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Abstract: Minimizing time cost in time-shared operating system is the main aim of the researchers 
interested in CPU scheduling. CPU scheduling is the basic job within any operating system. 
Scheduling criteria (e.g., waiting time, turnaround time and number of context switches (NCS)) are 
used to compare CPU scheduling algorithms. Round robin (RR) is the most common preemptive 
scheduling policy used in time-shared operating systems. In this paper, a modified version of the 
RR algorithm is introduced to combine the advantageous of favor short process and low scheduling 
overhead of RR for the sake of minimizing average waiting time, turnaround time and NCS. The 
proposed work starts by clustering the processes into clusters where each cluster contains processes 
that are similar in attributes (e.g., CPU service period, weights and number of allocations to CPU). 
Every process in a cluster is assigned the same time slice depending on the weight of its cluster and 
its CPU service period. The authors performed comparative study of the proposed approach and 
popular scheduling algorithms on nine groups of processes vary in their attributes. The evaluation 
was measured in terms of waiting time, turnaround time, and NCS. The experiments showed that 
the proposed approach gives better results. 
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1. Introduction 

This section is divided into two subsections; the first subsection discusses CPU scheduling, and 
the second subsection discusses the clustering technique. 

1.1. CPU Scheduling  

The mechanism for allocating and de-allocating the CPU to a process is known as CPU 
scheduling [1–3]; the portion of the operating system that carries out these functions is called the 
scheduler. In multi-programming systems, the number of processes in the memory is restricted by the 
degree of multi-programming. There are several processes in the memory waiting to receive service 
from the CPU, the scheduler chooses the next process to assign the CPU, waits for its processing 
period, and de-allocates the CPU from that process. The scheduling mechanism is the order in which 
processes are selected for CPU processing. The scheduling scheme may be preemptive (i.e., the CPU 
is assigned to a process for a certain period) or non-preemptive (i.e., once the CPU has been assigned 
to a process, the process keeps the CPU until it liberates the CPU either by switching to another state 
or by terminating). Many different CPU scheduling algorithms have been suggested. Under First 
Come First Served (FCFS), non-preemptive CPU-scheduling, the process that arrives first, gets 
executed first. Shortest Job First (SJF), non-preemptive CPU-scheduling, selects the process with the 
shortest burst time. The preemptive version of SJF is called Shortest Remaining Time First (SRTF); 
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processes are placed into the ready queue as they arrive, and the existing process is removed or 
preempted from execution as a process with short burst time arrives, and the shorter process is 
executed first. Under priority scheduling, preemptive CPU-scheduling, if a new process arrived has 
a higher priority than the currently running process, the processing of the current process is paused 
and the CPU is assigned to the incoming new process [4]. 

RR scheduling is the most common of the preemptive scheduling algorithms [5], referred to 
hereafter as Standard RR (SRR), used in real-time operating systems and timesharing [6,7]. In RR 
scheduling, the operating system is driven by a regular interrupt. Processes are selected in a fixed 
sequence for execution [8]. A process receiving CPU service is interrupted by the system timer after 
a short fixed interval called time slice which usually is much shorter than the CPU service period (or 
CPU burst) of the process [9–11]. After that interruption, the scheduler performs a context switch to 
the next process selected from the ready queue which is treated as a circular queue [12,13]. Thus, all 
processes in the queue are given a chance to receive service for a short fixed period. This scheduling 
mechanism is basically used in timesharing systems [14–16]. The efficiency of RR algorithm depends 
on the time slice, if the time slice is small, overheads of more context switches will occur and if the 
time slice is large, RR behaves somewhat similar to FCFS with the possibility of starvation occurrence 
between processes. The scheduling algorithm performance depends upon the scheduling states of 
waiting time (i.e., total period the process spent waiting in the ready queue), turnaround time (i.e., 
total time between process submission and its completion), and number of context switches (NCS) 
[17–19]. 

1.2. Clustering Technique 

Dividing the data into groups that are useful, meaningful, or both is known as clustering [20]; 
greater difference between clusters and greater homogeneity (or similarity) within a cluster lead to 
better clustering. Clustering is regarded as a type of classification in that it generates cluster labels of 
the homogeneous objects [21,22]. Major concern in the clustering process is revealing the collective 
of patterns into reasonable groups allowing one to find out similarities and differences, as well as to 
deduce useful and important inferences about them. Unlike classification, in which the classes are 
predefined and the classification procedure specifies an object to them, clustering creates foremost 
groups in which the values of the dataset are classified during the classification process (i.e., 
categorizes subjects (data points) into different groups (clusters)). Such a categorizing process 
depends on the selected the algorithm adopted and characteristics [23]. The type of features 
determines the algorithm used in the clustering, for example, conceptual algorithms are used for 
clustering categorical data, statistical algorithms are used for clustering numeric data, fuzzy 
clustering algorithms allow data point to be classified into all clusters with a degree of membership 
ranging from 0 to 1, this degree indicates the similarity of the data point to the mean of the cluster. 
Most commonly used traditional clustering algorithms can be divided into 9 categories, summarized 
in Table 1. Ten categories of modern clustering algorithms contain 45 [24]. 

Table 1. Summarization of traditional clustering algorithms categories. 

Typical Clustering Algorithm Based on (category) 
K-medoids, CLARA, CLARANS, PAM, K-means Partition 

Chameleon, ROCK, CURE, BIRCH Hierarchy 
MM, FCS, FCM Fuzzy theory 

GMM, DBCLASD Distribution 
Mean-shift, OPTICS, DBSCAN Density 

MST, CLICK Graph theory 
CLIQUE, STING Grid 

FC Fractal theory 
ART, SOM, GMM, COBWEB, Model 

K-means is the simplest and most commonly used clustering algorithm. The simplicity comes 
from the use of squared error as stopping criterion. Besides its simplicity, time complexity of K-means 
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is low 𝑂(𝑛𝑘𝑡) , where 𝑛 : the number of objects, 𝑘 : the number of clusters, and 𝑡 : the number of 
iterations. In addition, K-means is used of large-scale data [24]. It partitions the dataset into 𝐾 
clusters (C1, C2, . . . ,CK), represented by their means or centers to minimize some objective function 
that depends on the proximities of the subjects to the cluster centroids. Equation 1 describes the 
function to be minimized in weighted K-means [25]. 𝑚𝑖𝑛ሼ𝑚௞ሽ, 1 ≤ 𝑘 ≤ 𝐾 ෍ ෍ 𝜋௫𝑑𝑖𝑠𝑡(𝑥, 𝑚௞௫∈஼ೖ

௄
௞ୀଵ ), (1) 

where 𝐾 is the number of clusters set by the user, 𝜋௫  is the weight of 𝑥 , 𝑚௞ = ∑ గೣ௫௡ೖ௫∈஼ೖ  is the 

centroid of cluster 𝐶௞ , and the function “ 𝑑𝑖𝑠𝑡 “ computes the distance between object 𝑥  and 
centroid 𝑚௞ , 1 ≤  𝑘 ≤  𝐾 . Equation 2 describes the function to be minimized in standard k-means 
clustering [26]. 

𝑑 =  ෍ ෍‖(𝑥௜ − 𝑢௞)‖ଶ ௡
௜ୀଵ

௄
௞ୀଵ  (2) 

where 𝑢௞  represents the 𝑘𝑡ℎ  center, and 𝑥௜ represents the 𝑖𝑡ℎ  point in the dataset. While the 
selection of the distance function is optional, the squared Euclidean distance, i.e., ‖𝑥 − 𝑚‖ଶ , has been 
most widely used in both practice and research. The 𝐾 value was set according to the given number 
of clusters for each dataset [27,28]. K-means clustering method requires all data to be numerical. The 
pseudo-code of K-means algorithm is as follows: 
 

Algorithm K-Means 

Input - Dataset 
- number of clusters 

Output - K clusters 

  

Step-1: - Initialize K centers of the cluster  

Step-2: - Repeat 
- Calculate the mean of all the objects belonging to that 

cluster 
     𝜇௞ =  ଵேೖ  ∑ 𝑥௤ேೖ௤ୀଵ   
    where 𝜇௞ is the mean of cluster k and 

    𝑁௞ is the number of points belonging to that cluster 
- Assign objects to the closest cluster centroid 
- Update cluster centroids based on the assignment 

- Until centroids do not change 

 
Determining optimal number of clusters in a dataset is an essential issue in clustering. Many 

cluster evaluation techniques have been proposed, one of which is the Silhouette method. Silhouette 
method measures the quality of a clustering; it determines how well each data point lies within its 
cluster. A high average silhouette width indicates a good clustering [29]. The Silhouette method can 
be summarized as follows: 
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1. Compute clustering algorithm for different values of 𝑘 . For instance, by 
varying k from 1 to 10 clusters. 

2. For each 𝑘 , calculate total Within-cluster Sum of Square (WSS). 

3. Plot the curve of WSS according to the value of 𝑘 . 
4. The location of a knee in the curve indicates the appropriate number of 

clusters. 

The Silhouette coefficient ( 𝑆௜ ) of the 𝑖𝑡ℎ data point is defined in Equation 3. 𝑆௜ = 𝑏௜𝑎௜max (𝑏௜, 𝑎௜)   (3) 

where 𝑏௜ , is the average distance between the 𝑖𝑡ℎ  data point and all data points in different 
clusters; 𝑎௜ , is the average distance between the 𝑖𝑡ℎ data point and all other data points in the same 
cluster [30,31]. 

Motivation: Timesharing systems depend on the time slice used in RR scheduling algorithm. 
Overheads of more context switches (resulted from choosing short time slice), and starvation 
(resulted from choosing long time slice) should be avoided. 

Organization: The rest of this paper is divided as follows: Section 2 discusses the related work. 
Section 3 presents the proposed algorithm. The experimental implementation is discussed in section 
4. Section 5 concludes this research work (see Figure 1). 

 
Figure 1. Organization of the paper. 

2. Related Works 

For better CPU performance in most of the operating systems, the RR scheduling algorithm is 
widely implemented. Many variants of the RR algorithm have been proposed to minimize average 
waiting time and turnaround. This section discusses the most common versions of RR. Table 2 shows 
a comparison between the known versions of SRR. 

Aaron and Hong [32] proposed a dynamic version of SRR named Variable Time Round-Robin 
scheduling (VTRR). The time slice allocated to a process depends on the time needed to all tasks, 
process’s burst time, and number of processes in the ready queue. 

Tarek and Abdelkader [33] proposed a weighting technique for SRR. The authors classified the 
processes into five weight categories based on their burst times. The weight of a process is inversely 
proportional to the weight; process with high weight receives more time slice and vice versa. 
Processes with burst time less than or equal to 10 tu receive 100% of the time slice defined by SRR, 
Processes with burst time less than or equal to 25 tu receive 80% of the time slice defined by SRR, and 
so on. 
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Samih et al., [18] proposed a dynamic version of SRR named Changeable Time Quantum (CTQ). 
Their algorithm finds the time slice that gives the smallest average waiting time at every round. CTQ 
calculates the average waiting time for a specific range of time slices and picks up the time slice 
corresponding to smallest average waiting time. Then, the processes in this round execute for this 
time slice. 

Lipika [34] proposed a dynamic version of SRR by adjusting the time slice at the beginning of 
each round. The time slice is calculated depending on the remaining burst times in the subsequent 
rounds. In addition, the author also implemented SJF [35–37]. In SJF, the processes located in the 
ready queue are sorted in increasing order based on their burst times (i.e., the process having lowest 
burst time will be at the front of the ready queue and process having highest burst time will be at the 
end of the ready queue). 

Christoph and Jeonghw [7] presented a dynamic version of SRR named Adaptive80 RR. The 
reason behind this name is that the time slice is set equal to process’s burst time at 80th percentile. 
Like Lipika’s [34], Adaptive80 RR sorts processes in increasing order. The time slice in each round 
depends on the processes located in the ready queue and if new process arrived, it will be added to 
the ready queue and will be considered in the subsequent calculations. 

Samir et al., [38] proposed a hybrid scheduling algorithm based on SRR and SJF named SJF and 
RR with dynamic quantum (SRDQ). Their algorithm divided the ready queue into two subqueues 
Q1 and Q2; Q2 for long tasks (longer than the median) and Q1 for short tasks (shorter than the 
median). Like Adaptive80 RR [7] and Lipika’s [34] algorithms, this algorithm sorts the processes in 
ascending order in each subqueue. In every round, each process will be assigned a time slice depends 
on the median and the burst time of this process. 

Table 2. Comparison of common versions of Round Robin (RR) (WT is acronym for waiting time, TT 
is acronym for turnaround time). 

Researchers Year 
Technique 

Name 

Technique 

Type 
Based on 

Performance  

Metrics 

WT TT NCS 

Aaron and Hong 2001 VTRR Dynamic SRR √ √ √ 

Tarek and Abdelkader 2007 BRR Dynamic SRR √ √ √ 

Samih et al. 2010 CTQ Dynamic SRR √ √ √ 

Lipika Datta 2015 - Dynamic SRR and SJF √ √ √ 

Christoph and 

Jeonghw 
2015 Adaptive80 RR Dynamic SRR and SJF √ √ √ 

Samir et al. 2017 SRDQ Dynamic SRR and SJF √ √ √ 

Samih 2018 PWRR Dynamic SRR √ √ √ 

Samih and Hirofumi 2019 ARR 
Dynamic based on 

threshold 
SRR √ √ √ 

Uferah et al. 2020 ADRR Dynamic SRR and SJF √ √ √ 

Samih [19] proposed a Proportional Weighted Round Robin (PWRR) as a modified version of 
SRR. PWRR assigns time slice to each process proportional to its burst time. Each process has a weight 
calculated by dividing its burst time by the summation of all burst times in the ready queue. Then 
the time slice is calculated depending on this weight. 

Samih and Hirofumi [17] proposed a version of SRR named Adjustable Round Robin (ARR) that 
combines the low-scheduling overhead of SRR and favors a short process. ARR gives short process a 
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chance, under predefined condition, to be executed until termination to minimize the average waiting 
time. 

Uferah et al., [13] proposed a dynamic version of SRR named Amended Dynamic Round Robin 
(ADRR). The time slice is cyclically adjusted based on the process burst time. Like Adaptive80 RR [7], 
SRDQ ]38[  and Lipika’s ]34[  algorithms, ADRR sorts the processes in ascending order. 

3. The Proposed Algorithm 

The processes’ weights (𝑃𝑊) and numbers of allocation to the CPU (i.e., 𝑁𝐶𝑆 ) depend on the 
processes’ burst times (𝐵𝑇) , which are known, and are calculated as shown in the following 
subsections. We assumed that all processes arrive at the same time. The main advantage of the 
clustering technique in the proposed work is the ability to group similar processes in clusters. 
Similarity between processes depends on the values of 𝐵𝑇, 𝑃𝑊,  and 𝑁𝐶𝑆 near each other, K-means 
algorithm is used for this purpose. The proposed technique consists of three stages: Data preparation, 
data clustering, and finally, dynamic time slice implementation. 

3.1. Data Preparation 

Data preparation stage consists of calculating 𝑃𝑊 and 𝑁𝐶𝑆 . The weight of the 𝑖𝑡ℎ process, 𝑃𝑊௜ , is calculated from Equation 4: 𝑃𝑊௜ =  𝐵𝑇௜∑ 𝐵𝑇௝ே௝ୀଵ    (4) 

where 𝐵𝑇௜ is the burst time of the 𝑖𝑡ℎ process, and 𝑁 is the number of the processes in the ready 
queue. The number of context switches of the 𝑖𝑡ℎ process, 𝑁𝐶𝑆௜ , is calculated from Equation 5: 
 

𝑁𝐶𝑆௜ =  
⎩⎪⎪
⎨⎪
⎪⎧ඌ 𝐵𝑇௜𝑆𝑇𝑆 ඐ            𝑖𝑓 𝐵𝑇௜ ≠ ℎ × 𝑆𝑇𝑆                               ℎ = 1, 2, 3, …   𝐵𝑇௜𝑆𝑇𝑆 − 1       𝑖𝑓 𝐵𝑇௜ = ℎ × 𝑆𝑇𝑆                                  ℎ = 1, 2, 3, …  

                     (5) 

where 𝑆𝑇𝑆 (standard time slice) is given by SRR, and ⌊ 𝑋 ⌋ denotes the largest integer smaller than 
or equal to 𝑋. If the last round contains one process, this process will continue execution without 
switching its contents ]4[ . 

3.2. Data Clustering 

Second stage comprises of two phases: First phase is finding the optimum number of clusters by 
using Silhouette method. A high average Silhouette width indicates a good clustering. Second phase 
is clustering the data into 𝑘 number resulted from Silhouette method by using K-means algorithm. 
In the proposed work, the clustering metrics are 𝐵𝑇, 𝑃𝑊, and 𝑁𝐶𝑆. 

Each point is assigned to the closest centroid, and each combination of points assigned to the 
same centroid is a cluster. The assignment and updating steps are repeated until all centroids remain 
the same. To quantify the notion of “closest” for a specific data, the Euclidean (𝐿2) distance is the 
proximity measure for data points in Euclidean space. 

3.3. Dynamic Time Slice Implementation 

In the third stage, dynamic time slice implementation, the weight of the 𝑙𝑡ℎ cluster, 𝐶𝑊௟ , is 
calculated from Equation 6: 
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𝐶𝑊௟ =  𝐶𝑎𝑣𝑔௟∑ 𝐶𝑎𝑣𝑔௠௞௠ୀଵ      (6) 

where 𝐶𝑎𝑣𝑔௟  is the average of burst times in the 𝑙𝑡ℎ cluster. The time slice assigned to the 𝑙𝑡ℎ 
cluster,  𝐶𝑇𝑆௟ , is calculated from Equation 7: 𝐶𝑇𝑆௟ = (1 − 𝐶𝑊௟) × 𝑆𝑇𝑆     (7) 

Each process in this cluster will execute for 𝐶𝑇𝑆௟ . In addition, a process that is close to its completion 
will get a chance to complete and leave the ready queue. A threshold is determined to allow the 
process that possesses burst time greater than STS and close to its completion to continue execution 
until termination. Therefore, the number of processes in the ready queue will be reduced by knocking 
out short processes relatively faster in the hope to minimize average waiting and turnaround times. 
The residual burst time of the 𝑖𝑡ℎ process, 𝑅𝐵𝑇௜ , is calculated from Equation 8. 𝑅𝐵𝑇௜ =  𝐵𝑇௜ − 𝐶𝑇𝑆௜    (8) 

If a process satisfies the threshold condition, its 𝑅𝐵𝑇 equals zero and leaves the queue. When a new 
process arrived, it will be put at the tail of the queue to be scheduled in the next round. The clustering 
technique will be applied again for the survived processes (i.e., processes with 𝐵𝑇 or 𝑅𝐵𝑇 greater 
than the time slice assigned to them in the current round) and new processes (if arrived) in the next 
round. Figure 2 shows the flowchart of the proposed algorithm. 

 
Figure 2. Algorithm flowchart. 

3.4. Illustrative Examples 

The following examples provide a more in depth understanding of the proposed technique. 

3.4.1. Example 1 

From the benchmark datasets used in the experiments, the first dataset which contains 10 
processes (see Table 3) will be used in this example. 𝑃𝑊 and 𝑁𝐶𝑆 are calculated from Equations 4 
and 5, respectively. Silhouette method is used to find the optimum value of 𝑘. The location of a knee 
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in the curve (see Figure 3) indicates the optimal number of clusters. From the curve, the optimal value 
of 𝑘 is 2. 

Table 3. Dataset_1. 

 BT Weight NCS 
0 109 0.077746 10 
1 150 0.10699 15 
2 3 0.00214 0 
3 50 0.035663 4 
4 4 0.03495 4 
5 49 0.03495 4 
6 409 0.291726 48 
7 490 0.349501 48 
8 47 0.033524 4 
9 46 0.03281 4 

 

 
Figure 3. Finding optimal number of clusters. 

Now, 𝑘 = 2 will be used by K-means algorithm to clustering the data points. The 7th and 8th 
processes are grouped into cluster 1 and the others are grouped into cluster 0 (Table 4). 

Table 4. Clustered dataset_1. 

 BT Weight NCS y 
0 109 0.077746 10 0 
1 150 0.10699 15 0 
2 3 0.00214 0 0 
3 50 0.035663 4 0 
4 49 0.03495 4 0 
5 49 0.03495 4 0 
6 409 0.291726 48 1 
7 490 0.349501 48 1 
8 47 0.033524 4 0 
9 46 0.03281 4 0 

 
The weight of cluster 0 equals 0.12271, and the weight of cluster 1 equals 0.87729. The time slice 

assigned to cluster 0 is 8.77287 tu, and the time slice assigned to cluster 1 is 1.227123 tu. The 7th and 
8th processes will be assigned 1.227123 tu, and other processes will be assigned 1.227123 tu. The 
burst time of the third process is smaller than its cluster’s time slice, therefore it will terminate and 
leave. The number of processes, burst times, and weights will be updated for the next iteration and 
so forth until the ready queue becomes empty. 

3.4.2. Example 2 
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Giving a short process more CPU time decreases the waiting time of this process more than it 
increases the waiting time of the long process. Consequently, the average waiting time decreases. To 
illustrate this concept, assume the following set of processes (Table 5) that arrive at the same time, 
each of which with its burst time, and the STS is 10 tu. 

Table 5. Four processes with the length of the burst time. 

Process ID BT 

P1 15 

P2 10 

P3 31 

P4 17 
 
Using SRR scheduling, we would schedule these processes according to the following Gantt 

chart: 
 

 

The waiting time is 30 tu for process P1, 10 tu for process P2, 42 tu for process P3, and 45 for 
process P4. Thus the average waiting time is 31.75 tu, and the average turnaround time is 50 tu. On 
the other hand, suppose that each process is assigned a percentile of STS equals ((STS / BT)  ×  STS) 
as in Table 6. 

Table 6. Assigning time slice for the running processes in each round. 

  Round 1  Round 2  Round 3  Round 4 
Process 

ID 
 BT TS  RBT TS  RBT TS  RBT TS 

P1  15 7  8 
12.5 

terminates 
after 8 tu 

 --- ---  --- --- 

P2  10 
10 

terminates 
 --- ---  --- ---  --- --- 

P3  31 4  27 4  23 4  19 19 

P4  17 6  11 9  2 
50 

terminates 
after 2 tu 

 --- --- 

The results will be as shown in the following Gantt chart: 
 
 

 

The waiting time is 20 tu for process P1, 7 tu for process P2, 42 tu for process P3, and 37 for 
process P4. Thus the average waiting time is 26.5 tu, and the average turnaround time is 44.75 tu. 

  

P1 P2 P3 P4 P1 P3 P4 P3 
0 10 20 30 40 45

P1 P2 P3 P4 P1 P3 P4 P3 P4 P3 
0 7 17 21 27 35 39
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4. Experimental Implementation 

The experiments were carried out using a computer with the following specification: Intel core 
i5-2400 (3.10 GHz) processor, 16 GB memory, 1 TB HDD, Gnu/Linux Fedora 28 OS, and Python 
(Python 3.7.6 (default, Jan 8 2020, 20:23:39) [MSC v.1916 64 bit (AMD64)], and version of the notebook 
server is: 6.0.3). 

4.1. Benchmark Datasets 

Nine synthetic datasets are used to test the performance of the algorithms used in the 
comparison. Each dataset contains a number of processes used for numerical simulation. For each 
process of each dataset, the burst time is randomly generated. The datasets on hand vary in number 
of processes, processes’ burst times, processes’ weights, and processes’ number of context switches. 
Detailed information on datasets is presented in Table 7. Weight and NCS depend on the process’s 
burst time, which means that the most important variant of the benchmark dataset is the burst times 
of its processes. 

Table 7. Datasets specifications. The first column presents the dataset ID, the second column presents 
the number of processes in each dataset, the third column presents the number of attributes (i.e., BT, 
PW, and NCS), and the forth column presents the standard deviations. 

Dataset ID Number of 
Processes 

Number of 
Attributes 

Standard 
Deviation 

1 10 3 160.2615 
2 15 3 83.1789 
3 20 3 123.5103 
4 25 3 112.4794 
5 30 3 103.9525 
6 35 3 97.17821 
7 40 3 91.67769 
8 45 3 87.08785 
9 50 3 83.1789 

4.2. Performance Evaluation 

The proposed algorithm was compared with five common algorithms; PWRR, VTRR, BRR, SRR, 
and ADRR on different nine combinations of number of processes and burst times. The authors 
implemented all these algorithms using the benchmark datasets. The average waiting and 
turnaround times depend on the number of processes in the ready queue; as number of processes 
increases, time cost increases. In addition, long burst times of the processes increase the time cost. To 
emphasize the efficiency of the proposed algorithm, benchmark datasets varying in number and 
burst times of processes are used. The time taken in clustering the dataset is trivial. Comparing with 
waiting and turnaround times, it can be said that the clustering time has no effect and can be ignored. 
Table A1 compares between the running times of the proposed algorithm (including the times 
consumed in the clustering) against other methods. 

Table A2 shows a comparison of the time cost between the proposed algorithm and other 
algorithms in terms of average waiting time, turnaround time, and NCS. Table A3, Figure 4, and 
Figure 5 show the superiority of the proposed algorithm over the compared algorithms in all the 
datasets where the time cost of the proposed algorithm is the smallest (average waiting time and 
average turnaround time are 979.14 tu, 1061.36 tu respectively). Figure 6 shows how much 
improvement is achieved by the proposed algorithm. Unlike PWRR, BRR, and SRR which their time 
slices are less than or equal to the time slice defined by SRR, VTRR may behave somewhat similar to 
FCFS as it may give a process very long time slice. Therefore, the time slices calculated in the VTRR 
algorithm are restricted to be less than or equal to the time slice defined by SRR (i.e., 10 tu). 
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Figure 4. Comparing algorithms’ time cost. 

 
Figure 5. Comparing algorithms’ NCS. 

 
Figure 6. Improvement percentage of the proposed algorithm over the compared algorithms. 

5. Conclusions and Future Work 

In this paper, a dynamic SRR-based CPU scheduling algorithm has been proposed that could be 
used in timesharing systems in which it is important to reduce the time cost of the scheduling. Unlike 
the SRR algorithm which uses fixed time slice for the processes in the ready queue in all rounds, the 
proposed algorithm uses dynamic time slice. The proposed algorithm benefits from clustering 
technique in grouping processes that resemble each other in their features (i.e., burst times, weights, 
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and NCS). Each cluster is assigned a time slice proportional to its weight, and every process in this 
cluster receives this amount of time for its execution in the current round. The features will be 
updated in the subsequent rounds. In addition, the proposed algorithm gives processes that are close 
to completion a chance to complete execution and leave; this in turn helps in reducing number of 
processes in the ready queue and reducing NCS. The proposed algorithm was compared with five 
common algorithms from the point of view of average waiting, turnaround times, and NCS. The 
proposed algorithm outperformed all the others; however, it behaves somewhat similar to ADRR in 
NCS. 

In cloud-computing systems, achieving optimality in scheduling processes over computing 
nodes is an important aim for all researchers interested in both cloud and scheduling, where the 
available resources must be scheduled using an efficient CPU scheduler to be assigned to clients. The 
relation between CSP (cloud service providers) and CSC (cloud service consumers) is formalized 
through service level agreement (SLA). CSP must achieve best performance through minimizing time 
cost. Because of the superiority of the proposed algorithm over the compared algorithms in all the 
datasets, the proposed algorithm in this work is promising for cloud computing systems. 
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Appendix A 

Table A1. Running times comparison between the proposed algorithm and five scheduling algorithms. 

Dataset Proposed  PWRR  VTRR  BRR  SRR  ADRR 

1 0.04  0.01  0.01  0.017  0.008  0.01 

2 0.042  0.01  0.01  0.018  0.008  0.01 

3 0.042  0.012  0.011  0.018  0.009  0.011 

4 0.046  0.02  0.021  0.022  0.01  0.02 

5 0.048  0.02  0.021  0.023  0.011  0.02 

6 0.05  0.021  0.022  0.023  0.011  0.021 

7 0.05  0.02  0.022  0.025  0.012  0.022 

8 0.06  0.024  0.024  0.027  0.013  0.024 

9 0.062  0.026  0.025  0.027  0.013  0.025 

                        

Table A2. Average waiting time and turnaround time comparison between the proposed algorithm and five scheduling algorithms. 

Dataset 
Proposed  PWRR  VTRR  BRR  SRR   ADRR 

WT TT NCS  WT TT NCS  WT TT NCS  WT TT NCS  WT TT NCS  WT TT NCS 

1 398.41 538.61 124  450.85 591.05 141  485.90 626.10 124  467.60 607.80 306  485.90 626.10 124  485.9 626.1 124 

2 552.37 660.44 140  605.22 713.28 154  653.27 761.33 144  622.20 730.27 341  653.27 761.33 144  625.933 734 139 

3 704.30 795.40 156  760.63 851.73 169  812.35 903.45 160  779.50 870.60 371  812.35 903.45 160  778.3 869.4 154 

4 852.07 932.59 171  918.54 999.06 182  968.24 1048.76 175  943.52 1024.04 401  968.24 1048.76 175  935.36 1015.88 169 

5 1004.37 1077.63 185  1078.26 1151.53 195  1125.67 1198.93 190  1107.80 1181.07 430  1125.67 1198.93 190  1094.77 1168.03 184 

6 1154.23 1222.00 199  1236.42 1304.20 210  1280.57 1348.34 205  1254.31 1322.09 455  1280.57 1348.34 205  1222.97 1290.74 194 

7 1275.34 1338.61 210  1356.38 1419.65 220  1423.53 1486.80 219  1388.58 1451.85 479  1423.53 1486.80 219  1341.85 1405.13 204 
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8 1383.72 1443.23 221  1468.75 1528.26 230  1533.09 1592.60 229  1498.91 1558.42 499  1533.09 1592.60 229  1454.76 1514.27 214 

9 1487.44 1543.74 228  1575.99 1632.29 238  1637.48 1693.78 239  1605.92 1662.22 519  1637.48 1693.78 239  1563.62 1619.92 224 

                        

Average 979.14 1061.36 181.56  1050.11 1132.34 193.22  1102.23 1184.45 187.22  1074.26 1156.48 422.33  1102.23 1184.45 187.22  1055.94 1138.16 178.44 

Improvement%     6.76 6.27 5.87  11.17 10.39 2.85  8.85 8.23 56.93  11.17 10.39 2.85  7.27 6.75 -1.74 
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Table A3. Improvement percentages of the proposed algorithm over five scheduling algorithms. 

 
PWRR  VTRR  BRR  SRR  ADRR 

WT TT NCS  WT TT NCS  WT TT NCS  WT TT NCS  WT TT NCS 

1 11.63 8.87 12.06  18.01 13.97 0.00  14.80 11.38 59.48  18.01 13.97 0.00  18.01 13.97 0.00 

2 8.73 7.41 9.09  15.45 13.25 2.78  11.22 9.56 58.94  15.45 13.25 2.78  11.75 10.02 -0.72 

3 7.41 6.61 7.69  13.30 11.96 2.50  9.65 8.64 57.95  13.30 11.96 2.50  9.51 8.51 -1.30 

4 7.24 6.65 6.04  12.00 11.08 2.29  9.69 8.93 57.36  12.00 11.08 2.29  8.90 8.20 -1.18 

5 6.85 6.42 5.13  10.78 10.12 2.63  9.34 8.76 56.98  10.78 10.12 2.63  8.26 7.74 -0.54 

6 6.65 6.30 5.24  9.87 9.37 2.93  7.98 7.57 56.26  9.87 9.37 2.93  5.62 5.33 -2.58 

7 5.97 5.71 4.55  10.41 9.97 4.11  8.16 7.80 56.16  10.41 9.97 4.11  4.96 4.73 -2.94 

8 5.79 5.56 3.91  9.74 9.38 3.49  7.68 7.39 55.71  9.74 9.38 3.49  4.88 4.69 -3.27 

9 5.62 5.42 4.20  9.16 8.86 4.60  7.38 7.13 56.07  9.16 8.86 4.60  4.87 4.70 -1.79 
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