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Abstract: A magnesium-doped indium oxide (In2O3:Mg) ultraviolet (UV) thin film phototransistor
was fabricated via cosputtering of MgO and In2O3. Three samples with different sputtering power
values of In2O3 ranging from 40 to 60 W, namely, sample A with 40 W, sample B with 50 W, and sample
C with 60 W, were used in this study. Results confirmed that oxygen vacancy concentration evidently
indicates indium content. The experimental results showed that responsivities of samples, defined
as the ratio of photocurrent under illumination per input power, increase from 0.0086 to 2.6 A/W.
Rejection ratios were 1.2 × 104, 4.3 × 105, and 4.8 × 105 for samples A, B, and C, respectively. Based on
our results, sample C is the best among the three MgInO UV phototransistors investigated in this study.

Keywords: phototransistor; magnesium doping indium oxide; cosputtered

1. Introduction

Thin film transistors (TFTs) are widely used in various applications, such as active matrix
organic light-emitting diodes, active matrix liquid crystal, and flat panel displays. Oxide-based
TFTs have the advantages of reasonable mobility, high transparency, low processing temperature,
amorphous phase, and high uniformity for flexible substrates or large-area production. Both electrical
and optical properties of oxide-based TFTs can be bandgap engineered by the doping method,
and their cutoff wavelength can be easily tuned by alloying them with other oxide semiconductors.
Oxide semiconductor detectors are used for ultraviolet (UV) detection due to their wide bandgap
of >3 eV, high breakdown field, and thermal stability. Thus, oxide semiconductors are promising
materials for phototransistors. Phototransistors can integrate light detection and signal magnification
properties in one device due to their high sensitivity, low noise, low cost, and easy fabrication [1,2].
Accordingly, phototransistors have various potential applications, such as optoisolators, optical
switches, and retrosensor circuits with voltage-switching capability [3–5]. Among them, UV detection
is of utmost importance because of its specific applications, such as flame detection, short-range
communication, and UV astronomy [6]. However, commercial silicon-based UV detectors are limited
by high leakage current due to their narrow bandgap and requirement of expensive wood filters that
are unsuitable for UV detecting [7]. Visible- (λ ≤ 400 nm) and solar- (λ ≤ 280 nm) blind phototransistors
can be divided on the basis of the cutoff wavelength, which has three regional classifications, namely,
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UV-A (400–320 nm), UV-B (320–280 nm), and UV-C (280–10 nm) [8]. The visible- or solar-blind
phototransistor requires a wide bandgap. Metal oxide semiconductors are promising materials for UV
light detection sensors.

Metal oxide semiconductors with wide bandgap (>2 eV) demonstrate intrinsic visible blindness,
high chemical bonding strength, and simple fabrication properties, which are suitable for UV-light
detection [9]. Among them, In2O3-based materials are used in UV phototransistors. In2O3 is a high
mobility and wide bandgap n-type material typically used as carrier supplier in metal oxide-based
semiconductors. Oxygen vacancies are major defects of In2O3 that produce two free electrons as
donors [10]. However, the excessively large number defects can lead to high visible light sensitivity and
high off-stead current in In2O3 TFTs and the doping behavior can be a function of carrier suppressors
in the active layer. Park et al. reported the improved performance of lanthanum indium zinc oxide
(La-IZO) TFTs using radio frequency cosputtering by controlling the sputtering power applied to the
La target. Compared with electronegativity values of indium (1.78), zinc (1.65), and oxygen (3.44),
the lower electronegativity value of lanthanum at 1.1 results in a strong ionic bond between La and
O due to the large difference in their electronegativity values [11]. Park et al. [12] investigated the
incorporation of gadolinium into IZO TFTs and demonstrated that the formation of stable Gd–O ionic
bonds due to the large difference in electronegativity values between Gd and O can improve the device
performance of Gd-IZO TFTs and Gd can be used as an element of carrier suppressor. Choi et al. [13]
assessed the carrier-suppressing effect of Sc in InZnO systems applied to TFTs and used Sc as the
carrier suppressor to control oxygen vacancies effectively and supply free electrons due to its low
standard electrode potential (SEP) (−2.36) and lower electronegativity (1.3) than oxygen (3.4).

Compared with indium and oxygen, the higher electronegativity values of the Mg element (1.2)
can reduce the defect by forming oxygen vacancies [14]. Furthermore, MgO is suitable for solar-blind
photodetection because of its transparent semiconductor with a wide bandgap of ~7.8 eV and ability
to remain physically and chemically stable at high temperatures [15]. Electrical properties of In2O3

TFTs can be improved and bandgaps engineered via MgO doping and tuning the composition of MgO
and In2O3 in the active layer. In this work, the cosputtered method was applied to the fabricated
MgInO phototransistor to modulate the power of the In2O3 target, change the vacancy concentration,
and engineer the cutoff wavelength. Electrical and photo properties of devices are discussed in the
following section.

2. Experiment and Device Fabrication

The fabricated device comprises a bottom gate, dielectric layer, active layer, and Source/Drian (S/D)
electrode. Three samples with various In2O3 target power values, namely, samples A, B, and C with 40,
50, and 60 W, respectively, were used in this study. First, heavily doped p-type silicon was cleaned
with acetone, methanol, and water using an ultrasonic cleaner for 10 min in order to clean grease
and particles from the glass. The p++ silicon wafers served as a bottom gate and used for growing a
300 nm thickness of SiO2 dielectric layer. After that, the active layer deposition 30 nm thick MgInO
thin film used MgO and In2O3 targets by the cosputtering method with an interdigitated shadow mask.
MgO target power was fixed at 100 W; the In2O3 target power was 40, 50, and 60 W for samples A, B,
and C, respectively. Before opening the shutters, the targets were presputtered for 5 min to remove the
impurities in the target surface. The sputtering time was carefully controlled to ensure the thin film
thicknesses were equal, and that precision of sputtering power was maintained ±1 W. The working
pressure was 0.8 Pa at an argon flow of 3 sccm at room temperature. Samples were then annealed at
300 ◦C for 1 h in argon ambient. Finally, thermal evaporation with an interdigitated shadow mask was
performed using a 100 nm source and drain electrode. The channel width and length were 1000 and
100 µm, respectively. The photo and electric properties were measured in the dark region using Agilent
B1500A and 150 W Xenon lamps (Agilent Technologies, Santa Clara, CA, USA), respectively. Glancing
incidence angle X-ray diffractometry (GIAXRD) (XRD, D8 Discover, Bruker, Billerica, MA, USA) and
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X-ray photoelectron spectroscopy (XPS) (PHI 5000 VersaProbe, ULVAC, Chigasaki-shi, Japan) were
applied to assess the crystal structure and determine the concentration of oxygen vacancy, respectively.

3. Results

Figure 1a,b show the GIAXRD spectra of samples A, B, and C, and the magnified picture of the
(311) diffraction line in the MgIn2O4 phase. Samples A and B demonstrate significant amorphous
phases and inconspicuous peaks located at 2θ = 32.5◦, which correspond to the spinel MgIn2O4 (311)
phase [16]. Clear diffraction peaks in Sample C indicate its polycrystalline structure and its signal may
be attributed to the In2O3 cubic structure (JCPDS Card No. 76-0152), which corresponds to <221>,
<222>, <400>, <441>, <440>, <611>, and <622>; the In2O3 cubic structure (JCPDS Card No. 06-0416),
which corresponds to <521>; and the MgIn2O4 spinel structure (JCPDS Card No 40-1402) which
corresponds to <541>. Transfer characteristic curves of MgInO TFTs were measured under VDS = 10 V
and a range of VGS = −30 to 20 V, as shown in Figure 2. Table 1 presents the electric performance of
three samples, including threshold voltage, field effect mobility, subthreshold swing, and on/off ratio.
Carrier mobility can be calculated as follows [17]:

IDS =
W
2L

Ciµsat(VGS −VTH)
2 (1)

where W and L are the width and length of the channel, respectively; Ci is the capacitance of the
dielectric layer per unit area; µsat is the field effect mobility; and Vth is the threshold voltage. Mobility
increased from 0.134 to 2.01 cm2/V-s when In2O3 content increased. The threshold voltage shifted in
the negative direction, likely due to the increase in number of oxygen vacancies as the donor in the
MgInO material system. In addition, the threshold voltage is defined from the linear extrapolation of
IDS

1/2 versus VGS. The intersection of the linear extrapolation and the x-axis is the VTH value. S.S is the
change in gate voltage needed to increase the drain current by one order of magnitude with respect to
the switching speed of the device, and can be expressed as follows:

S.S =
∂VGS

∂(logIDS)
(2)

S.S decreased from 2.59 to 1.81 V/decade and then increased to 2.83 V/decade, likely due to
grain boundaries and other defects that act as carriers for scattering and trapping sites. Thus, gate
controllability deteriorated and the gate insulator would likely be damaged because of the large sputter
power of sample C. Moreover, the on/off ratio of samples was at approximately 105. However, when
raising the In2O3 power from 70 W, however, greater In2O3 leads to high conductivity performance with
no transfer characteristic. It is also worth noting that each measurement was repeated three times; the
deviation value was less than 1% and there were differences between the three groups on the same variable.
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Table 1. Electric properties of MgInO under different target power values of In2O3.

Threshold Voltage (V) µFE (cm2/Vs) S.S (V/dec) On/Off Ratio

Sample A 13.2 0.134 2.59 2.2 × 105

Sample B −0.88 0.25 1.81 6 × 105

Sample C −12.2 2.01 2.83 1.4 × 105

µFE: is the field effect mobility; S.S is the subthreshold swing.

Figure 3 shows the output characteristic curves under different gate voltages from 0 to 10 V.
The increasing drain current and off-current of the device as gate voltages increase demonstrate the
operational modes of n-channel TFTs. The conductivity of the channel layer increased due to the
increase in sputtering power of indium oxide. The high sputtering power of indium oxide increases
the carrier concentration in the thin film.

Figure 4 showed XPS and fitting spectra of O 1s deconvolution with Gaussian function confirms
the concentration of oxygen vacancy in the thin film, the detail values were summarized in Table 2.
The three peaks, M–O, Vo, and M–OH, can be attributed to O2

− ions in metal oxide lattices, oxygen
vacancies, and M–OH compounds on the surface, respectively [18]. Magnesium content is from 17.5 to
11.56 at% and indium content is from 34.75 to 38.82 at%. Oxygen vacancies increased from 27.59 to
40.91% with the increased target power of In2O3. The elemental composition via XPS measurement
is presented in Table 3. The priority of bonding between multimetal oxide can be explained by
electronegativity, which describes the tendency for attracting electrons. Electronegativity differences
in Mg–O and In–O are 2.13 and 1.66, respectively. Thus, the stronger attraction of Mg to oxygen
than In results in the reduction of oxygen vacancies. MgInO thin films demonstrate good application
potential in UV light detection due to their high transmittance and wide bandgap. Tauc plots of the
three samples are illustrated in Figure 5 to determine the optical energy bandgap. Optical bandgap of
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4.4, 4.1, and 3.65 eV for samples A, B, and C, respectively, indicate that band gaps can be engineered
with different target power values of In2O3.
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VGS values.

Table 2. X-ray photoelectron spectroscopy (XPS) measurement of O 1s spectra of the three samples.

M–O (%) VO (%) M–OH (%)

Sample A 54.63 27.59 17.78
Sample B 54.35 32.96 12.69
Sample C 53.15 40.91 5.94

Table 3. Elemental composition of the three samples.

Mg 2p In 3d O 1s

Sample A 17.50 34.75 47.75
Sample B 15.08 37.06 47.86
Sample C 11.56 38.82 49.63
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Figure 5. Tauc plots of the three samples with different target power values.

Figure 6 shows the three samples that are measured under light illumination with wavelengths
from 500 to 240 nm in an interval of 40 nm to investigate their photo properties. The transfer curve
was measured using a gate voltage ranging from −40 to 40 V and VDS = 10 V. The photocurrent
gradually increased when moving to short wavelength, the photo-induced current dominated the
IDS. Photo-excited holes trapped by shallow donor states (oxygen vacancies) originating from
photo-generated electrons increased IDS and subsequently reduced the barrier height from source to
drain. Hence, the incident photon energy increased with increasing IDS as VTH shifted toward the
negative direction.
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Photoresponsivity of samples A, B, and C is depicted in Figure 7. Photoresponsivity can be
calculated as follows:

R =
Ilight − Idark

Popt
(3)

where Ilight is the photocurrent, Idark is the dark current, and Popt is the power of incident light. Notably,
responsivities are calculated under VDS = 10 V and VGS = −10 V, VGS = −20 V, and VGS = −38 V for
samples A, B, and C, respectively. Responsivity and rejection ratios of samples A, B, and C are 0.0086,
0.17, and 2.6 A/W, and 1.2 × 104, 4.3 × 105, and 4.8 × 105, respectively. In addition, rejection ratios
are defined as the responsivity at 280 nm divided by the responsivity at 460 nm. A high rejection
ratio indicates that the device can distinguish between visible light and UV. The existence of oxygen
vacancies deteriorates the device performance because responsivity continued to increase, although
the light energy was lower than the bandgap energy, likely due to trap levels and band-tail states
from the structural defect, especially in amorphous oxide [19]. A comparison of optical characteristics
demonstrated that sample C exhibited the best performance due to its high mobility, which indicated the
highest induced photocurrent. XPS spectra confirmed that the composition of thin films can improve
the photo and electric performance of the device by controlling oxygen vacancy defects. Meanwhile,
UV phototransistors with precise control over composition can enhance the device performance. Hence,
the device performance with moderate oxygen or hydrogen flow can lead to the control of oxygen
vacancy concentration [20–22].
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phase in polycrystalline films can deteriorate photo and electric characteristics. The results showed that
the optimized parameter is demonstrated in sample C, which obtained a responsivity and UV-to-visible
rejection ratio of 2.6 A/W and 4.8 × 105, respectively.
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