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Abstract: Joint processing coordinated multipoint transmission (JP-CoMP) has gained high attention
as part of the effort to cope with the increasing levels of demand in the next-generation wireless
communications systems. By clustering neighboring cells and with cooperative transmission within
each cluster, JP-CoMP efficiently mitigates inter-cell interference and improves the overall system
throughput. However, choosing the optimal clustering is formulated as a nonlinear mathematical
problem, making it very challenging to find a practical solution. In this paper, we propose a distributed
cell clustering algorithm that maximizes the overall throughput of the JP-CoMP scheme. The proposed
algorithm renders the nonlinear mathematical problem of JP-CoMP clustering into an approximated
linear formulation and introduces a multi-layer message-passing framework in order to find
an efficient solution with a very low computational load. The main advantages of the proposed
algorithm are that i) it enables distributed control among neighboring cells without the need for
any central coordinators of the network; (ii) the computational load imposed on each cell is kept
to a minimum; and, (iii) required message exchanges via backhaul result in only small levels of
overhead on the network. The simulation results verify that the proposed algorithm finds an efficient
JP-CoMP clustering that outperforms previous algorithms in terms of both the sum throughput and
edge user throughput. Moreover, the convergence properties and the computational complexity of
the proposed algorithm are compared with those of previous algorithms, confirming its usefulness in
practical implementations.
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1. Introduction

The increased level of demands for data transmission is a major issue that needs to be addressed
in relation to cellular networks [1]. In 2016, there was an increase in data demand levels of 63 percent,
with levels up 18-fold over five years [2]. The increased level of demand for data must be solved
through increased cellular network performance. An increased number of base stations (BS) and
spatial reuse are examples of solutions capable of solving this problem [3]. However, these solutions
must be accompanied by strategies that prevent data transmission collisions, especially in edge cell
regions [4]. Coordination among base stations is required in such cases. In order to prevent data
transmission collisions, the base station coordination approach has been introduced by the Third
Generation Partnership Project (3GPP), Release-11 [5], in Long Term Evolution Advanced (LTE-A).
This method is known as the Coordinated Multipoint (CoMP).
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CoMP has become one of the key methods in the fifth-generation (5G) wireless communication
field. CoMP is a network cooperative method that mitigates inter-cell interference (ICI) from
neighboring cells to provide higher spectral efficiency. CoMP provides benefits in many directions,
such as extending cell coverage area and improving edge cell throughput [3,4,6,7].

Downlink CoMP systems can be classified into two types: joint processing coordinated multipoint
(JP-CoMP) and coordinated beamforming coordinated multipoint (CB-CoMP) [8]. The main difference
between JP-CoMP and CB-CoMP lies in their implementation scheme, i.e., whether user data is shared
across the cooperating cells via backhaul or not [6]. JP-CoMP exchanges data and CSI concurrently
among cooperating base stations in a cluster [9], while CB-CoMP only shares CSI without exchanges
of data among cooperating base stations in a cluster [10].

In the CoMP schemes, the formation of efficient clusters is a critical factor affecting
overall CoMP performance. However, finding the optimal clustering approach typically requires
combinatorial optimization due to the nonlinearity. In general, suboptimal clustering results in
increased computational complexity, failures of proper data exchanges, and less optimal throughput
performances of CoMP [8]. A limited backhaul capacity is another crucial factor that degrades JP-CoMP
performance levels on the real-world networks.

The cell clustering in CoMP has been widely studied in recent years as part of effort to improve
inter-cell interference management [8]. Clustering algorithms are classified into two types: the static
and dynamic clustering types. Static clustering methods have been proposed in order to optimize edge
throughput cells by relying on a predetermined fixed base station cluster [8]. Each static clustering
algorithm utilizes different strategies to determine the efficient cluster formation. Examples include
overlapping [11], formation cooperative strategies [12], and sectoring [13]. These clustering methods
have simple configurations, but the aforementioned works did not consider suitable methods for
adapting clustering to changes on the network.

To this end, dynamic clustering is introduced here to realize additional performance improvements.
These methods utilizes different approaches to achieve optimal performance goals, i.e., dynamic
network-centric clustering [14], the blossom tree algorithm [15], graph-based clustering [16], the
use of sub-cluster [17], a novel re-clustering [18], coalitional game theory [19], density-based spatial
clustering [20], the use of channel state prediction [21], a weight traffic model [22], the exchange-matching
algorithm [23], mixed-integer nonlinear programming [24], and the successive convex algorithm [25].
Dynamic clustering adapts to network changes, but these methods are designed based on centralized
control on the network, which requires extensive information sharing and high computational complexity.

The CoMP clustering method has also been recently explored in conjunction with affinity propagation
(AP) [26] and capacitated affinity propagation (CAP) [27]. Both of the methods utilize message
passing [28–31] to achieve the optimal base station cluster. When compared to AP, CAP limits the
maximum number of clusters in order to enable sophisticated control over the clusters. These methods
provide decentralized clustering with low computational complexity. However, they also attempt to
solve the cell clustering by minimizing the sum-distance problem instead of maximizing the sum-capacity
problem. The different approaches by these methods have resulted in suboptimal performance.

In this paper, we propose a distributed downlink JP-COMP clustering algorithm that is based
on multi-layer message passing. Based on graphical models described in relation to the clustering
problem, all base stations perform distributed optimization by exchanging a small-sized information
known as a message. Message exchange occurs in multi-layer to find the best solution. In addition, the
distributed nature of the proposed algorithm requires lower computational complexity and it incurs
less backhaul overload.

The main contributions in this paper are summarized, as follows. We propose a distributed cell
clustering algorithm utilizing message passing in downlink JP-CoMP. The paper addresses sum
capacity maximization in cell clustering through approximation into a linear objective function.
Based on the approximation, the dynamic cell clustering problem is rendered into a multi-layer
message passing problem. Each base station will exchange messages with the neighboring base
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stations and will choose an appropriate partner that is based on the optimum sum capacity in the first
layer. The partner selected during the previous layer will exchange messages again with the other
neighboring chosen partners and will choose an appropriate partner based on the closest distance in
the second layer. Finally, partner BSs in all layers form a cooperating cluster in which they share CSI
and user data for joint transmission. By enabling distributed control of the network, this proposed
algorithm also reduces both the computational complexity and backhaul overload.

The rest of this paper is organized, as follows. Section 2 describes the JP-CoMP system model.
Section 3 explains message passing for JP-CoMP clustering. Section 4 presents the simulation results.
Section 5 summarizes this paper.

2. System Model

This section will provide information regarding the assumption, constraints, and system model
of joint processing CoMP. The section consists of the three sub-sections on downlink JP-CoMP, the
channel model, and the JP-CoMP sum capacity.

2.1. Downlink JP-CoMP

JP-CoMP exchanges data and channel state information (CSI) among the cooperating base stations
concurrently. These data exchanges and CSI shared in JP-CoMP are connected by a backhaul link.
The downlink in JP-CoMP will increase the transmission throughput to each user. The cooperating
base stations will transmit the downlink signal to each user in the cluster. Each user will receive
signals from different base stations. The JP-CoMP scheme typically provides higher sum capacity
levels when compared to other schemes by mitigating interference signals from neighboring cells.
This coordination scheme also has a simple configuration. However, JP-CoMP requires a high backhaul
bandwidth and low latency due to the data exchanges among cooperating base stations.

2.2. Channel Model

Consider a downlink cellular system that consists of C cells. Each cell consists of one base station
and M users that are randomly distributed. Each base station has transmitter antennas, Nt, and each
user has receiver antennas, Nr. Figure 1 shows an example of a C = 7 cellular network for a downlink
JP-CoMP system. This illustration also provides an example of how the base station clusters transmit
data to the selected user in the cluster. Each base station will exchange data and CSI with the
cooperating base stations in order to create a cell cluster. The cooperating base stations that act as
a cluster member will transmit data to all users in the cluster.

Figure 1. Downlink JP-CoMP configuration system with seven cells.



Appl. Sci. 2020, 10, 5154 4 of 18

The transmission medium conducted from the base station to the users can be represented by
a channel. Suppose that a base station in the ith cell will transmit data to users in the gth cell with
a single antenna. The relationship between them can be represented by channel H ig. Channel H ig can
be defined, as follows,

H ig = [hi1
T hi2

T ... hig
T], (1)

where hig ∈ C1×Nt is a channel vector between a base station in the ith cell and the selected user in the
gth cell. In addition, H ig ∈ CM×Nt represents the channel matrix between a base station in the ith cell
and all users in the gth cell. The channel will become an important parameter in the JP-CoMP.

2.3. JP-CoMP Sum Capacity

The cooperating base stations in JP-CoMP will transmit data to all users in the cluster. This case
requires a channel aggregation scheme in the JP-CoMP clustering. Suppose that a Y cluster consists of
K(≤C) base stations. The Y cluster will serve transmission data for users in the cluster. Cooperating
base stations overall in the Y cluster have X transmitter antennas and each user has V receiver antennas,
where X = KNt and V= Nr. With the assumptions of ideal transmitter beamforming and receiver
beamforming, the channel aggregation can be defined, as follows,

HY =

h11 · · · h1X
...

. . .
...

hV1 · · · hVX

 , (2)

where HY ∈ CNr×KNt represents the aggregated channel between the transmitter antennas of the
cooperating base stations in the Y cluster and the selected user in the cluster. Utilizing Shannon’s
capacity equation, the sum capacity in the cooperating base stations can be defined, as follows,

R =
N

∑
Y=1

log2

∣∣∣I + HH
Y HY

∣∣∣ , (3)

where I represents the identity matrix and N denotes the total number of clusters.

3. Message Passing for JP-CoMP Clustering

This section explains the main purpose and details of the algorithm for multi-layer message
passing. The section covers the main idea, problem formulation, and message derivation.

3.1. Main Idea

Determining an appropriate cell partner by maximizing the sum capacity (3) is a challenging
problem. The sum capacity is a nonlinear problem without an efficient solution available to solve
it. The combinatorial optimization is required in this case to provide an optimal clustering method.
To solve the combinatorial problem requires a centralized process, which, in turn, incurs a high
computational burden and high backhaul capacity. Therefore, we propose a distributed algorithm that
works by message passing to reduce both the computational complexity and backhaul overload.

Nonlinear optimization (3) cannot easily be realized in this case. Instead, the approximation of
the objective function is required. Hence, we approximate the original nonlinear objective function
into a linear form. Utilizing this transform, multi-layer message passing is introduced as the proposed
algorithm for cell clustering in JP-CoMP. This proposed algorithm will provide the lower computational
complexity and backhaul capacity level.

The main idea of multi-layer message passing is to perform distributed optimization by
exchanging messages at all base stations in the multi-layer assessment. The proposed algorithm
assesses the cell cluster based on the specific objective function of each layer. Multi-layer message
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passing will divide the clustering process into two layers, in this case the cluster (first layer) and
the super-cluster (second layer). The cluster is represented by an exemplar, while the super-cluster
is represented by a super-exemplar. Although our approach is suboptimal, our simulation results
confirm that the proposed algorithm outperforms previous schemes.

3.2. Problem Formulation

In the main idea described above, we approximated the original nonlinear form into linear-form
objective function. With this transformation, multi-layer message passing proposes a mixed-form
objective function to provide optimal cell clustering in JP-CoMP. This approach compromises the
performance improvement by releasing the cell size limit and mismatch of the approximated function.
The mixed-form objective function consists of two parameters: the optimal sum capacity and the
closest distance.

The systematical work of multi-layer message passing is defined, as follows. In the cluster,
the base station will exchange messages with neighboring cells and choose the exemplar based on the
sum capacity. To characterize the throughput improvement of cooperative manner, the CoMP gain,
sij, is defined in our model. The CoMP gain maximization will increase the efficiency of JP-CoMP
throughput improvement by determining the tendency of one base station to coordinate with another
base station based on sum capacity. This term can be defined, as follows,

sij = Rcomp
(i,j) , (4)

where Rcomp
(i,j) represents the sum capacity of a specific user when the serving base stations, in this case,

the ith base station and the jth base station, operate in a cooperative manner.
In the super-cluster, the exemplar will exchange messages to other exemplars and choose the

super-exemplar based on the closest distance. This distance presents a simple quantitative parameter
for JP-CoMP. Although the distance does not have a direct relationship with any increases in the
throughput, minimizing the distances between the members of a cluster increases the efficiency of
JP-COMP throughput improvements. The inverse distance is used in our model, and this term can be
defined, as follows,

liCii = T (Dk , Di)−1, ∀ k ∈ i′, (5)

where Dk is the position of the kth base station as an exemplar, Di is the position of the ith base station
as an exemplar, and T (·, ·) denotes the distance between two positions. Finally, all of the base stations
in the same super-cluster will cooperate and ignore the cluster limitation.

The objective function, in this case the sum capacity, can be represented by using sij, liCii , and the
assignment matrix, as follows,

Sij(Cij) =


sij, if i 6= j and Cij 6= 0

sii + liCii , if i = j and Cij = 0

0, otherwise,

, (6)

where the [Cij]N×N assignment variables consist of two assignment matrices of the non-diagonal
variable Cij ∈ {0, 1} and the diagonal variable Cii ∈ {0, 1, . . . , N}. For the non-diagonal variable,
Cij = 1 implies that the jth base station is an exemplar of the ith base station. For the diagonal variable,
Cii = k, where k ∈ {1, . . . , N} implies that the kth base station is a super-exemplar of the ith base
station. Otherwise, the ith base station is not an exemplar.
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The sum capacity maximization problem in (3) is approximated into a linear optimization problem,
as shown below,

max ∑
i

∑
j

Sij
(
Cij
)
, (7)

subject to ∑
j∈φ(i)

[
Cij 6= 0

]
= 1, (8)

∑
i∈φ(j)

Cij ≤
[
Cjj = j

]
, (9)

if ∃ i : Cii = k then Ckk = k, i ∈ θ (k) . (10)

Each constraint has own special meaning in forming multi-layer clustering. Constraint (8) explains
that the ith BS should choose only one BS as its exemplar. The notation φ(i) is defined as the set of
neighboring BSs adjacent to the ith BS. Constraint (9) explains that each BS only cooperate with at most
one BS in the first layer clustering, where φ(j) is defined as the set of neighboring BSs adjacent to the
jth BS. This constraint only enforces two possible cases. The first holds that exactly one neighboring BS
around the jth BS should select the jth BS as an exemplar when equality holds. The second requires that
other neighboring BS do not select the jth BS as an exemplar when inequality holds. Constraint (10)
explains that, if there exists the ith BS, as an exemplar, has selected the kth BS as its super-exemplar,
i.e., Cii = k, then the kth BS should be a super-exemplar for itself. The notation θ(i) is defined as the set
of neighboring exemplars adjacent to the ith BS as an exemplar.

To apply a message passing algorithm in this multi-layer cell clustering scheme, problem (7) has
been reformulated as an unconstrained problem. This reformulation is expressed as

max ∑
i

∑
j

Sij
(
Cij
)

+ ∑
i

Fi (Xi) + ∑
j

Hj
(
Xj
)

+ ∑
k

Gk (Xk), (11)

where Sij
(
Cij
)

denotes the mixed-form objective function. Three different functions that consider the
constraint in (8)–(10) are expressed, as

Fi (Xi) =

{
−∞, if ∑N

j=1
[
Cij 6= 0

]
6= 1

0, otherwise
, (12)

Hj
(
Xj
)

=

{
−∞, if ∑N

i=1 Cij >
[
Cjj = j

]
0, otherwise

, (13)

Gk (Xk) =

{
−∞, if Ckk 6= k , but ∃i : Cii = k

0, otherwise
, (14)

where Xi =
{

Cij : j ∈ φ (i)
}

, Xj =
{

Cij : i ∈ φ (j)
}

, and Xk = {Ckk : k ∈ θ (i)} are defined as
representation cases. Fi (Xi) is introduced as an association function of the constraint (8) to represent
that each base station should be assigned to one base station. If each user is assigned to more than one
base station, Fi (Xi) takes the value of minus infinity and the maximization of objective function cannot
be achieved. Otherwise, the value of Fi (Xi) becomes zero and it will not contribute to the objective
function. Hj

(
Xj
)

is defined to represent the constraint (9), which implies cluster consistency. In this
case, each base station only selects at most one base station as its partner in the cluster. The violation
of this function will result in the minus infinity value, accordingly the objective function can never
be maximized. Otherwise, the value of Hj

(
Xj
)

will not contribute to the objective function. Gk (Xk)

represents the constraint (10) that implies the super-cluster consistency. If the super-cluster works
inconsistently, i.e., the ith base station has selected the kth base station as partner, however the kth base
station does not select itself, Gk (Xk) contributes to the objective function as minus infinity. Accordingly,
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the objective function will not be maximized. Otherwise, Gk (Xk) will take the value of zero and it will
not contribute to the objective function.

The unconstrained formulation problem (11) enables the drawing of a factor graph. A factor
graph is a useful graphic representation that shows the relationship between each of the variables
with constraints that serve as boundaries in the distributed optimization problem. Figure 2 shows
the representation of the factor graph in the proposed algorithm. The factor graph shows that there
are two variables: non-diagonal variables

(
Cij
)

and diagonal variables (Cii). The non-diagonal
variable will be constrained by the two function of Fi and Hj. Moreover, the diagonal variable will be
constrained by three different functions of Fi, Gk, and Hj. A detailed explanation will be provided in
the next subsection.

Figure 2. Factor graph of the proposed algorithm.

3.3. Message Passing Derivation

Separation consideration will be implemented in order to derive the message. The message
derivation process will be divided into the diagonal variable and the non-diagonal variable.
The messages associated with each variable are presented in Figure 3.
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Figure 3. Message passing of each variable. The figure on the left shows the non-diagonal variable and
that on the right shows the diagonal variable.

The non-diagonal element Cij will be constrained by two function nodes, Fi and Hj.
The relationship between the variable node and the function node for the non-diagonal variable
is represented by the messages λij, µij, βij, and ηij. Accordingly, based on the message passing
principle [28], each message of the non-diagonal variable can be represented as

λij (m) = Sij + ηij (m) , (15)

µij (m) = max
C1j ,...,CNj

[
Hj
(
C1j, . . . , CNj

)
+ ∑

i′ 6=i
max
Ci′ j

λi′ j

(
Ci′ j

)]
, (16)

βij (m) = Sij + µij (m) , (17)

ηij (m) = max
Ci1 ,...,CiN

[
Fi (Ci1, . . . , CiN) + ∑

i′ 6=i
max
Cij′

βij′
(

Cij′
)]

. (18)

The message values λij (m), µij (m), βij (m), and ηij (m) are determined for setting the hidden
variable Cij to m ∈ {0, 1}.

The final messages are defined according to the message difference between m = 1 and m = 0.
The final message from the variable node to the function node is the sum of all incoming messages
from Cij, except for the message from the own function. The messages λ̃ij and β̃ij can be expressed as

λ̃ij = λij (1)− λij (0) = sij + ηij (1)− ηij (0) = sij + η̃ij, (19)

β̃ij = βij (1)− βij (0) = sij + µij (1)− µij (0) = sij + µ̃ij. (20)
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The message from Hj to Cij is defined as the difference between message µij (1), which indicates
when the ith BS selects the jth BS, and message µij (0), which indicates when none of the neighboring
BS around the jth BS select the jth BS as an exemplar. Therefore, message µ̃ij can be defined as

µ̃ij = µij (1)− µij (0) =

max
Cjj

λjj
(
Cjj
)

+ ∑
i′ /∈{i,j}

max
Ci′ j

λi′ j

(
Ci′ j

)−
max

max
Cij
′ 6=j

λjj
(
Cjj
)

+ ∑
i′ /∈{i,j}

max
Ci′ j

λi′ j

(
Ci′ j

)
, ∑

i′ /∈{i,j}
λi′ j (0)


= min

0, max
m∈(1,...,N)

λ̃m
j + ∑

i′ /∈{i,j}
max(0, λi′ j)

 .

(21)

The message from Fi to Cij is defined as the difference between message ηij (1) and message ηij (0).
Message ηij (1) indicates when the ith BS selects the jth BS, after which the ith BS cannot select another
BS besides the jth BS (Cij′ = 0). Message ηij (0) indicates when none of the neighboring BSs around
the jth BS selects the jth BS as exemplar. Hence, there are two possible cases: the ith BS selects another
BS besides the jth BS (Cij′′ = 0) or the ith BS becomes an exemplar itself (Cij′ = 0). Therefore, message
η̃ij can be defined as

η̃ij = ηij (1)− ηij (0) =

∑
j′ /∈j

(
βij′ (0)

)−
max

 max
j′ /∈{i,j}

βij′ (1) + ∑
j′′ /∈{j′ ,j}

β
′′(0)
ij

 , max
Cii

βii (Cii) ∑
j′ /∈{i,j}

βij′ (0)


= −max

[
max

j′∈{i,j}
β̃ij + max

m∈(1,...,N)
βij

]
.

(22)

The diagonal element Cii will be constrained by the three function nodes of Fi, Hj, and Gk.
The relationship between the variable node and the function node for the diagonal variable is
represented by six messages, i.e., messages λii, µii, βii, ηii, υik, and ξik. Therefore, based on the
message passing principle, each message of the diagonal variable can be expressed as

λii (m) = sii + lim + ηii (m) + ∑
k

ξik (m), (23)

µii (m) = max
C1j ,...,CNj

[
Hj
(
C1j, . . . , CNj

)
+ ∑

i′ 6=i
max
Ci′ i

λi′i (Ci′i)

]
, (24)

βii (m) = sii + lim + µii (m) + ∑
k

ξik (m), (25)

ηii (m) = max
Ci1 ,...,CiN

[
Fi (Ci1, . . . , CiN) + ∑

i′ 6=i
max
Cii′

βii′ (Cii′)

]
, (26)

υik (m) = sii + lim + µii (m) + ηii (m) + ∑
k

ξik (m), (27)

ξik (m) = max
Ci1 ,...,CiN

[
Gk (C11, . . . , CNN) + ∑

i′ 6=i
υi′k (Ci′i′)

]
. (28)

The message values λii (m), µii (m), βii (m), ηii (m), υik (m), and ξik (m) are utilized for setting
hidden variable Cii to m ∈ {0, 1, . . . , N}.
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The finally derived messages are considered according to the values of m. The final messages
are defined as the message difference condition between m 6= 0 and m = 0. The final message from
the variable node to the function node is the sum of all incoming messages from Cii, except for the
message from the function itself. The final messages for λ̃m

i and β̃m
i can be represented as

λ̃m
i = λii (m)− λii (0) = sii + lim + η̃ii + ξ̃im (m) , (29)

β̃m
i = βij (m)− βij (0) = sii + lim + µ̃im (m) + ξ̃im (m) . (30)

On the other hand, the message from Hj to Cii is defined as the difference between message µii (m)

and message µii (0). Message µii (m) indicates that, when the ith BS is an exemplar, there are two
possible cases, i.e., neighboring BSs around the ith BS select the ith BS as an exemplar or neighboring
BSs around the ith BS do not select the ith BS as an exemplar. Message µii (0) indicates that the ith
BS is not an exemplar, none of the neighboring BSs around the ith BS select the ith BS (Ci′i = 0) as
an exemplar. Therefore, message µ̃ii can be defined as

µ̃ii = µii (m)− µii (0) = ∑
i′ 6=i

max
Ci′ i

λi′i (Ci′i)−∑
i′ 6=i

max
Ci′ i

λi′i (0)

= ∑
i′ 6=i

max
(

λ̃i′i , 0
)

.
(31)

For the message from Fi to Cii, the message is defined as the difference between message ηii (m)

and message ηii (0). Message ηii (m) indicates that when the ith BS is an exemplar, it should select
itself as an exemplar and cannot possibly select other points as an exemplar (Cii′ = 0). Message ηii (0)
indicates that when the ith BS is not an exemplar, it should select other BSs as an exemplar (Cii′′ = 0).
Therefore, message η̃ii can be defined as

η̃ii = ηii (m)− ηii (0) = ∑
i′ 6=i

(βii′ (0))−max
i′ 6=i

βii′ (1) + ∑
i′′ /∈{i′ ,i}

β
′′(0)
ii


= −max

(
β̃ii′
)

.

(32)

The message from Cii to Gk is defined as the difference between the preference of the ith BS
selecting the kth BS as a super-exemplar and the maximum preference value when the ith BS is not
an exemplar. This message can be expressed as

υ̃ik (k) = υik (m)− υik (0)

= lik −max
[

max
mε{0,k}

(
lim + ξ̃im (m)

)
,−sii − µ̃ii − η̃ii

]
.

(33)

The messages from Gk to Cii are considered according to the values i and k. If i = k, the message
is defined as the difference between two cases. The first case is when the kth BS has been chosen as
a super-exemplar, with other BSs beside the ith BS then not constrained. The second case is when the
kth BS is not a super-exemplar. This message can be expressed as

ξ̃ik (k) = ξik (m)− ξik (0) = ∑
i′ 6=i

max
Ci′ i′

υi′k (Ci′i′) −∑
i′ 6=i

max
Ci′ i′ 6=k

υi′k (Ci′i′)

= ∑
i′ 6=i

max (0, υ̃i′k (k)).
(34)

If i 6= k, then the message is defined as the difference between two cases. The first case is when the
ith BS has chosen the kth BS as a super-exemplar; the kth BS is a super-exemplar for itself and other
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BSs beside the ith BS are then not constrained. The second case is when the kth BS is not constrained
as a super-exemplar. This message can be expressed as

ξ̃ik (k) = ξik (m)− ξik (0)

= υkk (k) + ∑
i′ /∈{i,k}

max
Ci′ i′

υi′k (Ci′i′)

−max

[
max
Ckk 6=k

υkk (Ckk) + ∑
i′ /∈i,k

max
Ci′ i′ 6=k

υi′k (Ci′i′), υkk (k) + ∑
i′ /∈i,k

max
Ci′ i′

υi′k (Ci′i′)

]

= min

0, υ̃kk + ∑
i′ /∈{i,k}

max(0, υ̃i′ ,k(k))

 .

(35)

Multi-layer clustering message passing yields the final messages indicated here by (19)– (22)
and (29)–(35). Each of the final messages will contribute to the assignment. To provide the assignment
of all messages, this step should sum all of the incoming messages to each of the corresponding
datapoints, i.e., Cij and Cii. The assignment for these final messages can be expressed as

Cij = arg max
Cij∈{0,1}

[
sij
(
Cij
)

+ µij
(
Cij
)

+ ηij
(
Cij
)]

= arg max
Cij∈{0,1}

[
λ̃ij + µ̃ij, 0

]
.

(36)

Cii = arg max
Cii∈{0,...,N}

[
sii (Cii) + µii (Cii) + ηii (Cii) +

N

∑
k=1

ξik (Cii )

]

= arg max
Cii∈{0,...,N}

[
0, max

m=1,...,N

[
µ̃ii + λ̃m

i

]]
.

(37)

The assignment messages will determine the appropriate cell partner for JP-CoMP. Based on the
assignment result, the proposed algorithm is concluded, as shown in Algorithm 1.

Algorithm 1: Proposed distributed clustering algorithm.

Set t← 1 and λ̃ij
(t)

= 0 , λ̃m
i

(t)
= 0. Repeat

Base Stations
Update µ̃

(t)
ij and send to neighboring BSs.

Update λ̃ij
(t+1)

and send to neighboring BSs.

Update µ̃
(t)
ii and send to neighboring BSs.

Update λ̃m
i

(t+1)
and send to neighboring BSs.

t = t + 1
Until all messages have been converged or max iteration reached.
Compute Cij

(t) and Cii
(t) to determine the cooperating base station.

If Cij
(t) = 1 and Cii

(t) = k,
the ith BS, the jth BS, and the kth BS are cooperating base stations.

If Cij
(t) = 0 and Cii

(t) = k,
the ith BS and the kth BS are cooperating base stations.

If Cij
(t) = 1 and Cii

(t) = i,
the ith BS and the jth BS are cooperating base stations.

If Cij
(t) = 0 and Cii

(t) = i,
the ith BS operates alone.
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4. Simulation Results

The simulation results compare the performance of the proposed algorithm with those of existing
schemes. For this purpose, the proposed algorithm will be compared to existing JP-CoMP clustering
methods, in this case novel static clustering [13], coalitional game theory [19], affinity propagation
(AP) [26], and capacitated affinity propagation (CAP) [27]. The user throughput, network scalability
and complexity are evaluated in the simulation results.

4.1. Simulation Parameters

The simulations are performed using an Intel R© CoreTM i7-7700 CPU system operating at 3.60 GHz
(8 CPUs). The programming software is MATLAB R2018B. In order to achieve reliable results, the
simulation results have been averaged over extensive number of random realizations of wireless
channels and user drops during simulations. The simulation parameters are shown in Table 1.

Table 1. Simulation Parameter.

Parameter Value

Number of cells 7 cells
Number of transmitter antennas at each cell 2 antennas
Number of receiver antennas at each user mobile 1 antenna
Type of CoMP Joint Processing
Number of users at each cell * 100 users
Cell radius * 500 m
BS Transmit Power 40 dBm
Subcarrier spacing 15 kHz
Number of subcarriers 1200
System bandwidth 18 MHz
Noise −174 dBm/Hz
Wireless channel modeling Short-scale fading (Rayleigh)
Pathloss exponent 3.7
Tranmission time interval 1 ms

* These parameters are not applied in the network scalability simulation.

4.2. Throughput Evaluation

We compare the throughput performance of the proposed algorithm with the outcomes of other
existing methods. Figures 4 and 5 show the throughput evaluation and its cumulative distributive
function, respectively.

Figure 4 shows that the throughput performance gradually decreases as the distance increases.
This result also indicates that the proposed algorithm outperforms other methods. When the UE
distance is 104 meters, the proposed algorithm shows 2%, 13%, 13%, and 21% average throughput
improvements as compared to coalitional game theory, capacitated affinity propagation, affinity
propagation, and novel static clustering, respectively. In addition, when the UE distance is 496 m,
the proposed algorithm shows 30%, 20%, 207%, and 304% average throughput improvements
compared to coalitional game theory, capacitated affinity propagation, affinity propagation, and novel
static clustering, respectively. In addition, Figure 5 indicates that the proposed algorithm provides
higher average throughput performance in all percentiles. The average UE throughput percentage of
less than 1.5 Mbps for the proposed algorithm, coalitional game theory, capacitated affinity propagation,
affinity propagation, and novel static clustering are 16%, 26%, 33%, 43%, and 56%, respectively.
The average UE throughput percentage of less than 2.5Mbps for the proposed algorithm, coalitional
game theory, capacitated affinity propagation, affinity propagation, and novel static clustering are
64%, 72%, 82%, 83%, and 90%. The average UE throughput percentage of less than 3.5 Mbps for the
proposed algorithm, coalitional game theory, capacitated affinity propagation, affinity propagation,
and novel static clustering are 95%, 96%, 99%, 98%, and 100%.
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Figure 4. Average UE throughput versus the UE distance.

Figure 5. Cumulative distribution function of the average UE throughput.

These results show that the proposed algorithm has higher throughput performance at every UE
distance point. The proposed algorithm also maintains high performance in vulnerable areas, such
as edge users. This is possible because the proposed algorithm attempts to reconsider all possible
cooperating base stations by maximizing sum-capacity in order to determine the appropriate formation
by the means of multi-layer assessment. This multi-layer message passing scheme increases the
possibility of the best solution being achieved and prevents greedy choices in forming the cell clustering.
The proposed algorithm also set outs proper cell clustering during the global optimality of the solution.
Accordingly, the fixed point will get improved performance after the proposed algorithm reaches its
convergence point.
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4.3. Network Scalability

This evaluation has the purpose of determining the performance of the proposed algorithm with
different network parameters. The JP-CoMP clustering scheme is expected to be able to handle such
network changes. Two parameters are utilized in this simulation in order to evaluate this problem:
the cell size and the number of users.

Figure 6 shows the cell size evaluation. This evaluation provides the average edge user throughput
performance with different cell sizes. The result shows that the average edge user throughput
performance gradually decreases with an increase in the cell size. When the cell radius is 100 m,
the proposed algorithm shows 2%, 39%, 39%, and 41% average edge user throughput improvements as
compared to coalitional game theory, capacitated affinity propagation, affinity propagation, and novel
static clustering, respectively. In addition, when the cell radius is 500 m, the proposed algorithm shows
29%, 37%, 208%, and 341% average edge user throughput improvements when compared to coalitional
game theory, capacitated affinity propagation, affinity propagation, and novel static clustering,
respectively. These results demonstrate that the proposed algorithm consistently outperforms the
others in all cell size ranges.

Figure 7 presents the evaluation result, depending on the the number of users. This evaluation
presents the throughput performance with different numbers of users. The results indicate that the
increase in the UE number does not have significant effect to the average edge user throughput.
When the UE number is 50, the proposed algorithm shows 9%, 35%, 208%, and 240% average edge user
throughput improvements as compared to coalitional game theory, capacitated affinity propagation,
affinity propagation, and novel static clustering, respectively. Accordingly, the proposed algorithm
outperforms the others consistently with all numbers of UE ranges.

These results verify that the proposed algorithm sophisticatedly optimizes the objective function
properly in different networks, because the proposed algorithm utilizes distributed control of the
network. This scheme allows for the utilization of different networks to determine the appropriate
cooperating formation instead of a greedy choice when determining the cooperation formation.

Figure 6. Average edge user throughput versus the cell size.
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Figure 7. Average edge user throughput versus number of users per cell.

4.4. Complexity Evaluation

Table 2 shows a comparison of the computational complexity of each method. This result shows
that the computational complexity of the proposed algorithm, capacitated affinity propagation,
and affinity propagation are identical at O

(
n2). The difference in the message passing complexity

only appears in constants and can therefore be ignored. In addition, the computational complexity
for coalitional game theory is O (2n). The updated split and merge algorithm in the coalitional
game theory result in a higher computational complexity when compared to the message passing
algorithm. The message update process in the proposed algorithm mostly consists of message
exchanges among neighbors, which only contains small-sized information. This is the main factor of
the low computational complexity in the proposed algorithm.

Table 2. Computational Complexity.

Method Proposed Algorithm Coalitional Game Theory [19] AP [26] Capacitated AP [27]

Complexity O
(
n2) O (2n) O

(
n2) O

(
n2)

Figure 8 provides the results of the comparison of the convergence properties of the proposed
algorithm and those of other existing methods. Convergence iteration shows how rapidly an algorithm
will reach a stabilized position during iteration. The simulation result shows that the proposed
algorithm converges less than the five iterations. It should be noted that the proposed algorithm
requires less number of iterations when compared to other iterative algorithms. This implies the overall
required complexity for the proposed algorithm is kept minimal, making the proposed algorithm
appropriate for practical implementations. The proposed algorithm exchanges linear and scalar
quantity messages (36) and (37) at each iteration. These messages only consume a small amount
of transmission bandwidth. Therefore, this scheme requires a lower backhaul capacity level during
its implementation. The iterative message update have the high potential to incur the latency issue.
However, the long-term period of JP-CoMP renders the latency not a critical issue.
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Figure 8. Convergence properties of iterative algorithms.

5. Conclusions

This paper proposes a distributed algorithm in the cell clustering for downlink joint
processing coordinated multipoint. This proposed algorithm tackles the nonlinear sum capacity
optimization problem through approximation into distributed linear-form message passing. This linear
approximation scheme is interpreted into multi-layer message passing as an algorithm foundation for
dynamic cell clustering.

The extensive simulation result confirms that the proposed algorithm provides considerable
performance improvements in JP-CoMP clustering. The proposed algorithm provides higher
performance consistently compared to the conventional methods in terms of both average UE
throughput and average edge user throughput. The proposed algorithm enables the distributed
control of the network, thus allowing for adaptive properties for dynamically changing networks.
Accordingly, the proposed algorithm guarantees high throughput performance for different cell sizes
and different number of users. In addition, the message update among neighbor base stations in
the proposed algorithm only incurs low computational complexity and consumes a small amount of
transmission bandwidth. Despite all of the advantages, the message update procedure in the proposed
algorithm causes the latency issues. However, for most typical applications of JP-CoMP, the latency
issue would not be critical.

Future research directions can include more practical technical issues to further improve JP-CoMP
performance outcomes. The imbalance conditions, i.e., the UE imbalance in each cell and the power
transmitting imbalance from each base station become interesting topics in this field. Another aspect
that should be exploited is the implementation of the algorithm in coordinated beamforming CoMP.
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Abbreviations

The following abbreviations are used in this manuscript:

JP-CoMP Joint Processing Coordinated Multipoint
BS Base Station
AP Affinity Propagation
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