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Abstract: Measuring lower extremity joint angles during cycling is interesting to derive joint loading
from contact forces at the pedals and to determine the cause of cycling injuries. Traditionally,
joint angles are determined in a stationary setup with high-resolution cameras that track marker
movement in a lab environment. Alternatively, joint angles can be estimated mathematically in-situ:
the lower extremities, bicycle frame and pedal arms are presented as a 5 bar linkage system which
is fully defined by the lower extremity segment lengths, seat height and pedal position. As most
instrumented pedals for power measurements include pedal orientation measurements, the bar
linkage system demands no special equipment to derive joint loadings from pedal loads. The aim of
this study is to validate the bar linkage system for joint angle estimation in the sagittal plane during
in-situ cycling. Ten subjects cycled on a stationary bike while the hip, knee and ankle angles were
measured with a Vicon optoelectronic motion capture system and simultaneously calculated with
the bar linkage system. The results were averaged to subject-specific and method-specific ensemble
average curves in the function of the phase in the pedal cycle and compared by a correlation analysis,
Bland Altman plot, and Spm1D paired T-test. The hip and knee angle estimation of the bar linkage
system showed no statistically significant difference from the optoelectronic system. Moreover,
the ankle showed a statistically significant difference in the last half of the recovery phase of the
pedal cycle. As the difference was maximally 3°, it has no clinical significance when deriving joint
loading from contact forces at the pedal.
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1. Introduction

Due to the addition of electrically powered pedal-assistance, increasingly more inactive people
tend to cycle, with a greater chance on accidents [1]. Twisk et al., point out that electric bicycles are
more effortful to stabilize, due to their higher center of gravity [2]. Longer cycling distances are covered,
leading to an enlarged risk for cycling-related injuries by cause of overuse [3]. Cycling sores are
often the result of a maladaptive cycling posture, cycling technique or bicycle geometry [4]. They are
more commonly prevalent in the lower extremity [5] and can often be related to lower extremity
joint kinematics and joint loading [6,7]. Joint loading can be derived from joint angles and contact
forces in the seat or pedals [8]. Contact forces can easily be determined with instrumented pedals
and seat posts [9,10] Traditionally, joint angles (and human motion in general) are determined with
optoelectronic motion capture systems involving high-resolution infrared cameras that track reflective
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markers attached to the body during movement [11]. The systems require a purpose-built laboratory
with specially trained personnel and a stationary setup of the bicycle. As stationary cycling differs
from in-situ cycling, more mobile and flexible alternatives are explored to measure joint angles [12].
Inertial Measurement Units combine gyroscopes and accelerometers in a compact module to determine
acceleration, speed and position [13]. The position measurements show great potential, though up
until now are affected by drift which makes them unstable for prolonged joint angle measurements
during cycling [14]. Another alternative is a mathematical estimation by Hull and Jorge for which the
lower extremities, bicycle frame and pedal arms are presented as a 5 bar linkage system. Joint angles
are estimated in the sagittal plane based on the dimensions of the lower extremities, and the location
of the seat and pedals [15]. This system makes a stationary setup superfluous, the cyclist can cycle
outdoors, and there is no need for a lab environment. The bar linkage system is particularly interesting
to calculate in-situ joint loading as pedal orientation measurements are often included in instrumented
pedals [9] and no extra equipment is needed. The aim of this study is to validate the bar linkage system
for joint angle estimation in the sagittal plane during in-situ cycling. Joint angles will be estimated
with the bar linkage system and simultaneously measured with a validated optoelectronic motion
capture system (VICON) for comparison.

2. Materials and Methods

2.1. Participants

Seven healthy males and three healthy females volunteered for this study. Before testing,
subjects were informed about all the procedures of the study and an informed consent form was signed.
The study is approved by the Ethical Committee research UZ/KU Leuven. The characteristics of the
subjects can be found in Table 1.

Table 1. Subject characteristics.

Mean Standard Deviation
Age (years) 26 2
Weight (kg) 65.83 15.63
Length (m) 1.73 0.19
BMI 22.00 0.35

2.2. Experimental Design

The subject’s lower limb segment lengths are measured with high precision and reproducibility
based on anatomic locations. Markers of a validated optoelectronic motion capture system (Vicon) are
attached to the lower limbs according to the Lower Limb and Trunk Model of the Liverpool John Moores
University [16,17]. The subjects cycle two sets of two minutes on a stationary bike with instrumentation
to (i) estimate joint angles as a function of the lower limb segment lengths and the output data of
the instrumentation, and (ii) record joint angles by marker tracking with the optoelectronic motion
capture system.

2.3. Instrumentation

2.3.1. Bicycle Instrumentation

The bicycle is equipped with instrumentation to record pedal orientation. The pedal arm angle
is determined by a unique encoder, including a toothed disk clamped over the crank and an optical
sensor fixated on the frame (Figure 1a). The sensor counts the gabs, starting from a wider reference gab.
The pedal angle is measured with unique instrumented pedals that measure pedaling loads with
a maximal standard error percentage of the full scale of 0.5% (Figure 1b) [9]. The pedals contain a
magnetometer and a diametrically polarized magnet on the pedal axis to determine the angle between
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pedal and pedal arm. Taking the encoder values into account, the pedal angle relative to the horizontal
position is defined.

(@) (b)

Figure 1. From left to right (a) unique encoder, (b) instrumented pedal.

2.3.2. Vicon Motion Capture System

A Vicon optoelectronic motion capture system is utilized to record human motion with a sample
frequency of 100 Hz. It combines fourteen Vero cameras, a D-link power base for power distribution
and a Vicon Lock+ for timecoding and synchronization with the instrumented bicycle. The cameras
track 14 mm sphere pearl markers which are attached to the skin of the subject with Scotch 3M
double-sided tape. In order to ensure maximal accuracy, a minimum of three cameras were needed to
track a marker at any given time.

2.3.3. Data Acquisition and Synchronization

All data is recorded at a frequency of 100 Hz. The data acquisition system of the instrumented
bicycle exists of a cDAQ-9178 chassis of National Instruments containing (i) a universal analogue input
module NI9219 to measure the strain gauge output and (ii) a universal analogue input module NI9215
to measure the encoder values and to synchronize the data with an Arduino Micro. The magnetic rotary
meter is connected to an Arduino Micro to measure pedal orientation. As the lock+ keeps running,
while the cDAQ stops after every cycling set, the data needs to be synchronized. The Arduino sends
out a varying signal to the cDAQ and to the Vicon Lock+ to add a unique high-low pattern. After the
experiments, all data is shifted in time until it fully matches the unique high-low pattern of the Arduino.

2.4. Setup

The bicycle is installed stationary on a bicycle trainer, the seat height is measured and remains
unchanged during all tests. An analogue output of the Arduino module is connected to an analogue
input of the lock+ for post-test synchronization. The Vicon cameras are warmed up for 30 min, and all
reflecting parts of the bicycle are covered. When the cameras are warm, and the room temperature
is stable, the cameras are calibrated.

2.5. Protocol

Every subject is weighted, and lower limb lengths are notated. They are barefoot wearing
only underwear. They are lying supine in the anatomical position. The feet point to the sealing with a
maximally voluntarily dorsiflexion. Inner leg, thigh, shank, and mid-foot length were determined
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with a tape measure (by measuring, respectively, the distance from the greater trochanter to the
lateral malleolus, from the greater trochanter to the lateral femoral condyle, from the lateral femoral
condyle to the lateral malleolus and from the medial malleolus to the os naviculare), as seen in Table 2.
All anatomical locations are measured from the centers.

Table 2. References to determine segment lengths.

Segment Link Proximal Reference Distal Reference
1 Thigh Greater Trochanter Lateral Femoral Epicondyle
2 Shank Lateral Femoral Epicondyle Lateral Malleolus
3 Mid-Foot Medial Malleolus Os Naviculare

Markers are attached to the naked skin according to the Lower Limb and Trunk Model of the
Liverpool John Moores University [16,17]. The model considers eight segments: Two feet, two shanks,
two thighs, the pelvis, and trunk. In total, 44 markers are applied to fully capture the torso and lower
limb movement (Figure 2).

Figure 2. Marker placement.

A static trial is performed to record static marker locations: The subject stands still in the
anatomical position, with slightly abducted arms. Functional knee and hip movements are performed
to define the motion between the markers: The joints are separately moved through their full
range of motion: Flexion/extension, abduction/adduction, internal/external rotation for the hip and
flexion/extension for the knee. Markers are labelled, segments are described, and a subject-specific
Lower Limb and Trunk Model is created to record joint motion. Every subject cycles two sets of 2 min
on a self-selected relaxed tempo (Figure 3). The instrumented bicycle and the optical motion system
are manually activated and post-test synchronized based on the timestamp of the Arduino.

The subjects are provided guidelines during the test: Cycling gear is fixed, both hands are at all
times on the handlebar, and the buttocks on the seat. The bare feet are placed centrally on the pedals,
pressing the metatarsal bones to the pedal surface. Before and after every cycling set, foot position
is evaluated. Tests are filmed in the sagittal and frontal plane.
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Figure 3. Test setup.

2.6. Angle Calculation

The leg-bicycle system is described as a bar linkage model with the frame as a fixed link and
the crank, foot, shank and thigh as moving links. Figure 4 presents an overview of the system.
Joint angles are determined according to the work of Hull and Jorge [15]. A schematic overview of
the angles and segment lengths is presented in Figure 4. The ankle angle (), addressing the angle
between the shank and mid-foot, is calculated as:

y=C+e-6-1/2 )

For which C is the angle between pedal and crank, ¢ is the crank angle relative to the vertical and
0 is the angle between the mid-foot and the pedal.
The knee angle (8) and hip angle («) are described in function of seven geometric constants.

. 4[(C=D)-lsina
p = tan [(A—B)—ltcosa] @)
2G+[(26)2 —4(E+F)(E-F)]"
a = -2 tan"! +[< ) (E+ ) )] 3)

2(E+F)

For which [; is the length of the shank and A, B, C, D, E, F and G are respectively given by
Equations (4)—(10):

A =12+ cose 4)

B =If cosy (5)

C = L1+ sine (6)

D = Igsiny (7)
E=(A-B)+(C-D)*+12 -1 )
F=2(A-B) ©9)

G =2(C-D)l (10)
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L1 and L2 are the horizontal and vertical distance between crank and seat, respectively. I, | s I
and [; are the crank, mid-foot, shank, and thigh length, respectively.

Figure 4. Schematic overview of the angles and segment lengths.
2.7. Statistical Analysis

Only constant cycling data is included in the analysis: A minimum of five consecutive pedal cycles
needs to be counted, and the deviation between the encoder peaks should be less than 5%. The consistent
cycles are averaged to ensemble average curves (AVCs), which are subdivided into subject-specific
and method-specific AVCs. Subject-specific AVCs consider one AVC for every subject, for every joint,
for every leg, for every measurement method, resulting in 120 subject-specific AVCs. Method-specific
AVCs consider one AVC for every joint for every method, resulting in six method-specific AVCs
in total. The original time scale is converted to a position within the pedal cycle ranging from 0 to
360 degrees. The pedal cycle considers four phases: The pushing phase when the pedal is in the upper
dead center (0°), the pulling phase when the pedal is in the lower dead center (180°), the power phase
when the pedal travels from the upper dead center to the lower dead center (0-180°) and the recovery
phase when the pedal travels from the lower dead center to the upper one (180°-360°) [18]. As every
phase has its own characteristics, data points of every phase are considered in the statistical analysis:
Every 12 degrees, a value is saved—leading to 30 data points for one pedal cycle.

The AVCs of the bar linkage system and the optoelectronic motion capture system are plotted
together and compared with each other by a paired t-test of Spm1d. Spm1d is a validated package for
one-dimensional Statistical Parametric Mapping utilizing the random field theory [19]. It implements
a non-sphericity correction in the t-test by adjusting the degrees-of-freedom using the Satterthwaite
approximation from restricted maximum likelihood estimates of covariance components.

A correlation analyses is performed to measure the strength of a linear association between
the two methods. All data points of the AVCs are utilized, resulting in a widespread sample with
a considerable variating parameter, necessarily for correlation analysis. Pearson’s coefficient of
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determination (r?) and the root-mean-square error (RMSE) are presented in the section results. A Bland
and Altman (B&A) analysis is performed to evaluate a bias between the mean differences, and estimate

an agreement interval, within which 95% of the differences of the second method.

3. Results

3.1. Method Specific AVCs

Method-specific AVCs are calculated, resulting in three AVCs (hip, knee and ankle) for the bar
linkage system and three AVCs for the optical motion system.

3.1.1. Paired t-Test

For every joint, the two method-specific AVCs are plotted with their standard deviation in
Figure 5.1a-5.3a. Figure 5.1 addresses the hip, 5.2 addresses the knee and 5.3 addresses the ankle.
The results of an SPM paired-t-test is plotted in Figure 5.1b-5.3b.

70

60

50

40

30

20

Mean and SD

| Vicon
M Bar linkage

J

60 120 180 240 300

Hip
Hypothesis test

SN

2
a=0,05 t=2,607

SPM {t}

0 60 120 180 240 300 360

0 360
Pedal cycle Pedal cycle
5.1a 5.1b
Knee
Mean and SD Hypothesis test
180 - T T v 3
160 2
140 1
-
120 S0
o
7
100 -1
% = Vicon =0,05 1t=2,667
W Bar linkage [ @700 B2er
50 L . . . . . 3 . . . . R ,
0 60 120 180 240 300 360 0 60 120 180 240 300 360
Pedal cycle Pedal cycle
5.2a 5.2b
Ankle
Mean and SD Hypothesis test
140 15
10 / \
p <0.001 o
s p=0.031
-
= Of
o =005 t=3,59
*
-5
p<0.001 p<0.001
90 W Vicon -10
M Bar linkage J
80 -15
0 60 120 180 240 300 360 0 60 120 180 240 300 360
Pedal cycle Pedal cycle
5.3a 5.3b

Figure 5. From top to bottom: SPM1D output of the method-specific AVCs from the hip (5.1); knee (5.2)
and ankle (5.3). From left to right: Mean and standard deviation of the motion capture system and the

bar linkage (a); plot of the p-values (b).
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The largest difference for the hip is located in the region between 168° and 216°, though it is not
significant ( = 0.05, t = 2.607). The largest difference for the knee is located in the region of 36-96° and
of 192-276°, though are not significant (« = 0.05, t = 2.667). The ankle has three zones with a significant
difference (o« = 0.05, f = 3.59, p < 0.001) located in the region of 336-108°, 144-216°, and 264-312°.

3.1.2. Correlation and Bland Altman

For every joint, the correlation between the two method-specific AVCs is plotted in Figure 6.1a-6.3a.
Figure 6.1 addresses the hip, Figure 6.2 addresses the knee, and Figure 6.3 addresses the ankle. The B&A
analyses plot the difference between the two methods in function of the mean of the two methods.
The results are presented in Figure 6.1b—6.3b.
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Figure 6. From top to bottom: Correlation and B&A analysis of method-specific AVCs for the hip (6.1);
knee (6.2) and ankle (6.3). From left to right: Correlation plot (a); B&A plot (b).

The hip, knee and ankle show a very high correlation with r? values of 0.99, 1, and 0.97, respectively,
and RMS values of respectively 1.5, 1.4, and 2.3. The B&A plot of the ankle presents one outlier that is
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not within the margins of 1.96 times the standard deviation. All values of the knee and hip are within
the margins.

3.2. Subject-Specific AVCs

Subject-specific AVCs are calculated, resulting in 60 AVCs covering the joints (left hip, right hip,
left knee, right knee, left ankle and right ankle) of every subject for the bar linkage system and for the
optical motion system.

3.2.1. Correlation Analysis

Table 3 presents the maximal and minimal values found between all subjects for the six joints.
The difference between the left and right joint is marginal. 12 is situated between 0.963 and 0.996 for
the hips, between 0.999 and 0.983 for the knees and between 0.919 and 0.981 for the ankles with n = 30
and p < 0.001. The r? presents the smallest variation for the knees, followed by the hips and the Ankles.
The RMSE is situated between 0.907 and 2.879 for the hips, between 0.530 and 3.500 for the knees and
between 0.979 and 3.409 for the ankles, with the smallest variation for the hips, followed by the ankles
and the knees.

Table 3. Outcome subject-specific correlation analysis.

Left Hip Right Hip Left Knee Right Knee Left Ankle  Right Ankle

2 minimal 0.963 0.972 0.983 0.984 0.922 0.919
2 maximal 0.996 0.996 0.999 0.999 0.979 0.981
RMSE minimal 0.907 1.041 0.725 0.530 0.979 1.746
RMSE maximal 2.879 2.467 3.500 3.396 3.409 3.318

3.2.2. Bland Altman

Table 4 and Figure 7 display the number of subjects with outliers for the six joints in the function
of the pedal cycle. All ten subjects present no outliers for the left and right hip. Six out of ten and
seven out of ten subjects present no outliers for the left and right knee, respectively. The outliers are
found in the region of 156-180° for the left knee, and 168-192° for the right knee. Five out of ten and
four out of ten subjects present no outliers for the left and right ankle, respectively. The outliers are
found in the region of 300-312°. All outliers are found in the region between 1.97 times the standard
deviations and 2.12 times the standard deviation.

Table 4. Outcome subject-specific B&A analysis.

Left Hip Right Hip Left Knee Right Knee Left Ankle Right Ankle
Subject-specific AVCs without 10 10 6 7 5 4
outliers
Subject-specific AVCs with
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x (y) = x subjects present an 0 0 4 (180°) (1(192°) 5(300%) 2 (3127) 6(300°) 4 (312°)
outlier at location y
Outliers
6
35
=14}
£ 4 ‘
@ 3 Left knee I Tlgfh;AErle
3] . W Left Ankle
= M Right knee
o 2
8
1=
21
k=)
20 . . —_— : : !
=
0 60 120 180 240 300 360
Pedal cycle

Figure 7. Visual comparison of the number of subjects with outliers for a certain joint in function of the
pedal cycle.
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4. Discussion
4.1. Method Specific AVCs

4.1.1. Paired t-Test

Regarding the hip, a maximal difference of 3° can be detected visually when the pedal enters
the pushing phase of the pedal cycle, though this is statistically not significant. It has, furthermore,
no clinical relevance as it is relatively small compared to the full range of motion of the hip during
cycling of 41°. Regarding the knee, a constant overestimation of 3° is viewed, though it is not large
enough to be statistically significant. The full range of motion of the knee is 72° during cycling,
an overestimation of 3° has no clinical relevance. The ankle presents three regions with statically
relevant differences. A maximal overestimation of 2° is detected in the pushing phase, and a maximal
underestimation of 3° is detected in the pulling phase. Additionally, the curve displays an extra peak
in the last half of the recovery phase. This is statistically significant, though, for a full range of motion
of 34°, it has no clinical relevance. The bar linkage system presents a lower standard deviations, which
could suggest it is a more stable measuring method. The standard deviation of the bar linkage system
is the largest for the ankle, followed by the knee and the hip. This can be related to the size of the
movement: The larger the movement, the smaller the standard deviation. For the optoelectronic
motion capture system, the largest standard deviation is found for the knee, followed by the hip and at
last the ankle. The standard deviation of the optoelectronic motion capture system for the knee and
hip is significantly higher than for the bar linkage system. This can be caused to the placement of the
markers needed to determine the movement. The knee and hip present a higher wobbling mass and
more soft tissue artefacts than the slender ankle. This could suggest that the bar linkage system is a
more stable measuring method for voluptuous cyclists.

4.1.2. Correlation and B&A Analysis

All joint angles present a very high correlation for the two methods. A high correlation is required
to validate a method—though a high correlation does not necessarily imply that the examined method
is a good substitution for the golden standard. Bland and Altman point out that a high correlation
essentially implies that the sample is widespread, considering (i) the measuring interval affects r and r2
without affecting the agreement and (ii) a change in the scale of measurement significantly affects the
agreement without affecting the correlation analysis [20]. The B&A analysis is performed to evaluate
the bias between the two methods. It reveals one significant outlier for the ankle located at 300°,
confirming the results of the Spm1D analysis. The ankle’s overestimation in the pushing phase and the
underestimation in the pulling phase is not found back in the B&A analysis as these values still fall
between the margins of 1.96 times the standard deviation.

4.2. Subject-Specific AVCs

All subjects present a similar correlation with a marginal difference between the left and right leg.
The correlation of the subject-specific AVCs are analogues to the method-specific AVCs. Regarding the
B&A analysis, more outliers are found when the bar linkage system and the optical motion system
are compared to the level of the subjects. The subject-specific AVCs of the hips present the same
outcome as the method-specific AVC. The subject-specific AVCs of the knee present a different outcome,
namely, for 35% of the subjects one or two outliers are discovered in the pulling phase. This could
suggest that the averaging ensemble technique has hidden some erroneous data for the knee in the
pulling phase. Though, the difference is very small: In 35% of the cases one or two outliers are found
located only slightly outside the confident interval (at maximal 2.12 times the standard deviation
instead of 1.96 times the standard deviation). Regarding the ankle, 55% of the subjects present one or
two outliers in the second half of the recovery phase, which is in line with the method-specific AVC
B&A analysis.
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4.3. Limitations and Future Directions

The bar linkage system proved to deliver accurate joint angle calculation on bicycles, though some
limitations should be considered. The angles are a projection in the sagittal plane of the flexion and
extension, not taking the lateral and medial rotation into account. Furthermore, possible hip and feet
movement was neglected as the cyclist was forced in a certain setup. Subsequently, the influence of hip
and feet movement, different hip and feet setups should be studied. In future work, the bar linkage
system will be utilized on a fully instrumented city bike for woman with pedal power assistance to
derive in-situ joint loading from contact forces in the seat and pedals to analyze the influence of pedal
power assistance on joint kinetics.

5. Conclusions

The bar linkage system proved to be a good estimator of the lower limb joint angles in the sagittal
plane during cycling. A very strong correlation is found between the bar linkage system and the
optoelectronic motion capture system for all the joints of every subject. The B&A analysis of the AVCs
from the hip angles presented no outliers, and the t-test revealed no significant differences. The B&A
analysis of method-specific AVCs from the knee angles presented no outliers, subject-specific AVCs
from the knee angles presented a marginal amount. Furthermore, the t-test of the method-specific
AVCs presented no significant difference between the two methods. The B&A analysis of the ankle
presented one outlier in the second half of the recovery phase for the method-specific AVCs and
maximally two outliers for the subject-specific AVCs in the same region. The t-test confirmed these
results and additionally revealed a statistically significant overestimation in the pushing phase and
underestimation in the pulling phase of 3°. Because a difference of 3° has no clinical relevance when
discussing joint angles to determine joint loading, the bar linkage system is seen as a good alternative for
optoelectronic motion capture systems to capture cycling movement. It can measure joint angles while
cycling in-situ, and therefore, does not require a lab environment, can be measured with traditional
instrumented pedals, and is not affected by wobbling mass and soft tissue artefacts of the lower limbs.
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