 3 (A2, 3, 3, 4, 5; H1, 2,

3, 7, 8)

Firm 1 (A2, 3, 8; H5)
Firm 2 (A2, 4, 5, 6; H2, 4, 5,

7, 8, 9)
Firm 3 (A1, 4, 8, 9, 10, 10;

H1, 3, 6, 10)

Total operating
cost ($) 6,158 15,827 15,108 15,256 14,999

Load balance

ME1 (58.39%)
ME2 (0%)

SLA1 (38.76%)
SLS2 (0%)

SLS1 (3.05%)

ME1 (58.39%)
ME2 (83.01%)
SLA1 (79.08%)
SLA2 (54.05%)
SLS1 (5.92%)

ME1 (58.39%)
ME2 (83.01%)
SLA1 (69.62%)
SLA2 (43.45%)
SLS1 (4.76%)

ME1 (58.39%)
ME2 (83.01%)

SLA1 (0%)
SLA2 (61.30%)
SLS1 (5.92%)

ME1 (58.39%)
ME2 (83.01%)
SLA1 (69.62%)
SLA2 (43.45%)
SLS1 (5.92%)

Maximin Load 0% 5.92% 4.76% 0% 5.92%

Total lateness
(days) 196 622 138 415 145

Total parts
unassigned

(parts)

22/22
(ME: 7;
SLA: 8;
SLS: 7)

6/6
(ME: 4;
SLA: 1;
SLS: 1)

8/8
(ME: 4;
SLA: 1;
SLS: 3)

5/5
(ME: 4
SLA: 0
SLS: 1)

6/6
(ME: 4
SLA: 1
SLS: 1)

5.3. Decision-Support System

In reality, a decision-maker may prefer one objective to another. The AHP method discussed earlier
can be implemented to obtain criteria weights based on preferences from the decision-maker. A Visual
Basic for Applications (VBA)-based interactive input–output system was developed in Microsoft Excel
to aid practitioners not familiar with the mathematical notations, as shown in Figure 3. The developed
model-driven DSS can be used to access and manipulate the integrative AHP and multi-objective
optimization model, as well as assist decision-makers in planning the production and distribution
for a network of AM printers. The embedded macro VBA coding and AHP input sheet, in which
a decision-maker makes the pairwise comparisons among the criteria to obtain the criteria weights,
is shown in Figure 3a,b, respectively. The AHP-based criteria weights, shown in cells H22:H25 in
Figure 3b, were linked to the objective weights in cells F3:F6 in Figure 3c. The input sheet of the
developed MILP, which allows a decision-maker to specify the parts to be printed and distributed, as
well as the parameters related to the different requirements of the acquired AM printers, are illustrated
in Figure 3c. Once “Run Program” is clicked, the underlining model analyzes the data and presents
outputs, as shown in Figure 3d; the objective functions are shown in cells E3:E6. Additionally, the
variables relevant to the part-to-printer assignment, part distribution, and load balance for each printer
are presented.

With an emphasis on the total unassigned parts’ objective function (i.e., criteria weights were 0.13
for the total cost, 0.08 for the load balance, 0.08 for the total lateness, and 0.71 for the total unassigned
parts), the total number of unassigned parts decreased when compared with the outputs from the
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equal-weight solution (i.e., criteria weights were 0.25 for the total cost, 0.25 for the load balance, 0.25
for the total lateness, and 0.25 for the total unassigned parts). As expected, this was due to there being
trade-offs with other objective functions.

Figure 3. Screenshots of the decision-support tool: (a) Visual Basic development, (b) AHP weight
synthesis, (c) input sheet using the AHP weights, and (d) output sheet.

5.4. Computation Time Result

An experiment was then conducted to evaluate the model complexity by varying three key factors,
which were the number of parts, printer types, and distribution locations. Matlab software version 8.5
from MathWorks, Natick, MA, USA was used to randomly generate test data by varying the random
number of parts scheduled to each AM printer at two levels (i.e., 100 parts and 500 parts). We note
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that multiple items of the same part type or different part types in the same batch were allowed. The
number of printers and size of the build chambers for ME, SLA, and SLS were tested at two levels
(i.e., 5 printers and 10 printers). The number of distribution locations was also evaluated at two levels
(i.e., 5 locations and 10 locations) with random distances and demands. Ten replications of data were
randomly generated for each test combination, yielding a total of (2)3(10) = 80 experimental runs. The
resulting average computation time is shown in Table 6, in which the computation time for each run
was capped at 1 h.

The aggregated average computation time based on the varied printer, part, and destination
numbers with two levels for each factor is shown in Table 6. The results show that varying the number
of printers, parts, or locations affected the computation time of the model. In particular, the average
computation time suggested that minimizing the total cost (i.e., solving Z1) required the least average
computation time at a few seconds (i.e., 2.40 s), whereas minimizing the total lateness or delays (i.e.,
solving Z3) required the highest average computation time (i.e., 2449.38 s). Minimizing the load
balance or the total number of unassigned parts not printed or delivered (i.e., solving Z2 or Z4) required
an acceptable average computation time of a few minutes (i.e., 50.11 and 155.64 s). Regarding the
computation time for the non-preemptive method of the multi-objective solution, the equal-weight
consideration required a higher average computation time, regardless of the combination of factors
and level of printers, parts, or destinations. This result was not surprising since solving the model with
an equal-weight consideration aimed to balance all the objective functions at the same time, requiring
a higher complexity and hence computation time.

Table 6. Aggregated computation time for a designed experiment (seconds).

Factors/Levels Z1 Z2 Z3 Z4 Multi-Objective

Printers
5 0.79 15.33 1818.22 1.24 1942.39

10 4.01 84.88 3080.53 310.03 3420.42

Parts
100 1.08 2.60 1298.75 183.85 1782.87
500 3.72 97.61 3600 127.43 3579.94

Destinations
5 2.52 4.28 2612.64 4.02 2644.53

10 2.28 95.93 2286.11 307.26 2718.28

Grand
average 2.40 50.11 2449.38 155.64 2681.40

6. Conclusions and Future Research

AM, also known as 3DP, became an essential method that is capable of streamlining and expediting
product development, making prototypes, and fabricating tooling components and final production
parts, as well as reducing the time to market, improving product quality, and reducing costs. Aspects
requiring further research include process planning and supply chain design, especially printer
selection, part orientation, and part-to-printer scheduling. In this study, an integrative multi-objective
optimization model and AHP technique were introduced for integrated production and distribution
problems in AM. The developed multi-objective optimization model reflected diverse requirements by
considering the operating and distribution costs, the load balance of printers, delays, and the remaining
parts not assigned and distributed. The AHP was employed to evaluate the objective weights for the
non-preemptive approach of the multi-objective solution.

The developed model employed ME, SL, and SLS processes; technical aspects were evaluated for
printer-time approximation and part-nesting requirements. The model was verified and validated
using selected automotive and healthcare components, and the relevant data for parts, printers, and
distribution locations were collected to test the model functionalities. The designed experiment
for the computation time was evaluated based on three key factors: the number of parts, printers,
and distribution locations, each with two levels. Two criteria weight settings, with equal-weight
consideration and with the employed AHP method, were also used to analyze the model in this study.
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The results indicated the presence of trade-offs among conflicting criteria of the proposed model. A
decision-support tool for AM planning was developed using Excel to aid practitioners not familiar with
AHP mathematical notations or the optimization approach. The development of the decision-support
tool is needed to reduce the gap between researchers and practitioners in AM.

This study provided a practical analysis of the integrated production and distribution problems
for AM. As the AM supply chain becomes more complex and involves shared AM printers in a business
platform, evaluating how a business can improve its production and process planning to improve
the capacity, revenue, and management practices is important. Directions for future research should
include evaluating other solution methods in the realm of metaheuristics to improve the computation
time due to the NP-hard complexity of the model for practical, effective solutions. Although the
illustrated case study was solved in a few seconds, a relatively low number of parts, printers, and
delivery locations were included; the computation time will increase as more variables are included.
Additionally, this study focused on AM; however, production facilities may aim to use both AM
printers and traditional manufacturing equipment to fabricate a variety of parts. Thus, enhancing the
scheduling system to incorporate both types of technologies should also be a subject of future study.
Lastly, to simplify the complexity of the developed mathematical model, associated assumptions are
needed. Thus, these assumptions are to be further relaxed to incorporate practical aspects of AM. For
example, the scheduling criterion induced by the material variations from the manufacturers may be
considered such that the number of changeovers is minimized for batch replacement. Some existing
quality issues (e.g., deformation in specific material in the SLS process, printed part damage) may also
be considered during the model development. That is, given a possibility that frequently obtained
prints may be damaged and need to be repeated, an uncertainty aspect could be incorporated in the
mathematical model using stochastic programming in the future.
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