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Abstract: Very often, digital systems include sequential blocks which can be represented using a
model of Mealy finite state machine (FSM). It is very important to improve such FSM characteristics
as the number of used logic elements, operating frequency and power consumption. The paper
proposes a novel design method optimizing LUT counts of LUT-based Mealy FSMs. The method
is based on simultaneous use of such methods of structural decomposition as the replacement of
FSM inputs and encoding of the collections of outputs. The proposed method results in three-level
logic circuits of Mealy FSMs. These circuits have regular systems of interconnections. An example
of FSM synthesis with the proposed method is given. The experiments with standard benchmarks
were conducted. The results of experiments show that the proposed approach leads to reducing the
LUT counts from 12% to 59% in average compared with known methods of synthesis of single-level
FSMs. Furthermore, our approach provides better LUT counts as compared to methods of synthesis
of two-level FSMs (from 9% to 20%). This gain is accompanied by a small loss of FSM performance.

Keywords: FPGA; LUT; Mealy FSM; structural decomposition; replacement of inputs; collections
of outputs

1. Introduction

One of the features of our time is a wide application of digital systems in various spheres of human
activity [1,2]. Modern digital systems include different combinational and sequential blocks [3,4].
The behaviour of a sequential block can be represented using the model of finite state machine
(FSM) [5,6]. To improve characteristics of a digital system, it is necessary to improve such characteristics
of FSMs as internal occupied resources, performance and power consumption. This necessity explains
the continuous interest in developing methods aimed at optimizing these characteristics of FSM circuits.
As a rule, the less internal occupied resources are used by an FSM circuit, the less power it consumes [7].
So, it is very important to reduce internal occupied resources consumed by an FSM circuit.

A sequential block can be represented as either Mealy or Moore FSM [5,6]. There are thousands
of monographs and articles devoted to problems of FSM circuits design. The vast majority of these
works are devoted to Mealy FSMs. Based on this analysis, we have chosen Mealy FSM as the object of
research in our current article.

To diminish the required internal occupied resources, it is necessary to take into account specifics
of logic elements implementing FSM circuits [8,9]. Nowadays, field programmable gate arrays
(FPGAs) [10–12] are widely used in the implementation of digital systems [9,13–15]. Due to it,
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we choose FPGA-based FSMs as a research object in the given article. In this article, we consider a case
when look-up table (LUT) elements are used to implement logic circuits of Mealy FSMs.

A LUT is a block having SL inputs and a single output [10,12]. A single LUT allows implementing
an arbitrary Boolean function having up to SL arguments [16,17]. However, the number of LUT inputs
is rather small [10,12]. This feature leads to the need of functional decomposition of systems of Boolean
functions (SBFs) representing FSM circuits [17,18]. In turn, this leads to multi-level FSM circuits with
complex systems of interconnections [9].

One of the most crucial steps in the LUT-based design flow is the technology mapping [19–25].
During this step, an FSM circuit is converted into a network of interconnected LUTs. The outcome of
technology mapping determines resulting characteristics of an FSM circuit. These characteristics are
strongly interrelated.

The internal occupied resources consumed by a LUT-based FSM circuit include LUTs, flip-flops,
interconnections, circuit of synchronization, input-output blocks. Obviously, to reduce the amount
of required resources, it is very important to reduce the LUT count in a circuit. As follows
from [26], the more LUTs are included into an FSM circuit, the more static power it consumes. Now,
process technology has scaled considerably, with current design activity at 14 and 7 nm. Due to it,
interconnection delay now dominates logic delay [26]. As noted in [16,27], the interconnections are
responsible for the consuming up to 70% on power. So, it is very important to reduce the amount of
interconnections to improve the characteristics of FSM circuits.

As shown in [26,28], the value SL = 6 provides an optimal trade-off for the occupied chip area,
performance, and power consumption of a LUT. However, the complexity of FPGA-based projects
is constantly growing [9]. To overcome this contradiction, it is necessary to develop the methods of
technology mapping that take into account rather small value of LUT’s inputs.

The main contribution of this paper is a novel design method aimed at reducing the number
of LUTs in circuits of FPGA-based Mealy FSMs. The proposed approach is based on joint usage of
two known methods of structural decomposition (replacement of inputs and encoding of collections
of outputs). The method leads to FSM circuits having three levels of logic and regular system of
interconnections. The proposed method allows obtaining FSM circuits with fewer LUTs compared to
circuits based on either single-level or two-level FSM models. Our current study is focused in Xilinx
solutions [12].

The rest of the paper is organised as the follows. Section 2 presents the theoretical background
of Mealy FSMs and peculiarities of FPGAs. Section 3 discusses the state of the art of FPGA-based
technology mapping. Section 4 describes the main idea of the proposed method. The synthesis example
is shown in Section 5. Section 6 gives results of experiments conducted on standard benchmarks [29].
A brief conclusion ends the paper.

2. Specifics of FPGAs and Mealy FSMs

The majority of modern FPGAs are organized using so called “island-style” architecture [16,28,30].
They include different configurable logic blocks (CLBs) and a matrix of programmable
interconnections [10–12]. In this article, we consider CLBs consisting of LUTs and programmable
flip-flops. To implement LUT-based circuits of sequential blocks, it is necessary to connect outputs of
some LUTs with flip-flops [5].

An extremely small amount of LUT inputs leads to the necessity of functional decomposition [17]
of functions representing combinational parts of FSMs. The functional decomposition produces
multi-level circuits with irregular systems of interconnections. Such circuits resemble “spaghetti-type”
programs [28]. Using terminology from programming, we can say that the functional decomposition
produces LUT-based circuits with “spaghetti-type” interconnections.

A Mealy FSM is defined as a vector < X, Y, A, δ, λ, a1 > [5], where X = {x1, . . . , xL} is a set
of inputs, Y = {y1, . . . , yN} is a set of outputs, A = {a1, . . . , aM} is a set of internal states, δ is a
function of transitions, λ is a function of output, and a1 ∈ A is an initial state. A Mealy FSM can be
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represented using different tools, such as: state transition graphs [3,5], binary decision diagrams [31,32],
and-inverter graphs [33], graph-schemes of algorithms [5]. In this article, we use state transition tables
(STTs) for this purpose.

An STT includes the following columns [3,5]: am is a current state; as is a state of transition (a next
state); Xh is a conjunction of inputs (or their compliments) determined a transition from am to as; Yh is a
collection of outputs generated during the transition from am to as. The column h includes the numbers
of transitions (h ∈ {1, . . . , H}). For example, the STT (Table 1) represents some Mealy FSM S1.

Table 1. STT of Mealy FSM S1.

am as Xh Yh h

a1
a2 x1 y1y7 1
a3 x1 y2y6 2

a2

a4 x2 y5 3
a4 x2x3 y2y6 4
a5 x2 x3 y1y4y6 5

a3

a2 x4 y2y3 6
a5 x4x5 y1y7 7
a6 x4 x5 y4y6 8

a4 a5 1 y5 9

a5

a2 x3x6 y2 10
a3 x3x6 y3y4 11
a6 x3x7 y2y6 12
a1 x3 x7 y5y7 13

a6
a4 x8 y2 14
a1 x8 − 15

Using STT (Table 1), the following parameters of S1 can be found: the number of inputs L = 8,
the number of outputs N = 7, the number of states M = 6, and the number of transitions H = 15.
Furthermore, Table 1 uniquely defines the functions of transitions and output of FSM S1.

To find SBFs representing an FSM circuit, it is necessary [5]: (1) to encode states am ∈ A by binary
codes K(am); (2) to construct sets of state variables T = {T1, . . . , TR} and input memory functions
(IMFs) Φ = {D1, . . . , DR} and (3) to transform an initial STT into a direct structure table (DST).
States am ∈ A are encoded during the step of state assignment [3].

In this article, we use the state codes having the minimum possible number of state variables
R, where

R = dlog2Me. (1)

This method is used, for example, in well-known academic system SIS [34]. There are other
approaches for state encoding where the number of state variables differs from (1). For example,
the academic system ABC [33] of Berkeley uses one-hot state assignment with R = M.

State codes are kept into a state register (RG). The RG consists of R flip-flops with mutual inputs
of synchronization (Clock) and reset (Start). For LUT-based FSMs, D flip-flops are used to organize
state registers [9]. The pulse Clock allows the functions Dr ∈ Φ to change the RG content.

To find functions representing an FSM circuit, it is necessary to create a direct structure table.
A DST is an expansion of an STT by the columns with codes of current and next states (K(am) and
K(as), respectively). Furthermore, a DST includes a column Φh with symbols Dr ∈ Φ corresponding
to 1’s in the code K(as) from the row h of a DST (h ∈ {1, . . . , H}). The following SBFs are derived from
a DST:

Φ = Φ(T, X); (2)

Y = Y(T, X). (3)
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The systems (2) and (3) determine a structural diagram of Mealy FSM U1 (Figure 1 from [35]).
In Figure 1, the symbol LUTer denotes a logic block consisting of LUTs.

LUTerF LUTerY

T

X

Y
Start

Clock

Figure 1. Structural diagram of LUT-based Mealy FSM U1.

In the FSM U1, the LUTerΦ implements the system (2), the LUTerY the system (3). If a function Dr

is generated by a particular LUT, then the LUT’s output is connected with a flip-flop [9]. The flip-flops
form the state register distributed among the LUTs of LUTerΦ. It explains the existence of pulses Start
and Clock as inputs of LUTerΦ.

The main specific of Mealy FSMs is the dependence of input memory functions and outputs on
inputs and state variables. So, these functions have the same nature. This specific can be used to
minimize hardware in LUT-based Mealy FSM circuits [35]. In Section 4, we will explain how to use
this specific.

3. State of the Art

The process of technology mapping is associated with necessity of the solution of some
optimization problems [9,35]. When designing FPGA-based FSMs, four optimization problems
arise [35]: (1) the reduction of hardware amount, (2) the improvement of performance, (3) the reduction
of power consumption, and (4) the improvement of testability. In this article, we propose a way for
solution of the first problem.

Denote as NL( fi) the number of literals [3] in sum-of-products (SOPs) of functions (2) and (3).
If the condition

NL( fi) ≤ SL (i ∈ {1, . . . , N + R}) (4)

takes place, then it is enough a single LUT to implement a circuit for any function fi ∈ Φ ∪Y. If the
condition (4) is violated for some function fi ∈ Φ ∪ Y, then the corresponding circuit is multi-level.
In multi-level circuits, it is quite possible that the same inputs xl ∈ X appear on several logic levels.
It results in FSM circuits with the spaghetti-type interconnections.

To improve the circuit characteristics, it is necessary to diminish the number of LUTs and make
the system of interconnections more regular. It can be done using the following approaches:

1. The functional decomposition of functions representing Mealy FSM logic circuits [8,17,19,20,24,36].
2. The optimal state assignment [3,9,37–43].
3. The replacement of LUTs by embedded memory blocks (EMBs) [44–51].
4. The structural decomposition of FSM circuits [35,43,52].

The functional decomposition is a very powerful tool used in the process of technology
mapping [19,53]. If the condition (4) is violated, then a function is broken down into smaller and
smaller components. The process is terminated when any component has no more than SL arguments.

If the condition (4) takes place, then a Mealy FSM logic circuit has exactly R + N LUTs. Otherwise,
an FSM circuit is represented by R + N + |Ψ| functions, where Ψ is a set of additional functions
different from (2) and (3). New functions correspond to components of initial functions obtained in the
process of decomposition.

A huge number of methods of functional decomposition are known. Some of them can be found,
for example, in [19,20,23]. We do not discuss them in our article. All modern FPGA-based CAD
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systems include program tools for functional decomposition. These tools can be found in academic
systems [33,34,54,55], as well as in industrial packages [56–58]. The open system DEMAIN [54] includes
powerful methods of functional decomposition. Due to this, we chose this system for comparison with
our proposed approach.

The optimal state assignment [9] is a process of obtaining state codes optimizing systems of
Boolean functions (2) and (3). One of the best academic optimal state assignment algorithms is JEDI
distributed with the system SIS [34]. The JEDI is aimed at reducing the numbers of arguments in
functions representing a Mealy FSM logic circuit. In this article, we compare JEDI-based FSMs with
FSMs based on our proposed approach

Different state assignment strategies can be found in modern industrial CAD tools. For example,
the design tool Vivado [57] uses the following approaches: the one-hot (R = M); compact; Gray codes;
Johnson codes; speed encoding; automatic state assignment (auto). The same methods can be found in
the package XST by Xilinx [56].

Because modern FPGAs include a lot of flip-flops, the one-hot state assignment is very popular
in LUT-based design [41]. This approach allows producing less complicated combinational parts of
FSM circuits than their counterparts based on the binary state encoding where R = dlog2Me [35].
As shown in [41], if M ≤ 8, then FSMs based on binary state codes have better characteristics
than their counterparts based on one-hot codes. The one-hot codes are more preferable if there is
M > 16. However, the characteristics of LUT-based FSM circuits significantly depend on the number
of inputs [35]. As it is shown in [42], if L ≤ 10, then it is better to use one-hot state codes. Otherwise,
binary state encoding allows producing better FSM circuits. So, both approaches should be compared
with our proposed method. We chose the method Auto of Vivado as a method of binary state encoding.
This method allows choosing codes producing FSM circuits with the best possible characteristics.

The main goal of both Gray and Johnson state encoding approaches is the reducing switching
activity of an FSM circuit. It allows reducing the dynamic power consumption [35]. We do not discuss
these methods in detail. Such an analysis can be found, for example, in [42].

So, a large number of state assignment methods are currently known. They are usually focused on
optimizing one or more characteristics of FSM circuits. Some of them mostly focus on area reduction.
It is very difficult to say which method is the best for a particular FSM. It depends on both the features
of FSM and FPGA, as well as on the accepted criteria of FSM circuit optimality.

Each literal of SOP representing a function fi corresponds to a wire in the FSM circuit. So,
to diminish the number of interconnections, it is necessary to diminish the numbers of literals in
Boolean functions (2) and (3). The fewer interconnections, the less power is consumed [28]. Therefore,
the optimal state assignment must be performed regardless of whether the condition (4) is met or not.

Modern FPGAs include a lot of configurable embedded memory blocks [10–12]. Replacement of
LUTs by EMB allows significantly improve the characteristics of resulting FSM circuits [41]. Because
of it, there are a lot of design methods for EMB-based FSMs [43,44,46–49,59]. The survey of different
methods of EMB-based design can be found in [60]. Unfortunately, these methods can be used only if
there are “free” EMBs, which are not used to implement other parts of a digital system.

To optimize a LUT-based FSM circuit, it is necessary to eliminate a direct dependence of functions
yn ∈ Y and Dr ∈ Φ on inputs xl ∈ X. It is a main goal of different methods of a structural
decomposition [35]. To eliminate this dependence, new functions fi ∈ Ψ are introduced to eliminate
this dependence. These new functions depend on inputs and/or state variables. To optimize an FSM
circuit, the following condition should take place:

|Ψ| � N + R. (5)

Each system of new functions determines a separate block LUTer with its unique input and output
variables. These blocks can be viewed as “hardware subroutines” by analogy with subroutines in
programming [61,62]. If the relation (5) takes place, then the total number of LUTs implementing
functions fi ∈ Ψ is significantly less than their total number in blocks LUTerΦ and LUTerY of an
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equivalent FSM U1. Using hardware subroutines allows structuring an FSM circuit. The functions
fi ∈ Ψ are used as arguments of functions (2) and (3). If the condition

|Ψ| � L + R (6)

is true, then the total number of LUTs in an FSM circuit is significantly less than it is for an equivalent
FSM U1.

If (6) takes place, then the structural decomposition leads to reduced number of literals in SOPs of
functions fi ∈ Φ ∪Y as compared to initial functions (2) and (3). In turn, it reduces the total number
of LUTs in blocks LUTerΦ and LUTerY (as compared to U1). If condition (4) is violated for some
functions fi ∈ Φ ∪ Y ∪ Ψ, then the methods of functional and structural decomposition should be
used together in the process of technology mapping. A survey of different methods of structural
decomposition can be found in [35].

In this article, we discuss two methods of structural decomposition. They are the methods of
replacement of inputs and encoding of outputs. They have been proposed to minimize the control
memory size in microprogram control units (MCU) [63]. Next, they were applied in PLA-based
FSMs [64]. Each of these methods was used separately in EMB-based FSM design [44,45,48,60].
However, they have never been used in LUT-based FSM design. In this article, we propose to combine
these methods together to optimize characteristics of LUT-based Mealy FSMs.

The first method is a replacement of inputs xl ∈ X by additional variables pg ∈ P = {p1, . . . , pG}
where G � L [64]. To do it, it is necessary to create an SBF

P = P(T, X). (7)

In MCUs, SBF (7) is implemented using a multiplexer. The additional variables are used as
arguments of functions fi ∈ Φ ∪Y . These functions are represented as

Φ = Φ(T, P); (8)

Y = Y(T, P). (9)

The functions (8) and (9) have a regular nature [35]. So, they can be implemented as a memory
block having G + R address inputs and N + R outputs.

Using this approach leads to FSM U2 shown in Figure 2. It includes a multiplexer implementing
SBF (7) and a memory block implementing systems (8) and (9).

Multiplexer

Memory block
Start

Clock

X

P

Y T

Figure 2. Structural diagram of FSM U2.

In the classical MCU [63], only a single input is checked in each cycle of operation (G = 1).
This results in rather slow control units. To decrease the number of cycles required for implementing
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a control algorithm, it is necessary to increase the value of G. To optimize an MCU performance,
the value of G is determined as [64]:

G = max(|X(a1)|, . . . , |X(aM)|). (10)

In (10), the symbol X(am) stands for the set of inputs determining transitions from the state
am ∈ A.

The model U2 was used in the FPGA-based design. Different U2-based approaches are discussed,
for example, in [60]. In all discussed cases, EMBs implement systems (8) and (9). The system (7) is
implemented with LUTs.

Collections of outputs (COs) Yq ⊆ Y(q ∈ {1, . . . , Q}) are generated during interstate transitions.
The minimum number of bits in the code K(Yq) is determined as

RQ = dlog2Qe. (11)

To encode COs by codes K(Yq), some additional variables zr ∈ Z = {z1, . . . , zRQ} are used.
If COs are encoded, then the system of outputs is represented as

Y = Y(Z). (12)

In the case of MCU, the system (12) is implemented using two blocks, namely, a decoder and a
coder [35].

To generate the additional variables zr ∈ Z, it is necessary to find an SBF

Z = Z(T, X). (13)

In the case of MCU, both systems (13) and (2) are implemented by a memory block. In the case of
FPGA-based design, a memory block is represented as a network of EMBs.

Using the encoding of COs in FPGA-based design leads to Mealy FSM U3 shown in Figure 3.

EMBer
Start

Clock

X

LUTerY

Z

T

Y
Figure 3. Structural diagram of FSM U3.

In FSM U3, the block EMBer implements systems (2) and (13). The block LUTer implements the
system (12).

So far, these methods have been used separately to improve characteristics of circuits of
FPGA-based FSMs. Moreover, some parts of FSM circuits have been implemented using EMBs [45,47].
In this article, we propose to use these methods together. Moreover, all functions are implemented by
LUTs. This approach leads to Mealy FSM logic circuits having three levels of logic. The circuit for each
level of logic can be viewed as a hardware subroutine. This approach allows structuring a resulting
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FSM circuit and makes the system of interconnections more regular. We denote the proposed Mealy
FSM by the symbol U4.

4. Main Idea of the Proposed Method

Consider some Mealy FSM Si represented by an STT. We assume that the following procedures
have been executed: (1) the replacement of inputs; (2) the encoding of COs; (3) the encoding of
states and (4) the transformation of initial STT into the DST of FSM U1. To get SBFs representing U4,
we should transform the DST of FSM U1 into a DST of Mealy FSM U4.

To obtain the arguments of functions (8) and Z(T, P), it is necessary to replace the column Xh of
the DST of FSM U1 by the column Ph. It is executed in the following way: if an additional variable
pg ∈ P replaces an input xl ∈ X for a state am ∈ A, then the variable xl (or its negation) from the
column Xh is replaced by the variable pg (or its negation) in the column Ph for all transitions from the
state am ∈ A.

To obtain functions Z(T, P), it is necessary to replace the column Yh of the DST of FSM U1 by the
column Zh. The filling of the column Zh is executed in the following manner. If the h-th row of DST
includes a CO Yq ⊆ Y such that the r-th bit of K(Yq) is equal to 1, then the symbol zr should be written
in the h-th row of the column Zh of DST of FSM U4.

Using a DST of FSM U4, we can derive the systems (8) and

Z = Z(T, P). (14)

Using the table of replacement of inputs, we can get the system (7). Next, using the content of
collections of outputs, we can obtain the system (12).

Until now, the methods of replacement of inputs and encoding of the collections of outputs were
used separately in EMB-based Mealy FSM design. In this article, we propose to use them together
in LUT-based Mealy FSMs. There are three levels of logic blocks in the proposed Mealy FSM U4.
Its structural diagram is shown in Figure 4.

LUTerP

X

LUTerY

P

Y

LUTerZ LUTerT
Start

Clock

TZ

Figure 4. Structural diagram of Mealy FSM U4.

In FSM U4, the first level of logic is represented by a block LUTerP, the second level includes
blocks LUTerZ and LUTerT, the third level includes a block LUTerY. The blocks implement the
following SBFs: the LUTerP implements the system (7), the LUTerZ the system (14), the LUTerT the
system (8), and the LUTerY the system (12).
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If the condition
G + R ≤ SL (15)

takes place, then the LUTerZ consists of RQ LUTs and LUTerT of R LUTs. It is the best possible case.
If the condition (15) is violated, then it is necessary to apply the methods of functional decomposition
for some functions from SBFs (8) and (14).

If the condition
RQ ≤ SL (16)

takes place, then there are exactly N LUTs in the circuit of the LUTerY. If this condition is violated,
then it is necessary to apply the methods of functional decomposition for some functions from SBF (12).

In this article, we propose a design method for Mealy FSM U4. We assume that an FSM is
represented by an STT. The method includes the following steps:

1. Executing the replacement of inputs by additional variables pg ∈ P.
2. Executing the state assignment in a way optimizing the SBF P = P(X, T).
3. Deriving the collections of outputs Yq ⊆ Y from the STT.
4. Executing the encoding of COs in a way optimizing the SBF Y = Y(Z).
5. Creating the DST of FSM U4 on the base of initial STT.
6. Deriving the SBFs (7), (8), (12) and (14) from the DST.
7. Implementing circuit of FSM using particular LUTs.

Some steps of the proposed method are connected with solution of optimization problems. We
discuss these problems in the following Section.

5. Example of Synthesis

If a Mealy FSM Sj is synthesized using a model Ui, then we denote it by the symbol Ui(Sj).
Consider an example of synthesis for Mealy FSM U4(S1). An FSM circuit will be implemented using
LUTs with SL = 6.

Executing the replacement of inputs. We start from constructing sets X(am) ⊆ X. A set X(am)

includes inputs xl ∈ X determining transitions from the state am ∈ A. Using Table 1 gives the
following sets: X(a1) = {x1}, X(a2) = {x2, x3}, X(a3) = {x4, x5}, X(a4) = ∅, X(a5) = {x3, x6, x7}
and X(a6) = {x8}.

Using (10) gives G = max(1, 2, 2, 0, 3, 1) = 3. So, there is the set P = {p1, p2, p3}. Using (1) gives
the number of state variables R = 3.

We should construct a table of replacement of inputs [35]. This table has M columns marked by
states am ∈ A and G rows marked by variables pg ∈ P. If an input xl ∈ X is replaced by a variable
pg ∈ P in the state am ∈ A, then there is the symbol xl written at the intersection of the column am and
the row pg [64].

Inputs xl ∈ X written in a row pg form a set X(pg) ⊆ X. If |X(pg)| ≤ SL − R, then the circuit
generating pg ∈ P is implemented as a single LUT. In the discussed case, there is SL − R = 3.
To optimize the circuit of LUTerP, we should distribute inputs xl ∈ X in a way providing the relation
|X(pg)| ≤ 3 (g ∈ {1, . . . , G}). It could be done using the approach from [64]. One of the possible
solutions is shown in Table 2.

Table 2. Replacement of inputs.

pg

am a1 a2 a3 a4 a5 a6

p1 x1 x2 − − x6 −

p2 − x3 x4 − x3 −

p3 − − x5 − x7 x8
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Executing the state assignment. To optimize the circuit of LUTerP, it is necessary to diminish the
number of literals in functions (7) [64]. It can be done due to a proper state assignment. These methods
are based on results of the work [64].

Using (1) gives R = 3. So, there are the sets T = {T1, T2, T3} and Φ = {D1, D2, D3}. One of the
possible outcomes of the state assignment is shown in Figure 5.

T1T2

T3
00 01 11 10

0

1

a1 a2 a6a3

a4 a5 ∗∗

Figure 5. State codes of Mealy FSM U4(S1).

Deriving the collections of outputs. This step is executed in the trivial way. The collections Yq ⊆ Y
are written in the column Yh of an STT. Using Table 1, the following COs can be found: Y1 = ∅,
Y2 = {y1, y7}, Y3 = {y2, y6}, Y4 = {y5}, Y5 = {y1, y4, y6}, Y6 = {y2, y3}, Y7 = {y4, y6}, Y8 = {y5, y7},
Y9 = {y2} and Y10 = {y3, y4}.

To optimize the circuit of LUTerY, it is necessary to minimize the number of literals in functions (12).
Furthermore, it allows minimizing the number of interconnections between the blocks LUTerZ and
LUTerY.

Executing the encoding of COs. We start this process from a system representing outputs yn ∈ Y.
as functions of collections Yq ⊆ Y. It is the following system in the discussed case:

y1 = Y2 ∨Y5; y2 = Y3 ∨Y6 ∨Y9;

y3 = Y6 ∨Y10; y4 = Y5 ∨Y7 ∨Y10;

y5 = Y4 ∨Y8; y6 = Y3 ∨Y5 ∨Y7; (17)

y7 = Y2 ∨Y8.

There are Q = 10 collections of outputs in the discussed case. Using (11) gives RQ = 4 and
Z = {z1, . . . , z4}. Using the method [64] allows obtaining codes of COs shown in Figure 6.

z1z2

z3z4 00 01 11 10

00

01

11

10

Y1 Y2 ∗∗

Y7 Y5 Y3∗

Y8 Y4 Y9∗

Y10 ∗ Y6∗

Figure 6. Codes of COs of Mealy FSM U4(S1).

Creating the DST of FSM U4(S1). Having codes of states and COs, we can transform the initial
STT (Table 1) into a DST of Mealy FSM U4(S1) (Table 3).

Consider the row h = 1 of Table 3. There is am = a1 and as = a2. As follows from Figure 5,
the code of a2 is equal to 010. Due to it, there is the symbol D2 in the column Φh. There is the symbol
x1 in the row 1 of STT. As follows from Table 2, the input x1 is replaced by the variable p1 for the
state a1 ∈ A. Due to it, there is the symbol p1 in the first row of DST (Table 3). There is the collection
of outputs Y2 = {y1, y7} in the first row of Table 1. As follows from Figure 6, there is K(Y2) = 0100.
Due to it, there is the symbol z2 in the row 1 of DST (Table 3). All other rows of Table 3 are filled in the
same way.
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Deriving SBFs representing the circuit of U4(S1). During this step, the functions (7), (8), (12)
and (14) should be found. It can be done using Tables 2 and 3, as well as codes from Karnaugh maps
shown in Figures 5 and 6.

We start from the SBF (7). We use the symbol Am to denote a conjunction of state variables (or their
complements) corresponding to the code K(am).

Table 3. Direct structure table of Mealy FSM U4(S1).

am K(am) as K(as) Ph Zh Φh h

a1 000 a2 010 p1 z2 D2 1
a3 110 p1 z1z4 D1D2 2

a2
010 a4 001 p1 z2z3 D3 3

a4 001 p1 p2 z1z4 D3 4
a5 011 p1 p2 z2z4 D2D3 5

a3 110
a2 010 p2 z1z2z3 D2 6
a5 011 p2 p3 z2 D2D3 7
a6 100 p2 p3 z4 D1 8

a4 001 a5 011 1 z2z3 D2D3 9

a5 011

a2 010 p2 p1 z1z3 D2 10
a3 110 p2 p1 z3z4 D1D2 11
a6 100 p2 p3 z1z4 D1 12
a1 000 p2 p3 z3 − 13

a6 100 a4 001 p3 z1z3 D3 14
a1 000 p3 − − 15

The following system can be derived from Table 2:

p1 = A1x1 ∨ A2x2 ∨ A5x6;

p2 = A2x3 ∨ A3x4 ∨ A5x3; (18)

p3 = A3x5 ∨ A5x7 ∨ A6x8.

Using codes from Figure 5, we can get the following minimized functions:

p1 = T1 T2 T3x1 ∨ T1 T2 T3x2 ∨ T2T3x6;

p2 = T1 T2x3 ∨ T1T2x4; (19)

p3 = T1T2x5 ∨ T2T3x7 ∨ T1T2 x8.

In the discussed case, the system (19) represents LUTerP. Each equation of (19) includes not more
than six literals. Because SL = 6, there are only G = 3 LUTs in the circuit of LUTerP.

Each row of DST of FSM U4 corresponds to the product term

Fh = AmBh (h ∈ {1, . . . , H}). (20)

In (20), the symbol Bh denotes a conjuction of variables pg (or their compliments) written in the
column Ph of DST.

The functions (8) and (14) depend on terms (20). For example, the following equations can be
derived from Table 3:

D1 = F2 ∨ F8 ∨ F11 ∨ F12 = T1 T2 T3 p1 (21)

∨T1T2T3 p3 p3 ∨ T1T2T3 p2 p1 ∨ T1T2T3 p2 p3.
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z1 = F2 ∨ F4 ∨ F6 ∨ F10 ∨ F12 ∨ F14 = (22)

= T1T2 T3 p2 p3 ∨ . . . ∨ T1 T2 T3 p3.

All other functions Dr ∈ Φ and zr ∈ Z are constructed in the same manner.
In the discussed case, there is R + G = 6. Because SL = 6, the condition NL( fi) ≤ SL takes place

for any function fi ∈ Φ ∪ Z. It means that there are R=3 LUTs in the circuit of LUTerT and RQ = 4
LUTs in the circuit of LUTerZ.

Using system (17) and codes from Figure 6, we can get the following system:

y1 = z2z3; y2 = z1; y3 = z3z4;

y4 = z1z4; y5 = z1z3z4; y6 = z3z4; (23)

y7 = z2z3 z4 ∨ z1 z2z3z4.

The analysis of (23) shows that there is no need in a LUT to implement the function y2.
Because RQ = 4 is less than SL = 6, the condition (16) takes place. So, it is necessary N − 1 = 6 LUTs
to implement LUTerY.

In general case, each function from (12) has RQ literals. For N functions, it gives RQ · N literals.
In the discussed case, there is RQ ·N = 4 · 7 = 28 literals. Each literal corresponds to the interconnection
between blocks LUTerZ and LUTerY. As follows from (23), there are 16 literals in this system. It gives
a 42% savings in the number of interconnections compared to the general case. This economy is
achieved due to chosen encoding of COs Yq ⊆ Y. It should give economy in the power consumption.

So, there are G = 3 LUTs in LUTerP, R = 3 LUTs in LUTerT, RQ = 4 LUTs in LUTerZ,
and N − 1 = 6 LUTs in LUTerY. It gives 16 LUTs in the logic circuit of Mealy FSM U4(S1).

The last step of design is connected with the placement and routing procedures [16]. It is executed
using industrial CAD tools such as, for example, Vivado by Xilinx [57]. We do not discuss this step for
a given example.

It is known that any sequential block can be represented using either model of Mealy FSM or
Moore FSM [3]. There is the following specific of Moore FSM: its outputs depend only on states.
It means that, for Moore FSMs, state codes can be viewed as the codes of collections of outputs. So,
there is no sense in using additional variables encoding the collections of outputs. It means that the
proposed approach can be used only in the case of LUT-based Mealy FSMs.

6. Experimental Results

To investigate the efficiency of proposed method, we use standard benchmarks from the
library [29]. The library includes 48 benchmarks taken from the design practice. The benchmarks
are rather simple, but they are very often used by different researches to compare new and known
results [9,43]. The benchmarks are represented in KISS2 format. These benchmarks are Mealy FSMs,
so we can directly use them in our research. The characteristics of these benchmark FSMs are shown in
Table 4.

The process of obtaining synthesis research results in Vivado [57] has been divided into two stages.
The first stage was a generation of the VHDL code based on benchmarks saved in the KISS2 format.
Each benchmark was generated by the tool K2F [35,45] according to the given FSM model. It should
be noted that generated code uses a specific Vivado code style [65] in order to provide the proper
FSM extraction and fully synthesizable code. Then, in the next stage, the VHDL code was imported
into Vivado (ver. 2019.1). The target device was the Xilinx Virtex 7 (XC7VX690TFFG1761) [66]. The
chip includes LUTs with six inputs. The synthesis and optimization options were set to: max_bram 0,
opt_design -retarget -propconst -bram_power_opt and the selected FSM state encoding method one of the
following: auto, one_hot, sequential, johnson or gray. The final results presented in the tables are taken
after the post-implementation.
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Table 4. Characteristics of Mealy FSM benchmarks.

Benchmark L N R+L M/R H Category

bbara 4 2 8 12/4 60 1
bbsse 7 7 12 26/5 56 1
bbtas 2 2 6 9/4 24 0

beecount 3 4 7 10/4 28 1
cse 7 7 12 32/5 91 1

dk14 3 5 8 26/5 56 1
dk15 3 5 8 17/5 32 1
dk16 2 3 9 75/7 108 1
dk17 2 3 6 16/4 32 0
dk27 1 2 5 10/4 14 0

dk512 1 3 6 24/5 15 0
donfile 2 1 7 24/5 96 1

ex1 9 19 16 80/7 138 2
ex2 2 2 7 25/5 72 1
ex3 2 2 6 14/4 36 0
ex4 6 9 11 18/5 21 1
ex5 2 2 6 16/4 32 0
ex6 5 8 9 14/4 34 1
ex7 2 2 12 17/5 36 1

keyb 7 7 12 22/5 170 1
kirkman 12 6 18 48/6 370 2

lion 2 1 5 5/3 11 0
lion9 2 1 6 11/4 25 0

mark1 5 16 10 22/5 22 1
mc 3 5 6 8/3 10 0

modulo12 1 1 5 12/4 24 0
opus 5 6 10 18/5 22 1

planet 7 19 14 86/7 115 2
planet1 7 19 14 86/7 115 2

pma 8 8 14 49/6 73 2
s1 8 7 14 54/6 106 2

s1488 8 19 15 112/7 251 2
s1494 8 19 15 118/7 250 2

s1a 8 6 15 86/7 107 2
s208 11 2 17 37/6 153 2
s27 4 1 8 11/4 34 1

s386 7 7 12 23/5 64 1
s420 19 2 27 137/8 137 4
s510 19 7 27 172/8 77 4

s8 4 1 8 15/4 20 1
s820 18 19 25 78/7 232 4
s832 18 19 25 76/7 245 4
sand 11 9 18 88/7 184 3

shiftreg 1 1 5 16/4 16 0
sse 7 7 12 26/5 56 1
styr 9 10 16 67/7 166 2
tma 7 9 13 63/6 44 2

As we have found, our method can give economy in area if R + L > SL. We have divided
the benchmarks into categories using the values of L + R and SL. If L + R ≤ 6, then benchmarks
belong to category 0 (trivial FSMs); if L + R ≤ 12, then to category 1 (simple FSMs); if L + R ≤
18, then to category 2 (average FSMs); if L + R ≤ 24, then to category 3 (big FSMs); otherwise,
they belong to category 4 (very big FSMs). Obviously, there is no sense to apply our approach to FSMs
belonging to category 0. As our researches show, the higher the category, the more saving the proposed
approach gives.
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Four other methods were taken to compare with our approach. They are: (1) Auto of Vivado;
(2) One-hot of Vivado; (3) JEDI-based FSMs and (4) DEMAIN-based FSMs. The results of experiments
are shown in Table 5 (the number of LUTs) and Table 6 (the operating frequency).

Table 5. Experimental results (the number of LUTs).

Benchmark Auto One-Hot JEDI DEMAIN Our Approach Category

bbara 17 17 10 9 10 1
bbsse 33 37 24 26 26 1
bbtas 5 5 5 5 8 0

beecount 19 19 14 16 14 1
cse 40 66 36 38 33 1

dk14 10 27 10 12 12 1
dk15 5 16 5 6 6 1
dk16 15 34 12 14 11 1
dk17 5 12 5 6 8 0
dk27 3 5 4 4 7 0

dk512 10 10 9 10 12 0
donfile 31 31 22 26 21 1

ex1 70 74 53 57 40 2
ex2 9 9 8 9 8 1
ex3 9 9 9 9 11 0
ex4 15 13 12 13 11 1
ex5 9 9 9 9 10 0
ex6 24 36 22 23 21 1
ex7 4 5 4 4 6 1

keyb 43 61 40 42 37 1
kirkman 42 58 39 41 33 2

lion 2 5 2 2 6 0
lion9 6 11 5 5 8 0

mark1 23 23 20 21 19 1
mc 4 7 4 5 6 0

modulo12 7 7 7 7 9 0
opus 28 28 22 26 21 1

planet 131 131 88 94 78 2
planet1 131 131 88 94 78 2

pma 94 94 86 91 72 2
s1 65 99 61 64 54 2

s1488 124 131 108 112 89 2
s1494 126 132 110 117 90 2

s1a 49 81 43 54 38 2
s208 12 31 10 11 9 2
s27 6 18 6 6 6 1

s386 26 39 22 25 20 1
s420 10 31 9 10 8 4
s510 48 48 32 39 22 4

s8 9 9 9 9 9 1
s820 88 82 68 76 52 4
s832 80 79 62 70 50 4
sand 132 132 114 121 99 3

shiftreg 2 6 2 2 4 0
sse 33 37 30 32 26 1
styr 93 120 81 88 70 2
tma 45 39 39 41 30 2

Total 1792 2104 1480 1601 1318

Percentage,% 135.96 159.63 112.29 121.47 100
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Table 6. Experimental results (the operating frequency, MHz).

Benchmark Auto One-Hot JEDI DEMAIN Our Approach Category

bbara 193.39 193.39 212.21 198.46 183.32 1
bbsse 157.06 169.12 182.34 178.91 159.24 1
bbtas 204.16 204.16 206.12 208.32 194.43 0

beecount 166.61 166.61 187.32 184.21 156.72 1
cse 146.43 163.64 178.12 174.19 153.24 1

dk14 191.64 172.65 193.85 187.32 162.78 1
dk15 192.53 185.36 194.87 188.54 175.42 1
dk16 169.72 174.79 197.13 189.83 164.16 1
dk17 199.28 167 199.39 172.19 147.22 0
dk27 206.02 201.9 204.18 205.10 181.73 0
dk512 196.27 196.27 199.75 197.49 175.63 0
donfile 184.03 184.00 203.65 194.83 174.28 1

ex1 150.94 139.76 176.87 186.14 164.32 2
ex2 198.57 198.57 200.14 199.75 188.95 1
ex3 194.86 194.86 195.76 193.43 174.44 0
ex4 180.96 177.71 192.83 178.14 168.39 1
ex5 180.25 180.25 181.16 181.76 162.56 0
ex6 169.57 163.80 176.59 174.12 156.42 1
ex7 200.04 200.84 200.6 200.32 191.43 1

keyb 156.45 143.47 168.43 157.16 136.49 1
kirkman 141.38 154 156.68 143.76 155.36 2

lion 202.43 204 202.35 201.32 185.74 0
lion9 205.3 185.22 206.38 205.86 167.28 0

mark1 162.39 162.39 176.18 169.65 153.48 1
mc 196.66 195.47 196.87 192.53 178.02 0

modulo12 207 207 207.13 207.37 189.7 0
opus 166.2 166.2 178.32 168.79 157.42 1

planet 132.71 132.71 187.14 185.73 174.68 2
planet1 132.71 132.71 187.14 185.73 173.29 2

pma 146.18 146.18 169.83 153.57 156.12 2
s1 146.41 135.85 157.16 149.17 145.32 2

s1488 138.5 131.94 157.18 153.12 141.27 2
s1494 149.39 145.75 164.34 159.42 155.63 2

s1a 153.37 176.4 169.17 158.12 166.36 2
s208 174.34 176.46 178.76 172.87 166.42 2
s27 198.73 191.5 199.13 198.43 185.15 1
s386 168.15 173.46 179.15 169.21 164.65 1
s420 173.88 176.46 177.25 172.87 186.35 4
s510 177.65 177.65 198.32 183.18 199.05 4

s8 180.02 178.95 181.23 180.39 168.32 1
s820 152 153.16 176.58 166.29 175.69 4
s832 145.71 153.23 173.78 160.03 174.39 4
sand 115.97 115.97 126.82 120.63 120.07 3

shiftreg 262.67 263.57 276.26 276.14 248.79 0
sse 157.06 169.12 174.63 169.69 158.14 1
styr 137.61 129.92 145.64 138.83 118.02 2
tma 163.88 147.8 164.14 168.19 137.48 2

Total 8127.08 8061.22 8718.87 8461.1 7917.1

Percentage, % 102.65 101.82 110.13 106.87 100

Tables 5 and 6 are organized in the same order. The rows are marked by the names of benchmarks,
the columns by design methods. The rows “Total” include results of summation for corresponding
values. The summarized characteristics of our approach (U4—based FSMs) are taken as 100%. The rows
“Percentage” show the percentage of summarized characteristics of FSM circuits implemented by
other methods respectively to benchmarks based on our approach. Let us point out that the model
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U1 is used for designs with Auto, One-hot, JEDI and DEMAIN. Furthermore, for better visualization,
summary data are presented in the Figures 7–9.
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Figure 7. Experimental results (the number of LUTs—total percentage).
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Figure 8. Experimental results (the operating frequency—total percentage).

As follows from Table 5 and Figure 7, the U4—based FSMs required fewer LUTs than it is for
other investigated methods. There is the following economy: (1) 35.65% regarding Auto; (2) 59.27%
regarding One-hot; (3) 12.04% regarding JEDI-based FSMs and (4) 21.20% regarding DEMAIN-based
FSMs. The higher is the category, the greater is the gain in LUTs. For trivial and simple FSMs, the better
results are produced by either JEDI or DEMAIN. The gain are becoming more and more noticeable,
starting from the average FSMs.

As follows from Table 6 and Figure 8, the U4—based FSMs have a lower operating frequency than
it is for other investigated methods. There is the following loss: (1) 2.65% regarding Auto; (2) 1.82%
regarding One-hot; (3) 10.13% regarding JEDI-based FSMs and (4) 6.87% regarding DEMAIN-based
FSMs. However, starting from big FSMs, the losses are getting smaller. It is connected with the fact
that U4—-based FSMs always have three levels of logic and more regular system of interconnections.
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Figure 9. Experimental results for category 0 (the number of LUTs—total percentage).

The main goal of the proposed approach is to reduce the LUT count in circuits of FPGA-based
Mealy FSMs. As follows from Table 5, the degree of reduction in the number of LUTs depends on
the category of an FSM. To clarify this dependence, we have created Table 7 (experimental results
for category 0), Table 8 (experimental results for category 1) and Table 9 (experimental results for
categories 2–94). Furthermore, we present these results by graphs on Figures 9–11, respectively.

Table 7. Experimental results for category 0 (the number of LUTs).

Benchmark Auto One-Hot JEDI DEMAIN Our Approach Category

bbtas 5 5 5 5 8 0
dk17 5 12 5 6 8 0
dk27 3 5 4 4 7 0
dk512 10 10 9 10 12 0

ex3 9 9 9 9 11 0
ex5 9 9 9 9 10 0
lion 2 5 2 2 6 0
lion9 6 11 5 5 8 0
mc 4 7 4 5 6 0

modulo12 7 7 7 7 9 0
shiftreg 2 6 2 2 4 0

Total 62 86 61 64 89

Percentage,% 69.66 96.63 68.54 71.91 100

As follows from Table 7 and Figure 9, the proposed method produces FSM circuits having more
LUTs than it is for other investigated methods. Our method has the following loss: (1) 30.34% regarding
Auto; (2) 3.37% regarding One-hot; (3) 31.46% regarding JEDI-based FSMs and (4) 28.09% regarding
DEMAIN-based FSMs. So, there is no sense in using our approach for designing trivial FSMs. However,
it gives an economy in LUTs starting from simple FSMs (category 1).

As follows from Table 8 and Figure 10, the U4—based FSMs of category 1 required fewer LUTs
than it is for other methods. There is the following economy: (1) 23.03% regarding Auto; (2) 65.52%
regarding One-hot; (3) 3.47% regarding JEDI-based FSMs and (4) 12.62% regarding DEMAIN-based
FSMs. So, for the category 1, our approach produces FSM circuits slightly better than JEDI-based FSMs.
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Table 8. Experimental results for category 1 (the number of LUTs).

Benchmark Auto One-Hot JEDI DEMAIN Our Approach Category

bbara 17 17 10 9 10 1
bbsse 33 37 24 26 26 1

beecount 19 19 14 16 14 1
cse 40 66 36 38 33 1

dk14 10 27 10 12 12 1
dk15 5 16 5 6 6 1
dk16 15 34 12 14 11 1

donfile 31 31 22 26 21 1
ex2 9 9 8 9 8 1
ex4 15 13 12 13 11 1
ex6 24 36 22 23 21 1
ex7 4 5 4 4 6 1

keyb 43 61 40 42 37 1
mark1 23 23 20 21 19 1
opus 28 28 22 26 21 1
s27 6 18 6 6 6 1
s386 26 39 22 25 20 1
s8 9 9 9 9 9 1
sse 33 37 30 32 26 1

Total 390 525 328 357 317

Percentage,% 123.03 165.62 103.47 112.62 100

Table 9. Experimental results for categories 2-4 (the number of LUTs).

Benchmark Auto One-Hot JEDI DEMAIN Our Approach Category

ex1 70 74 53 57 40 2
kirkman 42 58 39 41 33 2
planet 131 131 88 94 78 2

planet1 131 131 88 94 78 2
pma 94 94 86 91 72 2

s1 65 99 61 64 54 2
s1488 124 131 108 112 89 2
s1494 126 132 110 117 90 2
s1a 49 81 43 54 38 2
s208 12 31 10 11 9 2
styr 93 120 81 88 70 2
tma 45 39 39 41 30 2
sand 132 132 114 121 99 3
s420 10 31 9 10 8 4
s510 48 48 32 39 22 4
s820 88 82 68 76 52 4
s832 80 79 62 70 50 4

Total 1340 1493 1091 1180 912

Percentage,% 146.93 163.71 119.63 129.39 100

Our method produces best results for FSMs from categories 29-4 (Table 9 and Figure 11). It is very
interesting that the gain respectively the one-hot approach is approximately the same as it is in the
previous case. However, we provide a bigger gain for other investigated methods as compared to FSMs
of the category 1. There is the following economy: (1) 46.93% regarding Auto; (2) 19.63% regarding
JEDI-based FSMs and (3) 29.39% regarding DEMAIN-based FSMs. So, our approach produces FSM
circuits with better amount of LUTs for Mealy FSMs having L + R ≥ 12.

Till now, we compared our approach with U1-based FSMs. However, we also compared the
U4-based FSMs with FSMs having two levels of logic. The structural diagrams of these FSMs are
shown in Figure 12. The FSM U5 is based on the replacement of inputs (Figure 12a). There is no



Appl. Sci. 2020, 10, 5115 19 of 25

such an FSM in the known literature. We have got its structural diagram by transformation the FSM
U2 (Figure 2). We replaced the multiplexer by the block LUTerP; the memory block is replaced by
LUTerTY. The LUTerP implements the system (5), the LUTerTY the systems (6) and (7).
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Figure 10. Experimental results for category 1 (the number of LUTs—total percentage).
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Figure 11. Experimental results for categories 2–4 (the number of LUTs—total percentage).

The FSM U6 is based on the encoding of collections of outputs (Figure 12b). There is no such
an FSM in the known literature. We have got its structural diagram by transformation the FSM U3

(Figure 3). We replaced the block EMBer by the block LUTerTZ generating functions (2) and (11). As it
is for FSM U3, the LUTerY implements the system (10).

The FSM U7 is based on the transformation of state codes into outputs (Figure 12c) [35]. In this
FSM, additional variables from the set V replace inputs for output functions. The FSM U8 is based on
the transformation of collections of outputs into state codes (Figure 12d) [35]. In this FSM, additional
variables from the set V replace inputs for input memory functions. Both methods belong to the group
of object transformation methods [35]. We do not discuss these approaches in this article. We just use
them as examples of FSMs having two levels of logic.
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Figure 12. Structural diagrams of LUT-based Mealy FSMs with two-levels of logic: (a) replacement
of inputs; (b) encoding of collections of outputs; (c) transformation of state codes into outputs;
(d) transformation of collections of outputs into state codes.

We compared the FSMs (Figure 12) with our approach for the most complex benchmarks
(categories 2–4). The results of experiments are shown in Table 10 and Figure 13. As follows from
Table 10, our method produces better results for FSMs than it is for FSMs U5-U8. There is the following
economy: (1) 17.11% regarding U5; (2) 11.95% U6 (3) 20.18% regarding U7 and 4) 9.1% regarding
U8. So, our approach produces FSM circuits with better amount than two-level Mealy FSMs having
L + R ≥ 12. However, the gain is noticeably less than for U1-based FSMs from these categories.
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Figure 13. Comparison diagrams of our approach with two-level FSMs.
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Table 10. Comparison of our approach with two-level FSMs.

Benchmark U5 U6 U7 U8 Our Approach Category

ex1 51 49 52 46 40 2
kirkman 38 37 40 37 33 2
planet 86 80 88 82 78 2

planet1 86 80 88 82 78 2
pma 84 88 90 76 72 2

s1 60 58 62 58 54 2
s1488 98 90 87 94 89 2
s1494 101 99 104 96 90 2
s1a 42 44 46 42 38 2
s208 11 12 11 11 9 2
styr 79 76 80 72 70 2
tma 40 37 42 38 30 2
sand 119 109 124 108 99 3
s420 10 11 11 10 8 4
s510 35 30 37 28 22 4
s820 67 64 70 61 52 4
s832 61 57 64 54 50 4

Total 1086 1021 1096 995 912

Percentage,% 117.11 111.95 120.18 109.10 100

So, the results of our experiments show that the proposed approach can reduce the LUT counts
respectively to single- and two-level Mealy FSMs having L + R ≥ 12. Of course, this conclusion is true
only for benchmarks [27] and the device XC7VX690tffg1761-2 by Virtex-7, where LUTs have 6 inputs.
It is almost impossible to make a similar conclusion for the general case. However, we hope that our
approach rather good potential and can be used in CAD systems targeting FPGA-based Mealy FSMs.

7. Conclusions

Contemporary FPGA devices include a lot of look-up table elements. This allows implementing
a very complex digital system using only a single chip. However, LUTs have rather small amount of
inputs (for the vast majority of devices the value of SL does not exceeds 6). This value is considered as
optimal [26,28]. To design rather complex FSMs, the methods of functional decomposition are used.
As a rule, this leads to multi-level FSM circuits with complex systems of spaghetti-type interconnections.

To optimize the LUT counts in FPGA-based FSM circuits, different methods of structural
decomposition could be applied. As our researches [35] show, the structural decomposition can
lead to FSM circuits having better characteristics than their counterparts based on the functional
decomposition. They have regular system of interconnections and predicted number of logic levels.

The current article is devoted to a novel approach aimed at optimization of LUT-based Mealy
FSMs. The proposed approach is based on simultaneous use of such methods of structural
decomposition as the replacement of inputs and encoding of collections of outputs. Till now,
the methods of replacement of inputs and encoding of the collections of outputs were used separately
in EMB-based Mealy FSM design. In this article, we propose to use them together in LUT-based Mealy
FSMs. Furthermore, we encode the collections in a way minimizing the number of interconnections
between other blocks and the block generating FSM outputs. The proposed approach leads to
three-level Mealy FSM circuits with regular systems of interconnections.

We compared the proposed approach with FSM circuits obtained using the Xilinx CAD tool
Vivado 2019.1. These circuits were obtained using four different approaches: Auto by Vivado, One-hot
by Vivado, JEDI and DEMAIN. The experiments clearly show that the proposed approach leads
to reducing the number of LUTs in comparison with FSM circuits produced by other investigated
methods. The results of experiments show that the proposed approach leads to reducing the LUT
counts from 12% to 59% in average compared with known methods of synthesis of single-level FSMs.
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Furthermore, our approach provides better LUT counts as compared to methods of synthesis of
two-level FSMs (from 9% to 20%). However, our approach leads to slower FSM circuits as compared
to other investigated methods. Thus, our approach reduces the overall performance of a digital system
including U4-based FSMs. So, the proposed method can be used if the LUT count is the dominant
characteristic of a digital system.

There are two directions in our future research. The first is connected with development of
design methods targeting FPGA chips of Intel (Altera). The second direction targets at EMB-based
Mealy FSMs.
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Abbreviations

The following abbreviations are used in this manuscript:

CLB configurable logic block
CO collection of output
DST direct structure table
EMB embedded memory block
FSM finite state machine
FPGA field-programmable gate array
LUT look-up table
MCU microprogram control unit
SBF systems of Boolean functions
SOP sum-of-products
STT state transition table
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